
Learning to Walk Structured Text Networks

CMU-LTI-08-002

Einat Minkov and William W. Cohen

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA 15213
www.lti.cs.cmu.edu

March 5, 2008

Abstract

We propose representing a text corpus as a labeled directed graph, where nodes represent words and
weighted edges represent the syntactic relations between them, as derived by dependency parsing. Given
this graph, we adopt a graph-based similarity measure basedon random walks to derive a similarity
measure between words, and also use supervised learning to improve the derived similarity measure for
a particular task. Empirical evaluation of the approach on the task of coordinate term extraction shows
that the suggested framework improves on a state-of-the-art distributional similarity measure.

ii

Contents

1 Introduction 1

2 Representing a corpus as a graph 1

3 Graph walks and similarity queries 2

4 Learning 4
4.1 Weight Tuning .. . 4
4.2 Node Reranking 4
4.3 Features 5

5 Related work 5

6 Extraction of coordinate terms 6
6.1 Experimental Setup 6
6.2 Graph Walk Tuning 7
6.3 A Comparative Evaluation 8

7 Conclusion and future directions 10

iii

1 Introduction

In recent years, researchers have used syntactic structure in the form of dependency parsesfor a number of
NLP tasks, including relation extraction (e.g., (Bunescu & Mooney, 2005)), question answering (e.g., (Cui
et al., 2005)), and machine translation (e.g., (Quirk et al., 2005)). One advantage of dependency parsing is
that it readily provides semantically useful predicate-argument structure.

In this paper, we propose representing a text corpus as a labeled directed graph of dependency parse
trees. In the suggested graph scheme, nodes denote words or word occurrences, and edges represent the
dependency relations between word occurrences, or links between a word occurrence and the “generic ver-
sion” of a word. Given such a labeled directed graph, previously-developed techniques based on graph
walks (Minkov et al., 2006) can be used to impose a measure of similarity between the graph nodes, and
machine learning techniques can be used to optimize these similarity metrics for a specific family of tasks
(Minkov et al., 2006; Minkov & Cohen, 2007). Here we evaluate these graph-based similarity metrics on a
coordinate term extraction task, and show them to be comparable to a strong baseline method, which also
uses dependency-parse information—a state-of-the-art distributionalsimilarity technique due to Padó and
Lapata (Pad́o & Lapata, 2007).

Below we will first outline our proposed scheme for representing a dependency-parsed text corpora as
a graph, and provide some intuitions about the associated similarity metric. We then present the similarity
metric in detail, and describe two learning techniques: one that tunes a set ofweights associated with each
edge type, and one that discriminatively reranks graph nodes, using features that describe the possible paths
between a graph node and the initial “query nodes”. We next present the task of coordinate term extraction,
and evaluate performance of these methods on three small to moderately sizedcorpora. Relative to dis-
tributional similarity metrics, the graph walk has an computational advantage: rather than only supporting
scoringof candidate pairs, the graph supportsretrieval of similar objects (i.e., finding all objectsy that are
similar to a given query objectx). We also show that, for this task, the graph walk gives much better results
than a state-of-the-art distributional similarity method (Padó & Lapata, 2007).

2 Representing a corpus as a graph

A dependency parse tree consists of directed links between words. Atypeddependency parse additionally
labels dependencies with the relevant grammatical relation, such assubject, indirect objectetc. For example,
consider the sentence parse in Figure 1. In this example sentence, annotated according to the Stanford parser
conventions (de Marneffe et al., 2006), the subject, “boy”, is linked to the verb, “like”, with the typed link
“nsubj” (nominal subject).

Figure 1: A dependency parse for the sentence “Boys like playing with allkinds of cars.”

Rather than process dependency relations on a per-sentence basis (e.g., (Snow et al., 2005)), we suggest
representing a text corpus as a connected graph of dependency structures. In particular, we consider the
scheme shown in Figure 2. The graph shown in the figure includes the dependency analysis of two sentences:
“boys like playing with all kinds of cars”, and “girls like playing with dolls”. Toensure that graph retains

1

Figure 2: The suggested graph schema, demonstrated for a two-sentence corpus.

the original structures of each dependency tree, each word mention is represented as a special object, which
includes the index of the sentence in which it appears, and its position in that sentence (omitted for clarity
in the figure) . Nodes denoting word mentions are marked as circles in the figure. The “generic version”
of each word–henceforth atermnode—is denoted by a square in the figure. Each word mention is linked
to the corresponding term; for example, the nodes “like1” and “like2” represent distinct word mentions and
both nodes are linked to theterm “like”. For every edge in the graph, we add another edge in the opposite
direction (not shown in the figure); for example, an edge exists from “like1” to “girls1” with an edge labelled
as “nsubj-inv”. The resulting graph is highly interconnected and cyclic.

