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Abstract

We propose representing a text corpus as a labeled direcpt,gvhere nodes represent words and
weighted edges represent the syntactic relations between &s derived by dependency parsing. Given
this graph, we adopt a graph-based similarity measure basedndom walks to derive a similarity
measure between words, and also use supervised learnimgptovie the derived similarity measure for
a particular task. Empirical evaluation of the approachtantask of coordinate term extraction shows
that the suggested framework improves on a state-of-thaisaributional similarity measure.
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1 Introduction

In recent years, researchers have used syntactic structure imtiheffdependency parsdsr a number of
NLP tasks, including relation extraction (e.g., (Bunescu & Mooney, 20@blestion answering (e.g., (Cui
et al., 2005)), and machine translation (e.g., (Quirk et al., 2005)). Oventabe of dependency parsing is
that it readily provides semantically useful predicate-argument structure

In this paper, we propose representing a text corpus as a labeletedigraph of dependency parse
trees. In the suggested graph scheme, nodes denote words or wardeaces, and edges represent the
dependency relations between word occurrences, or links betweerdaoecurrence and the “generic ver-
sion” of a word. Given such a labeled directed graph, previouslgldeed techniques based on graph
walks (Minkov et al., 2006) can be used to impose a measure of similarity hetiveegraph nodes, and
machine learning techniques can be used to optimize these similarity metrics fecificsfamily of tasks
(Minkov et al., 2006; Minkov & Cohen, 2007). Here we evaluate theaplmbased similarity metrics on a
coordinate term extraction task, and show them to be comparable to a saselinb method, which also
uses dependency-parse information—a state-of-the-art distribusongdrity technique due to Padand
Lapata (Pad & Lapata, 2007).

Below we will first outline our proposed scheme for representing a dkgpey-parsed text corpora as
a graph, and provide some intuitions about the associated similarity metric. Werdsent the similarity
metric in detail, and describe two learning techniques: one that tunes aweigits associated with each
edge type, and one that discriminatively reranks graph nodes, usingds that describe the possible paths
between a graph node and the initial “query nodes”. We next presetddk of coordinate term extraction,
and evaluate performance of these methods on three small to moderatelg@ipeth. Relative to dis-
tributional similarity metrics, the graph walk has an computational advantatiesr ihan only supporting
scoringof candidate pairs, the graph suppagtieval of similar objects (i.e., finding all objecisthat are
similar to a given query objeat). We also show that, for this task, the graph walk gives much better results
than a state-of-the-art distributional similarity method (®&d_apata, 2007).

2 Representing acorpusasagraph

A dependency parse tree consists of directed links between wortigpefidependency parse additionally
labels dependencies with the relevant grammatical relation, susttbgectindirect objectetc. For example,
consider the sentence parse in Figure 1. In this example sentence tadr@atzording to the Stanford parser
conventions (de Marneffe et al., 2006), the subject, “boy”, is linked ¢overb, “like”, with the typed link
“nsubj” (nominal subject).

nsubj partmod prep.with

CHONCONCES

prep.of

Figure 1: A dependency parse for the sentence “Boys like playing wittiradk of cars.”

Rather than process dependency relations on a per-sentence lzps{S(@w et al., 2005)), we suggest
representing a text corpus as a connected graph of dependentyrgsu In particular, we consider the
scheme shown in Figure 2. The graph shown in the figure includes thadkspey analysis of two sentences:
“boys like playing with all kinds of cars”, and “girls like playing with dolls”. Tensure that graph retains
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Figure 2: The suggested graph schema, demonstrated for a two-sectepuas.

the original structures of each dependency tree, each word mentigréseated as a special object, which
includes the index of the sentence in which it appears, and its position inethizinge (omitted for clarity

in the figure) . Nodes denoting word mentions are marked as circles in thre.fifilhe “generic version”

of each word—henceforthtarm node—is denoted by a square in the figure. Each word mention is linked
to the corresponding term; for example, the nodes jlilkend “likes” represent distinct word mentions and
both nodes are linked to therm“like”. For every edge in the graph, we add another edge in the opposite
direction (not shown in the figure); for example, an edge exists from,"lit@“girls ;" with an edge labelled

as “nsubj-inv”. The resulting graph is highly interconnected and cyclic.

