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to properly track, delegate, and prioritize sub-
Abstract tasks. The classification methods we consider
could be used to partially automate this sort of
It is often useful to classify email accord-  activity tracking. A hypothetical example of an
ing to the intent of the sender (e.g., "pro- email assistant that works along these lines is
pose a meeting”, "deliver information”).  shown in Figure 1.

We present experimental results in learn- Bl Assistant announces: “new
ing to classify email in this fashion, Do you have any sample emailrequest, priority
where each class corresponds to a verb- scheduling-related email we|  Unknown”
. . could use as data? -Steve

noun pair taken from a predefined ontol- . .
ogy describir:jg typical “enr:ail slpr«]”-:echh Sure, ;’Il_gli.:ltsome together | Assistant: “should lyii? tis
acts”.  We demonstrate that, althoug : do list?”
thIS Categonzatlon problem |S C]UIte d'f' Fred, can you collect the msgs  Assistant: notices outgoing
ferent from “topical” text classification, from the CSPACE corpora ;  request may take action if no

. ! tagged w/ the “meeting answer is received promptly.
certain categories of messages can none- noun, ASAP? -Bil
theless be detected with high precision Ves Toanaete AT | Assistant: notices incoming
(above 80%) and reasonable recall (above next few days. Is next commitment. “Should | send |
50%) using existing text-classification Monday ok? -Fred Fred a reminder on Monday?

learning methods. This result suggests Figure 1 - Dialog with a hypothetical email assistant

that useful task-tracking tools .COUld be that automatically detects email speech acts. &hsh
Cor?sm_‘Cted ,based on automatic classifi- boxes indicate outgoing messages. (Messages have
cation into this taxonomy. been edited for space and anonymity.)

1 Introduction 2 Related Work

In this paper we discuss using machine learn- OUr research builds on earlier work defining il-
ing methods to classify email according to théPcutionary points of speech acts (Searle, 1975),
intent of the sender. In particular, we classiffind relating such speech acts to email and work-
emails according to an ontology of verbs (e.glow tracking (Winograd, 1987, Flores & Lud-
propose, commit, deliver) and nouns (e.g., infolow, 1980, Weigant et al, 2003). Winograd
mation, meeting, task), which jointly describe thsuggested that research expllcatln.g the speech-act
“email speech act” intended by the email senderb@sed ‘language-action perspective” on human

A method for accurate classification of emaifommunication could be used to build more use-
into such categories would have many potentiél" toqls for co_ordmatlng joint activities. The
benefits. For instance, it could be used to help &rPordinator (Winograd, 1987) was one such sys-
email user track the status of ongoing joint aetivit€M, in which users augmented email messages
ties. Delegation and coordination of joint tasks jwith additional annotations indicating intent.

a time-consuming and error-prone activity, and While such systems have been useful in lim-
the cost of errors is high: it is not uncommon thdted contexts, they have also been criticized as
commitments are forgotten, deadlines are misseglmbersome: by forcing users to conform to a

and opportunities are wasted because of a failup@rticular formal system, they constrain commu-
nication and make it less natural (Schoop, 2001);



in short, users often prefer unstructured email In refining this ontology, we adopted several
interactions (Camino et al. 1998). We note thairinciples. First, we believe that it is more impor
these difficulties are avoided if messages can hbant for the ontology to reflect observed linguisti
automatically annotated by intent, rather tharbehavior than to reflect any abstract view of the
soliciting a statement of intent from the user.  space of possible speech acts. As a consequence,

Murakoshi et al. (1999) proposed an email arthe taxonomy of verbs contains concepts that are
notation scheme broadly similar to ours, called atomic linguistically, but combine several illocu-
“deliberation tree”, and an algorithm for con-ionary points. (For example, the linguistic unit
structing deliberation trees automatically, butlet's do lunch" is both directive, as it requabts
their approach was not quantitatively evaluatedeceiver, and commissive, as it implicitly com-
The approach is based on recognizing a set wiits the sender. In our taxonomy this is a single
hand-coded linguistic “clues”. A limitation of '‘propose’ act.) Also, acts which are abstractly
their approach is that these hand-coded linguistaossible but not observed in our data are not rep-
“clues” are language-specific (and in fact limitedesented (for instance, declarations).
to Japanese text.)