A larger corpus of parsed sentences will be represented just as a larger graph. We will apply graph
walks to derive an extended measure of similarity, or relatedness, betweenword terms(as defined above).
For example, suppose we are to apply graph walks in the graph depicted in Figure 2 in order to find terms
similar to the term “girls”. Starting from the term “girls”, we will reach the semantically related term “boys”
via the following two paths:

girls
mention
−→ girls1

nsubj
−→ like1

as−term
−→ like

mention
−→ like2

nsubj−inverse
−→ boys2

as−term
−→ boys , and

girls
mention
−→ girls1

nsubj
−→ like1

partmod
−→ playing1

as−term
−→ playing

mention
−→ playing2

partmod−inverse
−→ like2

nsubj−inverse
−→

boys2
as−term
−→ boys .

Intuitively, in this graph, terms that are more closely related semantically will be linked by a larger
number of connecting paths in a corpus, and the connecting paths will oftenbe shorter.

3 Graph walks and similarity queries

Below, we will denote graph nodes by letters such asx, y, or z, and an edge fromx to y with label ` as

x
`

−→ y. Every nodex is associated with a type, denotedτ(x). For example, the schema in Figure 2
includes node types ofword mentionandterm.

Similarity between two nodes in the graph is defined by a graph walk process,controlled by a set of
parametersΘ, where an edge of typèis assigned an edge weight determined by its type,θ`. In this paper,
we consider either uniform edge weights; and, a setting where the set of weightsΘ is learned from examples
(Section 4).

2

Vq = {stocks} Vq = {taking}
τout =JJ τ∗

out =dobj-inv

individual advantage
foreign risks

blue chip tests
stable place

speculative action
actual risk
big royalties

financial posts
gold business

cheaper initiative
... ...

Figure 3: Two example queries and the corresponding top ranked results, where walk lengthk = 3 andΘ
are uniform, using a graph representing the MUC-6 corpus

The graph walk process is defined as follows. LetLxy denote the set of edge types of the outgoing edges
from x to y. The probability of reaching nodey from nodex over a single time step is defined as:

Pr(x −→ y) =

∑
`∈Lxy

θ`∑
y′∈ch(x)

∑
`′∈Lxy′

θ`′

wherech(x) denotes the set of immediate children ofx. That is, the outgoing weights fromx are normalized
to form a probability distribution.

DefineMxy ≡ Pr(x −→ y). If we associate nodes with integers, and makeM a matrix indexed by
nodes, then the probability of reachingy from x with a path of lengthi is the(x, y)- element ofMi.

Finally consider the vectorR =
∑k

i=1 γiVxM
i, whereVx is a unit vector representing a probability

distribution over nodes. IfVx puts weight 1 onx and weight 0 on all other nodes, then they-th component
of R is proportional to the probability of reachingy in ani-step random walk fromx, where the walk length
i is chosen with probability proportional toγi. (Due to0 < γ < 1, an exponential decay applies over path
length.) Hences = Ry is a plausible measure of the similarity ofy to x.

GivenVx (any initial distribution) the vectorR can be computed quite straightforwardly by sparse matrix
multiplication for small values ofk. This is the approach taken here (withγ andk being fixed by the
user). In our experiments, this operation requires only a few minutes (at most 10 minutes for the largest
corpus) on a commodity PC. However, the stationary distribution associated with R (ask → ∞) is well-
studied—it is known variously as “personalized PageRank” or “randomwalk with restart—and techniques
for approximating it more efficiently are known (e.g., (Tong et al., 2006)) .

More generally, we define asimilarity queryto consist of an initial distributionVq over nodes, plus a
desired output typeτout . The answer to a query is a list of nodesz filtered by typeτout , and ranked by the
node’s score in the final distributionR.