A larger corpus of parsed sentences will be represented just asea taaph. We will apply graph
walks to derive an extended measure of similarity, or relatedness, betvagderms(as defined above).
For example, suppose we are to apply graph walks in the graph depicteguiie B in order to find terms
similar to the term “girls”. Starting from the term “girls”, we will reach the semaaiticrelated term “boys”
via the following two paths:

girls ™" girls1 ™Y likel ™ like ™M™ ike2 TR hoys2™ =™ hoys , and

girls <" girlsl”s—w? like1 Primod playing1®* =™ playing" <" pIayingZpartmoﬂ””erse likep "SIz inverse
boys2* =™ boys .

Intuitively, in this graph, terms that are more closely related semantically will kediby a larger
number of connecting paths in a corpus, and the connecting paths willbgtehnorter.

3 Graph walksand similarity queries

Below, we will denote graph nodes by letters sucheag, or z, and an edge from to y with label ¢ as

r - y. Every noder is associated with a type, denote¢lr). For example, the schema in Figure 2
includes node types eford mentiorandterm

Similarity between two nodes in the graph is defined by a graph walk prooessplled by a set of
parameter®, where an edge of typéis assigned an edge weight determined by its typeln this paper,
we consider either uniform edge weights; and, a setting where the seigtitaO is learned from examples
(Section 4).



Vg = {stocks} Vg = {taking}
Tout =JJ Tgut =dobj-inv
individual advantage

foreign risks
blue chip tests
stable place
speculative action
actual risk
big royalties
financial posts
gold business
cheaper initiative

Figure 3: Two example queries and the corresponding top ranked regbése walk lengthk = 3 and©
are uniform, using a graph representing the MUC-6 corpus

The graph walk process is defined as follows. Lg} denote the set of edge types of the outgoing edges
from z to y. The probability of reaching nodgfrom nodex over a single time step is defined as:

ZéeLwy O
Zy/ECh(x) ZE’ELwy/ O

wherech(x) denotes the set of immediate childrerwofThat is, the outgoing weights fromare normalized
to form a probability distribution.

DefineM,, = Pr(z — y). If we associate nodes with integers, and mdkea matrix indexed by
nodes, then the probability of reachipdrom z with a path of lengthi is the(z, y)- element ofM".

Finally consider the vectoR = Zle 7'V,M!, whereV,, is a unit vector representing a probability
distribution over nodes. IV, puts weight 1 on: and weight O on all other nodes, then tjh component
of R is proportional to the probability of reachingn ani-step random walk fromy, where the walk length
i is chosen with probability proportional tg. (Due to0 < v < 1, an exponential decay applies over path
length.) Hence = R, is a plausible measure of the similaritypfo .

GivenV/, (any initial distribution) the vectdR can be computed quite straightforwardly by sparse matrix
multiplication for small values ok. This is the approach taken here (withand k& being fixed by the
user). In our experiments, this operation requires only a few minutes (gtt l@ominutes for the largest
corpus) on a commodity PC. However, the stationary distribution associdttedRwask — oo) is well-
studied—it is known variously as “personalized PageRank” or “rand@aitih with restart—and techniques
for approximating it more efficiently are known (e.g., (Tong et al., 2006)) .

More generally, we define similarity queryto consist of an initial distributiorV; over nodes, plus a
desired output type,,;. The answer to a query is a list of nodefiltered by typer,.:, and ranked by the
node’s score in the final distributidR.

In addition to the node types @ford mentiorandterm, one can extend the graph with additional node
types, allowing more interesting filters and queries. For example, Figurevdsghe queries for finding the
nouns most related to the term “stocks”, and for finding the “direct-olggats™ that are most related to
the term “taking”.

Pr(z —vy) =

1|.e., terms with a the appropriate incoming dependency link.
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4 Learning

We consider a supervised setting, given a dataset of example queddabals over the graph nodes, indi-
cating whether they are considered to be relevant answers, per §ueryse here two methods previously
described by Minkov and Cohen (Minkov & Cohen, 2007): a hill-climbing rodtkhat tunes the graph
weights; and a reranking method. For completeness, we include a skortewv of the two approaches in
this section. We also describe the feature set used.