Prior research on machine learning for text Verb

classification has primarily considered classificg-
tion of documents by topic (Lewis, 1992; Yang /

1999), but also has addressed sentiment detectjon

(Pang et al., 2002; Weibe et al., 2001) and au- Negotiate Other
thorship attribution (e.g., Argamon et al, 2003). _
There has been some previous use of machine / \ Greet Remind
learning to classify email messages (Cohen 1996; - Deliver
Sahami et al., 1998; Rennie, 2000; Segal Initiate
Kephart, 2000). However, to our knowledge, /\
none of these systems has investigated learning
methods for assigning email speech acts. Instead, Amend
email is generally classified into folders (i.ec; a
cording to topic) or according to whether or not i
is “spam”. Learning systems have been prevj-
ously used to automatically detect acts in conver-
sational speech (e.g. Finke et al., 1998).

Conclude

Propose Reguest
Commit Refuse

Noun
3 An Ontology of Email Acts / \
Our ontology of nouns and verbs covering sone Information Activity
of the possible speech acts associated with emails
is summarized in Figure 2. We assume that|a /\ / N

single email message may contain multiple ac Data Opinion  Ongoing  Single
Activity Event

and that each act is described by a verb-noun pgir /\
drawn from this ontology (e.g., "deliver data") /

The underlined nodes in the figure indicate the  Meeting  Other

fi Committee
. . Logistics  Data
nouns and yerbs for'whlch we have tra.lned clas- “paa Other Meetin
sifiers (as discussed in subsequent sections). Short Term
Task

To define the noun and verb ontology o
Figure 2, we first examined email from several
corpora (including our own inboxes) to find regu’'9ure 2 — Taxonomy
larities, and then performed a more detailed Second, we believe that the taxonomy must re-
analysis of one corpus. The ontology was furthdlect common non-linguistic uses of email, such
refined in the process of labeling the corpora das the use of email as a mechanism to deliver

scribed below.

<Verb><Noun>




files. We have grouped this with the linguistically Notice every email speech act is itself an ac-
similar speech act of delivering information. tivity. The <verb><noun> node in Figure 1 indi-
The verbs in Figure 1 are defined as follows. cates that any email speech act can also serve as
A requestasks (or orders) the recipient to perthe noun associated with some other email
form some activity. A question is also consideredpeech act. For example, just as (deliver infor-
a request (for delivery of information). mation) is a legitimate speech act, so is (commit
A proposemessage proposes a joint activity(deliver information)). Automatically construct-
i.e., asks the recipient to perform some activiting such nested speech acts is an interesting (and
and commits the sender as well, provided the rdifficult) topic for research; however, in the cur-
cipient agrees to the request. A typical examplkent paper we consider only the problem of de-
is an email suggesting a joint meeting. termining the verb for such compositional speech
An amendmessage amends an earlier proposaicts. For instance, for a message containing a
Like a proposal, the message involves both @ommit (deliver information)) our goal would be
commitment and a request. However, while 8 automatically detect theommitverb but not
proposal is associated with a new task, ae inner(deliver information}compound noun.
amendment is a suggested modification of an
already-proposed task. L
A c)érrr)\m?t message commits the sender t§ Categorization Results
some future course of action, or confirms the
senders' intent to comply with some previously.1 Corpora

described course of action. - - .
A deliver message delivers something, e.g., Although email is ubiquitous, large and realis-

some information. a PowerPoint presentatior]i'c email corpora are rarely available for research

the URL of a website, the answer to a question,RYrPoses. The limited availability is largely due
message sent "FYI”, or an opinion, to privacy issues: for instance, in most US aca-

The refuse greet’and remind verbs occurred demic institutions, a users’ email can only be dis-
very infrequently in our data, and hence we difiPuted to researchers if aendersof the email
not attempt to learn classifiers for them (in thi€!SC Provided explicit written consent.

initial study). The primary reason for restricting 1€ email corpora used in our experiments
ourselves in this way was our expectation th nsist of four different email datasets collected

human annotators would be slower and less re[fOM working groups who signed agreements to
able if given a more complex taxonomy. make their email accessible to researchers. The
The nouns in Figure 2 constitute possible offirst three datasets, NO1F3, NO2F2, and NO3F2

jects for the email speech act verbs. The noufi€ annotated subsets of a larger corpus, the
fall into two broad categories. CSpace email corpus, which contains approxi-

Information nouns are associated with emailately 15,000 email messages collected from a
speech acts described by the veiver, Re- Management course at Carnegie Mellon Univer-
mind and Amend,in which the email explicitly sity. In this course, 277 MBA students, organized

contains information. We also associate informd? @Pproximately 50 teams of four to six mem-
tion nouns with the vertRequestwhere the PErS;ran simulated companies in different market

email contains instead a description of the needSf€Narios over a l4-week period (Kraut et al.).