In addition to the node types ofword mentionandterm, one can extend the graph with additional node
types, allowing more interesting filters and queries. For example, Figure 3 shows the queries for finding the
nouns most related to the term “stocks”, and for finding the “direct-objectterms”1 that are most related to
the term “taking”.

1I.e., terms with a the appropriate incoming dependency link.

3

4 Learning

We consider a supervised setting, given a dataset of example queries, and labels over the graph nodes, indi-
cating whether they are considered to be relevant answers, per query. We use here two methods previously
described by Minkov and Cohen (Minkov & Cohen, 2007): a hill-climbing method that tunes the graph
weights; and a reranking method. For completeness, we include a short overview of the two approaches in
this section. We also describe the feature set used.

4.1 Weight Tuning

There are several motivations for learning the grpah weightsΘ in this domain. First, some dependency
relations – foremost,subjectandobject– are in general more salient than others (Lin, 1998; Padó & La-
pata, 2007). In addition, dependency relations may have varying importance per different notions of word
similarity (e.g., noun vs. verb similarity (Resnik & Diab, 2000)). Weight tuning allows the adaption of edge
weights pertask.

The weight tuning method implemented in this work is based on an error backpropagation hill climbing
algorithm (Diligenti et al., 2005). The algorithm minimizes the following cost function:

E =
1

N

∑

i∈N

ez =
1

N

∑

i∈N

1

2
(pz − pOpt

z)2

whereez is the error for a target nodez, defined as the squared difference between the final score assigned
to z by the graph walk,pz, and some ideal score according to the example’s labels,p

Opt
z . Specifically,pOpt

z

is set to 1 in case that the nodez is relevant or 0 otherwise. The error is averaged over a set of example
instantiations of sizeN . The cost function is minimized by gradient descent where the derivativeof the error
with respect to an edge weightθ` is derived by decomposing the walk into single time steps, and considering
the contribution of each node traversed to the final node score.

4.2 Node Reranking

Reranking of the top candidates in a ranked list has been successfully applied to multiple NLP tasks (Collins,
2002b; Collins & Koo, 2005). In essence, discriminative reranking allows the re-ordering of results obtained
by methods that perform some form of local search, using features thatencode higher level information.

A number of features describing the set of paths fromVq can be conveniently computed in the process of
computing similarity scores, and it has been shown that reranking using these features can improve results
significantly (Minkov et al., 2006). It has also been shown that reranking is complementary to weight tuning
(Minkov & Cohen, 2007), in the sense that the two techniques can be usefully combined by tuning weights,
and then reranking the results.

In the reranking approach, for every training examplei (1 ≤ i ≤ N), the reranking algorithm is provided
with the corresponding output ranked list ofli nodes. Letzij be the output node ranked at rankj in li, and
let pzij

be the probability assigned tozij by the graph walk. Each output nodezij is represented throughm
features, which are computed by pre-defined feature functionsf1, . . . , fm. The ranking functionfor node
zij is defined as:

F (zij , ᾱ) = α0log(pzij
) +

m∑

k=1

αkfk(zij)

4

whereᾱ is a vector of real-valued parameters. Given a new test example, the output of the model is the output
node list reranked byF (zij , ᾱ). To learn the parameter weights̄α, we here applied the voted perceptron
algorithm (Collins, 2002a).

4.3 Features

We evaluate the following feature templates.Edge label bigramfeatures indicate whether a particular se-
quence of edge labels̀i and`j occurred, in this order, within the set of paths leading to the target nodezij .
Lexicalized edge label bigramfeatures indicate whether a termtk was traversed between two consecutive
edges̀ i and`j (i.e., a trigram̀ i, tk, `j). Lexical unigramfeature indicate whether a word mention whose
lexical value istk was traversed in the set of paths leading tozij .

In this work, each feature is given a numeric weight that corresponds tothe probability of the indicator
being true for any path betweenx andzij , as in earlier work by Cohen and Minkov (Cohen & Minkov,
2006)).

5 Related work

This work is not the first to apply graph walks to obtain a notion of semantic similarity for NLP problems.
For instance, Hughes and Ramage (Hughes & Ramage, 2007) constructed a graph which represented vari-
ous types of word relations from WordNet, and compared random-walk similarity to similarity assessments
from human-subject trials. Random-walk similarity has also been used for lexical smoothing for preposi-
tional word attachment (Toutanova et al., 2004) and query expansion (Collins-Thompson & Callan, 2005).
Alternative methods have even been suggested to represent a text corpus as a graph—for example, graphs
have been evaluated for automatic text summarization (Erkan & Radev, 2004), where nodes are sentences
and links are drawn between similar sentences. To our knowledge this paper is novel in representing a cor-
pus represented as a graph that includes syntactic information (in particular, dependency-parsed text), and
is novel in exploring the use of random-walk similarity on such a graph.