4.1 Weight Tuning

There are several motivations for learning the grpah weights this domain. First, some dependency
relations — foremostubjectandobject— are in general more salient than others (Lin, 1998;6R&ad a-
pata, 2007). In addition, dependency relations may have varying impertser different notions of word
similarity (e.g., noun vs. verb similarity (Resnik & Diab, 2000)). Weight tunihgves the adaption of edge
weights petask

The weight tuning method implemented in this work is based on an error baagation hill climbing
algorithm (Diligenti et al., 2005). The algorithm minimizes the following cost fiorc

1 1 1 o

- _ - o pt\2

E_NZ eZ_NZ 5Pz —P:")
1eEN 1EN

wheree, is the error for a target node defined as the squared difference between the final score assigned
to z by the graph walkp., and some ideal score according to the example’s Iabgfé, Specifically,szpt

is set to 1 in case that the nodds relevant or 0 otherwise. The error is averaged over a set of example
instantiations of sizé&v. The cost function is minimized by gradient descent where the derivattihe error

with respect to an edge weightis derived by decomposing the walk into single time steps, and considering
the contribution of each node traversed to the final node score.

4.2 Node Reranking

Reranking of the top candidates in a ranked list has been successfllycio multiple NLP tasks (Collins,
2002b; Collins & Koo, 2005). In essence, discriminative reranking althe re-ordering of results obtained
by methods that perform some form of local search, using featuresribatle higher level information.

A number of features describing the set of paths fignean be conveniently computed in the process of
computing similarity scores, and it has been shown that reranking usirg femsires can improve results
significantly (Minkov et al., 2006). It has also been shown that rergnkicomplementary to weight tuning
(Minkov & Cohen, 2007), in the sense that the two techniques can bellysedmbined by tuning weights,
and then reranking the results.

In the reranking approach, for every training examgle < ¢ < N), the reranking algorithm is provided
with the corresponding output ranked listlphodes. Let;; be the output node ranked at rankn /;, and
let p.,, be the probability assigned tg; by the graph walk. Each output nodg is represented through
features, which are computed by pre-defined feature funcifpns., f,,,. Theranking functionfor node
z;; is defined as:

F(zi,@) = aolog(p=,;) + > anfr(2ij)
=1



wherea is a vector of real-valued parameters. Given a new test example, the ofitipeimodel is the output
node list reranked by"(z;;, @). To learn the parameter weights we here applied the voted perceptron
algorithm (Collins, 2002a).

4.3 Features

We evaluate the following feature templatd&dge label bigranfeatures indicate whether a particular se-
quence of edge labels and/; occurred, in this order, within the set of paths leading to the target agde
Lexicalized edge label bigrafeatures indicate whether a tempwas traversed between two consecutive
edges/; and/; (i.e., a trigram?;, t, ¢;). Lexical unigramfeature indicate whether a word mention whose
lexical value ist;, was traversed in the set of paths leadingto

In this work, each feature is given a numeric weight that corresponittie torobability of the indicator
being true for any path betweenand z;;, as in earlier work by Cohen and Minkov (Cohen & Minkov,
2006)).

5 Related work

This work is not the first to apply graph walks to obtain a notion of semantic sitgifar NLP problems.
For instance, Hughes and Ramage (Hughes & Ramage, 2007) corssugraph which represented vari-
ous types of word relations from WordNet, and compared random-walk sityila similarity assessments
from human-subiject trials. Random-walk similarity has also been used fioalestnoothing for preposi-
tional word attachment (Toutanova et al., 2004) and query expans@in&Thompson & Callan, 2005).
Alternative methods have even been suggested to represent a taxt asrp graph—for example, graphs
have been evaluated for automatic text summarization (Erkan & RadeV), 2@0dre nodes are sentences
and links are drawn between similar sentences. To our knowledge thisipagowel in representing a cor-
pus represented as a graph that includes syntactic information (in partabeteendency-parsed text), and
is novel in exploring the use of random-walk similarity on such a graph.

We note that graphs derived from individual sentences been hawdywided—e.g., Snow et al (Snow
et al., 2005) used dependency paths in order to extract hyponymsafommpus of parsed text, but separate
sentences were not connected.