information (e.g., "Please send your birthdate.NOZFz' NO1F3 and NO3F2 are collections of all

versus "My birthdate is ...". The request act igmail messages written by participants from three
actually for a 'deliver information’ activity). In- différent teams, and contain 351, 341 and 443

formation includes data believed to be fact adifferent email messages respectively.
well as opinions, and also attached data files The fourth dataset, the PW CALO corpus, was

Activity nouns are generally associated wit§enerated during a four-day exercise conducted
email speech acts described by the vePbs- at SRI specifically to generate an email corpus.
pose, Request, Comménd Refuse. Activities During this time a group of six people assumed

include meetings, as well as longer term activitigdifferent work roles (e.g. project leader, finance
such as committee memberships manager, researcher, administrative assistant, etc)



and performed a number of group activitiesstructed the 5-class confusion matrix for the two

There are 222 email messages in this corpus. annotators shown in Table 2. Note kappa values
These email corpora are all task-related, arate somewhat higher for the shorter one-act mes-

associated with a small working group, so it isages.

not surprising that they contain many instances of

the email acts described above—for instance, t Req | Prop | Amd| Cmt| Dlv| kappa
CSpace corpora contain an average of about 1.8eq |55 | 0 0 0 0 |0.97
email verbs per message. Informal analysis oProp |1 11 0 0 1 [0.77
other personal inboxes suggests that this sort[®dmg |0 1 15 0 0 los87
emgil is common .for' many university users. Weemt 11 24 4 1078
believe that negotiation of shared tasks is a cefg,—17 0 > 3 1351 091

tral use of email in many work environments.
All messages were preprocessed by removirigible 2 - Inter-annotator agreement on documents

guoted material, attachments, and non-subjeeith only one category.

header information. This preprocessing was per-

formed manually, but was limited to operationg}.3 Learnability of Categories

which can be reliably automated. (The only prob- R . fd T h
lematic step is removal of quoted material. In R€Presentation of documentsTo assess the

another recent paper we describe methods tH4P€S of message features that are most important

identify quoted email lines with >99% accuracy.)©" Prediction, we adopted Support Vector Ma-
va ° y )chines (Joachims, 2001) as our baseline learning

4.2 Inter-Annotator Agreement method, and a TFIDF-weighted bag-of-words as

. a paseline representation for messages. We then
Each message may be annotated with seve

) ) nducted a series of experiments with the
labels, as it may contain several speech acts. (@®3k2 corpus only to explore the effect of dif-

evaluate inter-annotator agreement, we doublgs o representations
labeled NO3F2 for the verbBeliver, Commit, :

R £ A dp d th NF032 Cmt Dlv Directive
equest, Amendand Propose and the noun, —e—reoy 250 498 752
Meeting,and computed the kappa statistic (Car- :

; no tfidf 473 584 74.6

letta, 1996) for each of these, defined as +bigrams 461  66.1 76.0
_A-R +times 436 60.1 73.2

- —1_ R +POSTags 486 61.8 75.4

+personPhrases 412 61.1 73.4

whereA is the empirical probability of agreement
on a category, anR is the probability of agree-
ment for two annotators that label documents atNFO2F2and NFOIF3 Cmt DIv  Directive
random (with the empirically observed frequency Baseline SVM 101 563 66.1
of each label). Hence kappa ranges from -1 to +1.All ‘useful’ features 42.0 640 733
The results inTable 1show that agreement is
good, but not perfect.

Table 3 — F1 for different feature sets.

Email Act Kappa We noted that the most discriminating words
Meeting 0.82 for most of these categqries were common words,
Deliver 075 not the low-to-intermediate frequency words that
Commit 072 are most discriminative in topical classification.