We note that graphs derived from individual sentences been have widely used–e.g., Snow et al (Snow
et al., 2005) used dependency paths in order to extract hyponyms froma corpus of parsed text, but separate
sentences were not connected.

In contrast to most earlier researchers, our graph representation has not been (consciously) engineered
for any particular task, although we do include learning techniques to adapt it to the data. However, engi-
neering the structure graph (e.g., by adding WordNet edges, linking together morphologically similar words,
etc) is straightforward to do in this framework, and we may explore this in future work.

The framework described in this paper is perhaps most related to syntax-based vector space models,
which derive a notion of semantic similarity from statistics associated with a parsed corpus (Grefenstette,
1994; Lin, 1998; Pad́o & Lapata, 2007). In most cases, these models construct vectors to represent each
word wi, where each element in the vector forwi corresponds to particular “context”c, and represents a
count or an indication of whetherwi occurred in contextc. A “context” can refer to simple co-occurrence
with another wordwj , to a particular syntactic relation to another word (e.g., a relation of “direct object”
to wj), etc. Given these word vectors, inter-word similarity is evaluated using some appropriate similarity
measure for the vector space, such as cosine vector similarity, orLin’s similarity (Lin, 1998).

Recently, Pad́o and Lapata (Padó & Lapata, 2007) have suggested an extended syntactic vector space
model calleddependency vectors, in which rather than simple counts, the components of a word vector
consist ofweighted scores, which combine both co-occurrence frequency and the importance of a context.

5

Context importance is based on properties of the context. They considered two different weighting schemes:
a lengthweighting scheme, assigning lower weight to longer connecting paths (computed as inverse of path
length); and anobliquenessweighting hierarchy (Keenan & Comrie, 1977), assigning higher weight to
paths that include gramatically salient relations. Another parameter controllingthe computed scores in
their framework limits the set of considered paths to a manually designed set, representing various types of
linguistic interesting phenomena. In an evaluation of word pair similarity based on statistics from a corpus
of about 100 million words, they show improvements over several previousvector space models.

Below we will compare our framework to that of Padó and Lapata. One important difference is that while
Pad́o and Lapata make manual choices (regarding the set of paths considered and the weighting scheme),
we apply learning to adjust the analogous parameters.

6 Extraction of coordinate terms

We evaluate the suggested framework on the task ofcoordinate termsextraction. Coordinate terms are
terms that share the same (immediate) parent in a taxonomy: for example, “tomato”, “corn” and “pepper”
are coordinate terms, as they are all instances of “vegetable”.

In this paper, we evaluate the extraction ofcity namesfrom newswire data. The task is to retrieve a
ranked list of city names given a small set of seeds (in the experiments, four seeds). This task is implemented
as a similarity query by retrieving nodes with typeτ =“named entity”, and letting the query distributionVq

be uniform over the four seeds (and zero elsewhere). Ideally, the resulting ranked list will be populated with
many additional city names, due to semantic similarity.

We are interested in coordinate term extraction for two reasons. First, this task is intrinsically important,
as it is required for automatic knowledge base construction—e.g., (Etzioni et al., 2005). Second, it is a
clearly-defined task, for which we can easily identify correct answersin a corpus. This will allow us to
evaluate performance in terms of both precision and recall.