In contrast to most earlier researchers, our graph representasarohbeen (consciously) engineered
for any particular task, although we do include learning techniques ta &daghe data. However, engi-
neering the structure graph (e.g., by adding WordNet edges, linkingegaorphologically similar words,
etc) is straightforward to do in this framework, and we may explore this indusark.

The framework described in this paper is perhaps most related to syasaxttvector space models,
which derive a notion of semantic similarity from statistics associated with agpampus (Grefenstette,
1994; Lin, 1998; Padl & Lapata, 2007). In most cases, these models construct vectorsreseap each
word w;, where each element in the vector foy corresponds to particular “context; and represents a
count or an indication of whethes; occurred in context. A “context” can refer to simple co-occurrence
with another wordw;, to a particular syntactic relation to another word (e.qg., a relation of “direjetct’
to w;), etc. Given these word vectors, inter-word similarity is evaluated usingesappropriate similarity
measure for the vector space, such as cosine vector similarltyn’srsimilarity (Lin, 1998).

Recently, Pad and Lapata (Pad& Lapata, 2007) have suggested an extended syntactic vector space
model calleddependency vectarin which rather than simple counts, the components of a word vector
consist ofweighted scoresvhich combine both co-occurrence frequency and the importanceaitext.



Context importance is based on properties of the context. They corsisaralifferent weighting schemes:
alengthweighting scheme, assigning lower weight to longer connecting paths (¢edasiinverse of path
length); and arobliquenesswveighting hierarchy (Keenan & Comrie, 1977), assigning higher weight to
paths that include gramatically salient relations. Another parameter contrdtingomputed scores in
their framework limits the set of considered paths to a manually designed@eiseating various types of
linguistic interesting phenomena. In an evaluation of word pair similarity basetiadistics from a corpus
of about 100 million words, they show improvements over several previectsr space models.

Below we will compare our framework to that of Raand Lapata. One important difference is that while
Pad and Lapata make manual choices (regarding the set of paths codsigher¢éhe weighting scheme),
we apply learning to adjust the analogous parameters.

6 Extraction of coordinate terms

We evaluate the suggested framework on the taskoofdinate termsextraction. Coordinate terms are
terms that share the same (immediate) parent in a taxonomy: for example, “toficatoi” and “pepper”
are coordinate terms, as they are all instances of “vegetable”.

In this paper, we evaluate the extractionoitfy namesrom newswire data. The task is to retrieve a
ranked list of city names given a small set of seeds (in the experimentsdeds). This task is implemented
as a similarity query by retrieving nodes with type="named entity”, and letting the query distributidf
be uniform over the four seeds (and zero elsewhere). Ideally, sétirey ranked list will be populated with
many additional city names, due to semantic similarity.

We are interested in coordinate term extraction for two reasons. First, skistmtrinsically important,
as it is required for automatic knowledge base construction—e.g., (Etzi@hi, 2005). Second, it is a
clearly-defined task, for which we can easily identify correct answeescorpus. This will allow us to
evaluate performance in terms of both precision and recall.

6.1 Experimental Setup

In order to obtain a labelled dataset, we parsed the training set portion dte6 dataset (MUCS,
1995), using the Stanford dependency pafsd@ihe MUC-6 collection includes 317 Wall Street Journal
articles. In addition to the text, it provides gold standard annotations of namtétes (NEs) and their
types—e.g., “New York” is annotated as “Locatioh’For the experiments, we hand-labeled all location
NEs as to whether they were city names. Overall, we identified 185 unique citganin the corpus.
We then generated 10 queries comprised of cities’ names. Each quergi@adiucity names, selected
randomly according to the distribution of city name mentions in the MUC-6 cor@igen every query,
we extract a ranked list of named entities of type="named entity® in the corpus (query terms are of
course discarded from this list). We use 5 labelled queries for traininguanin purposes, and reserve the
remaining 5 queries for testing. In addition to the small MUC-6 corpus wetaried two incrementally
larger corpora, by adding to the MUC-6 corpus parsed articles of tkedieted press, extracted from the
AQUAINT corpus (Bilotti et al., 2007). The AQUAINT corpus has beamatated with named entities
automatically, so it includes noisy tags; nevertheless, we processadgjimethe these graphs in the same

2http://nip.stanford.edu/software/lex-parser.shtml; sentences loraye thwords were omitted.
3We process named entities as if they were single words.