: This suggested that the TFIDF weighting was
Request 0.81 . - . .

inappropriate, but that a bigram representation

Amend 0.83

might be more informative. Experiments showed
Propose 0.72 that adding bigrams to an unweighted bag of
words representation slightly improved perform-
ance, especially omeliver. These results are

We also took doubly-annotated messageshown in Table 4 on the rows marked “no tfidf’
which had only a single verb label and con-

Table 1 - Inter-Annotator Agreement on NO3F2.



and “bigrams”. (The TFIDF-weighted SVM issuggested by Schapire and Singer (1999) as an
shown in the row marked “baseline”, and the maappropriate objective for “weak learner&B is
jority classifier in the row marked “default”; all an implementation of the confidence-rated boost-
numbers are F1 measures on 10-fold crossyg method described by Singer and Schapire
validation.) Examination of messages suggest€d999), used to boost tH&T algorithm 10 times.
other possible improvements. Since much neg&VM is a support vector machine with a linear
tiation involves timing, we ran a hand-coded exkernel (as used above).

tractor for time and date expressions on the data,

and extracted as features the number of time exAct VP AB SVM | DT
pressions in a message, and the words that o 5‘55%79‘*3;) S e e YR s
curred near a time (for instance, one such featurg o Eror To11 o012 012 010
is “the word ‘before’ appears near a time”)| (140/1217) | F1 019 | 0.26 0.44 0.13
These results appear in the row marked “timeg”Delivery Error | 026 | 0.28 0.27 0.30

Similarly, we ran a part of speech (POS) tagg :rfgri/;i‘_‘) E:mr 8222 813 813 812

and added features for words appearing nearn @ent F1 021 | 0.44 0.47 0.11

pronoun or proper noun (“personPhrases” in th é§08/¥149) - 095 | 023 . 575
irective rror . . . .

table), and also added POS counts. (605/752) | F1 072 | 073 073 | o078

To derive a final representation for each cat€commis- | Error | 023 | 0.23 0.24 0.22

gory, we pooled all features that improved pe —?gé%/%‘l) F1 0.84 | 0.84 0.83 0.85

formance over “no tfidf” for that category. We—-= Eror 16187 0.7 012 018
then compared performance of these documengasiioi2) | F1 0573 | 0.62 0.72 0.60
representations to the original TFIDF bag aqfdbata Error | 011 | 0.12 0.13 0.13
words baseline on the (unexaminé#)2F2and -@23/1139|F1 1058 [058 | 059 | 057
NO1F3 corpora. As Table 3 shows, substantialable 4 — Learning on the complete corpus.

improvement with respect to F1 and kappa wagape 4 reports the results on the most common
obtained by adding these additional features OVgL s \ising 5-fold cross-validation to assess ac-

the baseline representation. This result contra%ﬁracy One surprise was tHaT (which we had
with previous experiments with blgrams' for P tended merely as a base learnerA8&) works
cal text classification (Scott & Matw'n’lggg)surprisingly well for several verbs, whife sel-

and sentiment detection (Pang et al., 2002). T%m improves much oveDT. We conjecture
dn‘ference is probably that In this tas_k, morfa Nthat the bias towards large-margin classifiers that
formanve vyords are potent_lally ambiguous: fogS followed bySVM, AB.andVP (and which has
|n'st;t1ance, W',:I yOL:j and 'It will N are cor;glafedbbeen so successful in topic-oriented text classifi-
V\r’]' .redqu%s SI an 30”?”“ rr:1en st,).respec ve y’l 'éhtion) may be less appropriate for this task, per-
the individual words in these bigrams are lesg, s pecause positive and negative classes are

predictive. not clearly separated (as suggested by substantial
Learning methods. In another experiment, y >°P ( 9 Y

. . inter-annotator disagreement).
we fixed the document representation to be ur
weighted word frequency counts and varied th Class: Commisive
learning algorithm. In these experiments, w¢ 1
pooled all the data from the four corpora, a totg ﬁa%?_ﬁ\
of 1357 messages, and since the nouns and ve =

08—~~~ - ?*:\‘K —e— Voted Perceptron

—=— AdaBoost
SVM

are not mutually exclusive, we formulated the
classification task as a set of several binary-deg

Precision

0.6 PR

sion problems, one for each verb. < Dedision Tree
The learners used were the followiMP is an 04 R

implementation of the voted perceptron algo O 02 04 06 08 1

rithm (Freund & Schapire, 1999)T is a simple Recall

decision tree learning system, which learns trees
of depth at most five, and chooses splits tBigure 3 - Precision/Recall for Commissive act

maximize the function 2(,/W+]\N_1 h/W)



Further results are shown in Figure 3-5, whiclkrs, but are approximately the same size.) We
provide precision-recall curves for many of thesthen performed the same experiment with VP for
classes. The lowest recall level in these grapiliver verbs and SVM for Commit verbs (in
corresponds to the precision of random guessingach case picking the top-performing learner with
These graphs indicate that high-precision predicespect to F1). The results are shown in Table 5.
tions can be made for the top-level of the verb

hierarchy, as well as verigequesiand Deliver,

if one is willing to slightly reduce recall.