6.1 Experimental Setup

In order to obtain a labelled dataset, we parsed the training set portion of theMUC-6 dataset (MUC6,
1995), using the Stanford dependency parser.2 The MUC-6 collection includes 317 Wall Street Journal
articles. In addition to the text, it provides gold standard annotations of namedentities (NEs) and their
types—e.g., “New York” is annotated as “Location”.3 For the experiments, we hand-labeled all location
NEs as to whether they were city names. Overall, we identified 185 unique city names in the corpus.4

We then generated 10 queries comprised of cities’ names. Each query includes 4 city names, selected
randomly according to the distribution of city name mentions in the MUC-6 corpus.Given every query,
we extract a ranked list of named entities of typeτ =“named entity”5 in the corpus (query terms are of
course discarded from this list). We use 5 labelled queries for training andtuning purposes, and reserve the
remaining 5 queries for testing. In addition to the small MUC-6 corpus we constructed two incrementally
larger corpora, by adding to the MUC-6 corpus parsed articles of the Associated press, extracted from the
AQUAINT corpus (Bilotti et al., 2007). The AQUAINT corpus has been annotated with named entities
automatically, so it includes noisy tags; nevertheless, we processed queries in the these graphs in the same

2http://nlp.stanford.edu/software/lex-parser.shtml; sentences longer than 70 words were omitted.
3We process named entities as if they were single words.
4The list was not normalized—e.g., it includes synonyms like “New York”and “N.Y”.
5Annotated as either Location, Person or Organization.

6

Corpus words nodes edges unique NEs
MUC 140K 82K 244K 3K
MUC+AP1 715K 326K 1,077K 12K
MUC+AP2 2,440K 1,030K 3,550K 36K

Table 1: Corpus statistics

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 2 4 6 8 10 12 14 16

pr
ec

is
io

n
[%

]

recall [%]

G:Uw
G:Lw

G:Lw+RR(e)
G:Lw+RR

Figure 4: Cross validation evaluation, using the MUC-6 corpus: contribution of learned weights and feature
sets (top) and final results for varying walk length (bottom)

manner described above. Statistics of these corpora and their corresponding graph representation are given
in Table 1.

6.2 Graph Walk Tuning

We performed a 5-fold cross validation evaluation using the MUC-6 corpusand the train set queries, to tune
the parameters involved in the graph walk and learning. Figure 4 gives a precision-recall curve for applying
graph walks with walk lengthk = 6 and with uniform weights (G:Uw); with learned weights (G:Lw); for
re-ranking the top 200 nodes of the weighted walk, using the edge type bigram features (G:Lw+RR(e)); and
reranking using all of the features described in Section 4.3, including lexical information (G:Lw+RR). As
shown in these results, weight tuning improves performance.6 Further, reranking gives a significant boost
to precision, at all recall levels. As shown, lexical information is informative for this task. In the rest of the
experiments we apply the best graph walk configuration from these cross-validation experiments (i.e., tuned
weights and the full set of features).

One of the distinctive aspects of this framework is the fact that the graph-walk can span multiple sen-
tences. This is a potential advantage, as intra-sentence co-occurrence of coordinate terms is rare (Snow
et al., 2005). To measure the potential impact of this, we measured the maximum possible recall obtain-
able by processing dependency paths of a collection ofindividual sentences. The top of Table 2 shows the
maximum recall obtainable using co-occurrence data of increasing distance d in a disconnected graph of
individual sentences (i.e.,d is the maximal number of dependency edges traversed within a sentence), and
the bottom of Table 2 shows the maximum recall reached by graph walks for increasing lengthk, for the
MUC and MUC+AP2 corpora. As can be deduced from the graph schema(Figure 2), a graph walk ofk = 6

6Weight tuning (trained on the MUC+AP1 corpus and two dozens of target nodes) assigned higher weights to edge types such
asconj-and, prep-of, nn, dobjandappos.

7

Intra-sentence d=1 d=2 d=3 d=4 d=5
MUC 0.9 2.8 3.4 3.8 4.0
MUC+AP2 1.7 5.7 7.0 7.5 7.7
Graph walk k=4 k=5 k=6 k=7 k=8
MUC 2.8 3.4 8.6 17.9 27.6
MUC+AP2 5.7 7.0 19.6 33.3 -

Table 2: avg. Max. recall

steps or more is required for a path to cross two sentences—which coincides in a jump in maximum recall
in both corpora.

To set the parameterk, we evaluated cross-validation performance in terms of mean average precision on
varying walk lengths. The performance of a graph walk wherek = 6 steps gave substantial improvements
over shorter walks, and beyond that further improvements were small (and in fact deteriorated fork = 9).
We therefore set the graph walk length tok = 6.

6.3 A Comparative Evaluation

We conducted an empirical evaluation of the graph walks againstdependency vectors(DV)7 (Pad́o & Lapata,
2007), a weighted semantic vector space model (see Section 4). In applying the DV method, we compute a
similarity score betweeneverynamed entity from the corpus and each of the query terms, and then average
these scores (as the query distributions are uniform) to construct a ranked list.