“The list was not normalized—e.g., it includes synonyms like “New Yanht| “N.Y”.
SAnnotated as either Location, Person or Organization.



Corpus words nodes edges  unigue NEs

MUC 140K 82K 244K 3K
MUC+AP1 715K 326K 1,077K 12K
MUC+AP2  2,440K  1,030K  3,550K 36K

Table 1: Corpus statistics
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Figure 4: Cross validation evaluation, using the MUC-6 corpus: contribaticearned weights and feature
sets (top) and final results for varying walk length (bottom)

manner described above. Statistics of these corpora and their cordaspgraph representation are given
in Table 1.

6.2 Graph Walk Tuning

We performed a 5-fold cross validation evaluation using the MUC-6 caxpdghe train set queries, to tune
the parameters involved in the graph walk and learning. Figure 4 givecesam-recall curve for applying
graph walks with walk lengtik = 6 and with uniform weights (G:Uw); with learned weights (G:Lw); for
re-ranking the top 200 nodes of the weighted walk, using the edge tymmbigatures (G:Lw+RR(e)); and
reranking using all of the features described in Section 4.3, includingaexitormation (G:Lw+RR). As
shown in these results, weight tuning improves perform&nEarther, reranking gives a significant boost
to precision, at all recall levels. As shown, lexical information is inforneafor this task. In the rest of the
experiments we apply the best graph walk configuration from these-eatidation experiments (i.e., tuned
weights and the full set of features).

One of the distinctive aspects of this framework is the fact that the grabk-ean span multiple sen-
tences. This is a potential advantage, as intra-sentence co-oceunkogordinate terms is rare (Snow
et al., 2005). To measure the potential impact of this, we measured the maxiongiblp recall obtain-
able by processing dependency paths of a collectiand¥idual sentences. The top of Table 2 shows the
maximum recall obtainable using co-occurrence data of increasing disfainca disconnected graph of
individual sentences (i.ed, is the maximal number of dependency edges traversed within a sentamte), a
the bottom of Table 2 shows the maximum recall reached by graph walksd@aising lengttk, for the
MUC and MUC+AP2 corpora. As can be deduced from the graph scli€ignare 2), a graph walk df = 6

SWeight tuning (trained on the MUC+AP1 corpus and two dozens of taxs) assigned higher weights to edge types such
asconj-and prep-of nn, dobjandappos



Intra-sentence  d=1 d=2 d=3 d=4 d=5

MucC 0.9 2.8 3.4 3.8 4.0
MUC+AP2 1.7 5.7 7.0 7.5 7.7
Graph walk k=4 k=5 k=6 k=7 k=8
MUC 2.8 34 86 179 276
MUC+AP2 5.7 7.0 19.6 333 -

Table 2: avg. Max. recall

steps or more is required for a path to cross two sentences—which ca@meidgump in maximum recall
in both corpora.

To set the parametér we evaluated cross-validation performance in terms of mean averazs@neon
varying walk lengths. The performance of a graph walk whiete 6 steps gave substantial improvements
over shorter walks, and beyond that further improvements were smédlirfgact deteriorated fok = 9).
We therefore set the graph walk lengthkte= 6.

6.3 A Comparative Evaluation

We conducted an empirical evaluation of the graph walks agdémstndency vectof®V)’ (Pad & Lapata,
2007), a weighted semantic vector space model (see Section 4). In apiplgiDV method, we compute a
similarity score betweeaverynamed entity from the corpus and each of the query terms, and then @verag
these scores (as the query distributions are uniform) to construct edréisk

Evaluating similarity for all candidate entities can be expensive for a largmiso One advantage of
the graph-walk method is that it supports “retrieval” of similar objects—i.egm@ set of seeds, one can
directly compute a (sparse) vect@rthat lists all other nodes similar to the seeds. Distribution similarity
methods do not directly support this operation.