Class: Directive
(Total: 1357 msgs)

Precision

0.2

—e— VotedPerceptron
—=— AdaBoost

SVM
—— DecisionTree

Figure 4 - Precision/Recall for Directive act

Precision

Recall

AdaBoost Learner
(Total: 1357 messages)

—— Meet
—=—Dlv

—— Req

Figure 5 - Precision/Recall of 3 different classes

using AdaBoost

Transferability. One important question in-
volves the generality of these classifiers: to whafral reasons.

Test Data
DT/Directive 1f3 2f2
Train Data Error F1 Error F1
1f3 25.1 71.6 164 728
2f2 20.1 68.8 188 71.2
VP/Deliver
1f3 30.1 551 211 56.1
2f2 350 254 211 357
SVM/Commit]
1f3 234 39.7 152 316
2f2 319 273 164 15.1

Table 5 - Transferability of classifiers

If learned classifiers were highly specific to a
particular set of users, one would expect that the
diagonal entries of these tables (the ones based
on cross-validation within a corpus) would ex-
hibit much better performance than the off-
diagonal entries. In fact, no such pattern is
shown. FoDirective verbs, performance is simi-
lar across all table entries, and feliver and
Commit it seems to be somewhat better to train
on NFO1F3 regardless of the test set.

4.4 Future Directions

None of the algorithms or representations dis-
cussed above take into account toatextof an
email message, which intuitively is important in
detecting implicit speech acts. A plausible notion
of context is simply the preceding message in an
email thread.

Exploiting this context is non-trivial for sev-
Detecting threads is difficult; al-

range of corpora can they be accurately appliet?ough email headers contain a “reply-to” field,
Is it possible to train a single set of email-adtisers often use the “reply” mechanism to start
classifiers that work for many users, or is it neowhat is intuitively a new thread. Also, since

essary to train individual classifiers for eaclemail is asynchronous, two or more users may
user? To explore this issue we trained a DT clageply simultaneously to a message, leading to a
sifier for Directive emails on the NFO1F3 corpusthread structure which is a tree, rather than a se-
and tested it on the NFO2F2 corpus; trained thiguence. Finally, most sequential learning models
same classifier on NFO2F2 and tested it oassume a single category is assigned to each in-
NFO1F3; and also performed a 5-fold crossstance—e.g., (Ratnaparkhi, 1999)—whereas our
validation experiment within each corpusscheme allows multiple categories.

(NFO2F2 and NFO1F3 are for disjoint sets of us-



Classification of emails according to our verbserves email ancdutomatically classifies it by
noun ontology constitutes a special case of a geintention. This reduces the burden on the users of
eral family of learning problems we might callthe system, and avoids sacrificing the flexibility
factored classification problemsas the classes and socially desirable aspects of informal, natural
(email speech acts) are factored into two featuréenguage communication.

(verbs and nouns) which jointly determine this This problem also raises a number of interest-
class. A variety of real-world text classificationing research issues. This categorization problem
problems can be naturally expressed as factored quite different from “topical” text classifica-

problems, and from a theoretical viewpoint, théion, in terms of the types of features that are
additional structure may allow construction oimost informative. We show that part of speech
new, more effective algorithms. tagging and entity extraction can be used to im-

For example, the factored classes provide @ove classification performance; we leave open
more elaborate structure for generative probabithe question of whether other types of linguistic
istic models, such as those assumed by Naiaealysis would be useful. Predicting implicit
Bayes. For instance, in learning email acts, orgpeech acts requires context, (which makes the
might assume words were drawn from a mixturprediction problem a sequential task) and the la-
distribution with one mixture component pro-bels assigned to messages have non-trivial struc-
duces words conditioned on the verb class factdyre; we also leave open the question of whether
and a second mixture component generates worttiese properties can be effectively exploited.
conditioned on the noun (see Blei et al (2003) for Notwithstanding these limitations in the
a related mixture model). Alternatively, modelscope of our study, our experiments show that
of the dependencies between the different factonmsany categories of messages can be detected,
(nouns and verbs) might also be used to improweith high precision and moderate recall, using
classification accuracy, for instance by buildingxisting text-classification learning methods.
into a classifier the knowledge that some nourbhis suggests that useful task-tracking tools
and verbs are incompatible. could be constructed based on automatic classifi-

The fact that an email can contain multipleers—a potentially important practical application.
email speech acts almost certainly makes learn-
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