Evaluating similarity for all candidate entities can be expensive for a large corpus. One advantage of
the graph-walk method is that it supports “retrieval” of similar objects—i.e., given a set of seeds, one can
directly compute a (sparse) vectorR that lists all other nodes similar to the seeds. Distribution similarity
methods do not directly support this operation.

We set the parameters of the DV method based on a 5-fold cross validation evaluation over the training
queries and the MUC and MUC+AP1 corpora. We used the medium set of dependency paths, an edge
weighting scheme, and a cosine similarity measure.

Test set results.The top graphs of Figure 5 compare the DV method and the graph-walk method(with
learned weights only, and with reranking) on the test-set queries from theMUC and MUC+AP1 corpora.
Here we evaluate precision as a function of rank in the ranked list. (We hand-labeled all the top-ranked
results as to whether they are city names; hence we show accurate measures of precision, considering also
city names that are not contained in MUC, as relevant for the larger corpus.) The performance of graph walks
with re-ranking is very encouraging. For all queries, the top ranks were densely populated with city names.
Such high quality results could perhaps support a process of bootstrapping, where new queries (seeds) are
constructed based on the returned lists, in order to gradually expand the the list of extracted items.

For this task, as we know all the city names that occur in the MUC corpus, we can measure recall as
well as precision with respect to this known set. The graphs at the bottom Figure 5 give these results. It is
clear that both instances of the graph-walk are performing substantially better than DV for the large corpus
as well. Precision of both the graph walk and the DV method appears worse for the larger corpus; however,
this is likely an artifact of the details of experimental procedure, as we consider a city name as “current”
only if it is included in the MUC-6 corpus—i.e., precision is underestimated for the larger corpus. Another

7We used the code from http://www.coli.uni-saarland.de/ pado/dv.html, converting the minimal and medium context files to the
Stanford dependency parser conventions.

8

MUC MUC+AP1

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on
 [%

]

Rank

DV
G:Lw

G:Lw+RR

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on
 [%

]

Rank

DV
G:Lw

G:Lw+RR

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 2 4 6 8 10 12 14 16 18 20

P
re

ci
si

on
 [%

]

Recall

DV
G:Lw

G:Lw+RR

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 2 4 6 8 10 12 14 16 18 20

P
re

ci
si

on
 [%

]

Recall

DV
G:Lw

G:Lw+RR

Figure 5: Test results: Precision vs. recall (top) and precision at different ranks (bottom)

possible reasons for the precision decrease in the larger corpus is thatthe candidate entities are noisy in
MUC+AP1; also, city names appear to be more concentrated in the MUC-6 corpus.

Scalability questions.While thedependency vectorsmodel and its variants can be applied on very large
corpora, they require a small set of candidate words to be selected for scoring, and we could not run these
methods to score all the entities from the larger MUC+AP2 corpus. As an alternative, we used the DV
method to rerank the top items retrieved by the weighted graph walk.8

Figure 6 shows the result of this experiment (see the G:Lw+DV curve). Here we hand-labeled all the
top-ranked results as to whether they are city names; hence we show accurate measures of precision versus
rank. Given this filtered candidate set, DV improves the performance relative to the weighted graph walk
in the top ranks, but not at lower ranks. Its performance is clearly inferior to the graph walk with reranking
(which uses discriminative reranking to reorder nodes based on the walk-related features).

8The set we used is a union of the top 200 results per each query.

9

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 10 20 30 40 50 60 70 80 90 100
P

re
ci

si
on

 [%
]

Rank

G:Lw+DV
G:Lw

G:Lw+RR

Figure 6: Test results for the MUC+AP2 corpus, where DV is used for reranking the top candidates retrieved
by GW

7 Conclusion and future directions

In this paper, we have explored a novel but natural represention fora corpus of dependency-parsed parsed
text, as a labeled directed graph. We have evaluated the task of coordinateterm extraction using this repre-
sentation, and shown that coordinate term extraction can be performed using similarity queries in a general-
purpose graph-walk based query language—a query language usedfor a variety of personal-information
tasks in the past (Minkov et al., 2006; Minkov & Cohen, 2007). Further,we have successfully applied learn-
ing techniques that tune weights assigned to different dependency relations, and re-score candidates using
features derived from the graph walk.