We set the parameters of the DV method based on a 5-fold cross validagiloiatgon over the training
gueries and the MUC and MUC+AP1 corpora. We used the medium setpehdency paths, an edge
weighting scheme, and a cosine similarity measure.

Test set resultsThe top graphs of Figure 5 compare the DV method and the graph-walk mgtitbd
learned weights only, and with reranking) on the test-set queries fromlthe and MUC+AP1 corpora.
Here we evaluate precision as a function of rank in the ranked list. (We-ladeled all the top-ranked
results as to whether they are city names; hence we show accurate medqunexision, considering also
city names that are not contained in MUC, as relevant for the larger sQrphbie performance of graph walks
with re-ranking is very encouraging. For all queries, the top ranke wensely populated with city names.
Such high quality results could perhaps support a process of bogistgapvhere new queries (seeds) are
constructed based on the returned lists, in order to gradually expandethst tbf extracted items.

For this task, as we know all the city names that occur in the MUC corpusaweneasure recall as
well as precision with respect to this known set. The graphs at the bottameFsggive these results. Itis
clear that both instances of the graph-walk are performing substantiéiéyr iean DV for the large corpus
as well. Precision of both the graph walk and the DV method appears wwr8eflarger corpus; however,
this is likely an artifact of the details of experimental procedure, as weidena city name as “current”
only ifitis included in the MUC-6 corpus—i.e., precision is underestimated ®fatger corpus. Another

"We used the code from http://www.coli.uni-saarland.de/ pado/dv.htm¥ezting the minimal and medium context files to the
Stanford dependency parser conventions.
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Figure 5: Test results: Precision vs. recall (top) and precision a&rdiit ranks (bottom)

possible reasons for the precision decrease in the larger corpus theéhedndidate entities are noisy in
MUC+APL1,; also, city names appear to be more concentrated in the MUC-8scorp

Scalability questionsWhile thedependency vectorsodel and its variants can be applied on very large
corpora, they require a small set of candidate words to be selectecoiimg and we could not run these
methods to score all the entities from the larger MUC+AP2 corpus. As amaiies, we used the DV
method to rerank the top items retrieved by the weighted graph&valk.

Figure 6 shows the result of this experiment (see the G:Lw+DV curveje e hand-labeled all the
top-ranked results as to whether they are city names; hence we shawtaaoeasures of precision versus
rank. Given this filtered candidate set, DV improves the performanceveslatithe weighted graph walk
in the top ranks, but not at lower ranks. Its performance is clearlyiorfay the graph walk with reranking
(which uses discriminative reranking to reorder nodes based on therglatkd features).

8The set we used is a union of the top 200 results per each query.
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Figure 6: Test results for the MUC+AP2 corpus, where DV is useddi@nking the top candidates retrieved
by GW

7 Conclusion and futuredirections

In this paper, we have explored a novel but natural representicm dorpus of dependency-parsed parsed
text, as a labeled directed graph. We have evaluated the task of cootemmatextraction using this repre-
sentation, and shown that coordinate term extraction can be perforimgdsirailarity queries in a general-
purpose graph-walk based query language—a query languagdansedariety of personal-information
tasks in the past (Minkov et al., 2006; Minkov & Cohen, 2007). Furtiverhave successfully applied learn-
ing techniques that tune weights assigned to different dependency meladitd re-score candidates using
features derived from the graph walk.

In the empirical evaluation on the coordinate term extraction task, we cothgaseframework to the
state-of-the-art syntactic vector space model, both in terms of accurdegeall. We found that after having
learned the graph weights, the graph walks give favorable perfoenmabiscriminative reranking using
features derived directly from the graph-walk further boosts perémice, giving almost perfect accuracy at
the top ranks. Another difference between the compared approadhes imlike vector based models that
only scorepairs of terms provided by the user, the graph walk metktrievessimilar items items.

The framework presented is general, in that additional information, ssidWaxdNet edges, can be
readily encoded in the graph. Other directions of future work includbéuexploration of more specialized
features describing the set of paths, and scaling to larger corporallyFime believe that this framework
can be applied for the extraction of more specialized notions of word rekegsdas in relation extraction
(Bunescu & Mooney, 2005).
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