In the empirical evaluation on the coordinate term extraction task, we compared this framework to the
state-of-the-art syntactic vector space model, both in terms of accuracy and recall. We found that after having
learned the graph weights, the graph walks give favorable performance. Discriminative reranking using
features derived directly from the graph-walk further boosts performance, giving almost perfect accuracy at
the top ranks. Another difference between the compared approaches isthat unlike vector based models that
only scorepairs of terms provided by the user, the graph walk methodretrievessimilar items items.

The framework presented is general, in that additional information, such as WordNet edges, can be
readily encoded in the graph. Other directions of future work include further exploration of more specialized
features describing the set of paths, and scaling to larger corpora. Finally, we believe that this framework
can be applied for the extraction of more specialized notions of word relatedness, as in relation extraction
(Bunescu & Mooney, 2005).

10

References

Bilotti, M. W., Ogilvie, P., Callan, J., & Nyberg, E. (2007). Structured retrieval for question answering.
SIGIR.

Bunescu, R. C., & Mooney, R. J. (2005). A shortest path dependency kernel for relation extraction.HLT-
EMNLP.

Cohen, W. W., & Minkov, E. (2006). A graph-search framework for associating gene identifiers with docu-
ments.BMC Bioinformatics, 7.

Collins, M. (2002a). Discriminative training methods for hidden markov models:Theory and experiments
with perceptron algorithms.EMNLP.

Collins, M. (2002b). Ranking algorithms for named-entity extraction: Boosting and the voted perceptron.
ACL.

Collins, M., & Koo, T. (2005). Discriminative reranking for natural language parsing.Computational
Linguistics, 31, 25–69.

Collins-Thompson, K., & Callan, J. (2005). Query expansion using random walk models.CIKM.

Cui, H., Sun, R., Li, K., Kan, M.-Y., & Chua, T.-S. (2005). Question answering passage retrieval using
dependency relations.SIGIR.

de Marneffe, M.-C., MacCartney, B., & Manning, C. D. (2006). Generating typed dependency parses from
phrase structure parses.LREC.

Diligenti, M., Gori, M., & Maggini, M. (2005). Learning web page scores byerror back-propagation.IJCAI.

Erkan, G., & Radev, D. R. (2004). Lexpagerank: Prestige in multi-document text summarization.EMNLP.

Etzioni, O., Cafarella, M., Downey, D., Shaked, A.-M. P. T., Soderland, S., S.Weld, D., & Yates, A. (2005).
Unsupervised named-entity extraction from the web: An experimental study. Artificial Intelligence, 165,
91–134.

Grefenstette, G. (1994).Explorations in automatic thesaurus discovery. Kluwer Academic Publishers,
Dordrecht.

Hughes, T., & Ramage, D. (2007). Lexical semantic relatedness with random graph walks.EMNLP.

Keenan, E., & Comrie, B. (1977). Noun phrase accessibility and universal grammar.Linguistic Inquiry, 8.

Lin, D. (1998). Automatic retrieval and clustering of similar words.COLING-ACL.

Minkov, E., & Cohen, W. W. (2007). Learning to rank typed graph walks: Local and global approaches.
WebKDD/KDD-SNA workshop.

Minkov, E., Cohen, W. W., & Ng, A. Y. (2006). Contextual search and name disambiguation in email using
graphs.SIGIR.

MUC6 (1995). Proceedings of the sixth message understanding conference (muc-6).Morgan Kaufmann
Publishers, Inc. Columbia, Maryland..

11

Pad́o, S., & Lapata, M. (2007). Dependency-based construction of semantic space models.Computational
Linguistics, 33.

Quirk, C., Menezes, A., & Cherry, C. (2005). Dependency tree translation: Syntactically informed phrasal
smt. ACL.

Resnik, P., & Diab, M. (2000). Measuring verb similarity.CogSci.

Snow, R., Jurafsky, D., & Ng, A. Y. (2005). Learning syntactic patterns for automatic hypernym discovery.
NIPS.

Tong, H., Faloutsos, C., & Pan, J.-Y. (2006). Fast random walk with restart and its applications.ICDM.

Toutanova, K., Manning, C. D., & Ng, A. Y. (2004). Learning random walk models for inducing word
dependency distributions.ICML.

12

