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Abstract

We describe semi-Markov conditional random fields (semF€&Ra con-
ditionally trained version of semi-Markov chains. Intudly, a semi-
CRF on an input sequenceoutputs a “segmentation” of, in which
labels are assigned to segments.(subsequences) of rather than to
individual elementse; of x. Importantly, features for semi-CRFs can
measure properties of segments, and transitions withirgeeet can
be non-Markovian. In spite of this additional power, exaetrhing and
inference algorithms for semi-CRFs are polynomial-timdtemonly a
small constant factor slower than conventional CRFs. Inedrpents
on five named entity recognition problems, semi-CRFs gdigeratper-
form conventional CRFs.

1 Introduction

Conditional random fields (CRFs) are a recently-introduoeahalism [12] for represent-
ing a conditional modePr(y|x), where bothx andy have non-trivial structure (often
sequential). Here we introduce a generalization of sedulé®RFs calledsemi-Markov
conditional random fieldéor semi-CRFs). Recall thaemi-Markov chain modekxtend
hidden Markov models (HMMs) by allowing each stateto persist for a non-unit length
of time d;. After this time has elapsed, the system will transition twea states’, which
depends only o;; however, during the “segment” of time betweeto i + d;, the be-
havior of the system may be non-Markovian. Semi-Markov nt®dee fairly common in
certain applications of statistics [8, 9], and are also uiseeinforcement learning to model
hierarchical Markov decision processes [19].

Semi-CRFs are a conditionally trained version of semi-Mar&hains. In this paper, we

present inference and learning methods for semi-CRFs. ¥deaatjue that segments often
have a clear intuitive meaning, and hence semi-CRFs are natveal than conventional

CRFs. We focus here on named entity recognition (NER), irctvaisegment corresponds
to an extracted entity; however, similar arguments mighiniagle for several other tasks,
such as gene-finding [11] or NP-chunking [16].

In NER, a semi-Markov formulation allows one to easily coust entity-level features
(such as “entity length” and “similarity to other known digs”) which cannot be easily
encoded in CRFs. Experiments on five different NER probldms/sthat semi-CRFs often
outperform conventional CRFs.



2 CRFs and Semi-CRFs

2.1 Definitions

A CRF modelsPr(y|x) using a Markov random field, with nodes corresponding to ele-
ments of the structured objegt and potential functions that are conditional on (features
of) x. Learning is performed by setting parameters to maximiedikelihood of a set of
(x,y) pairs given as training data. One common use of CRFs is faresgigl learning
problems like NP chunking [16], POS tagging [12], and NER][1Bor these problems
the Markov field is a chain, andis a linear sequence of labels from a fixed ¥efor in-
stance, in the NER applicatior,might be a sequence of words, andight be a sequence

in {1, O}"", wherey; = I indicates “wordz; is inside a name” ang,; = O indicates the
opposite.

Assume a vectof of local feature functiong = (f1, ..., fX), each of which maps a pair
(x,y) and an index to a measuremerft (i, x, y) € R. Letf(i, x, y) be the vector of these

measurements, and [B{x,y) = ZL"' f(i,x,y). For the case of NER, the components
of £ might include the measuremefit(i, x,y) = [x; is capitalized - [y; = I], where
the indicator functiorfc] = 1 if ¢ if true and zero otherwise; this implies that?(x,y)
would be the number of capitalized worgdspaired with the label. Following previous
work [12, 16] we will define a conditional random field (CRF)ke an estimator of the
form

1 Fx
Pr(yP« W) = 775 W) (1)

whereW is a weight vector over the componentsigfandZ(x) = >, eWFEY),

To extend this to the semi-Markov case, ket= (sq,...,s,) denote asegmenta-
tion of x, wheresegments; = (¢;,u;,y;) consists of astart positiont;, anend
position u;, and alabel y; € Y. Conceptually, a segment means that the gag
is given to allz;'s betweeni = t; andi¢ = wuj, inclusive. We assume segments
have positive length, and adjacent segments touch, that end u; always satisfy

1 <t; < wu; < |slandt;y; = wu; + 1. For NER, a correct segmentation of
the sentence “I went skiing with Fernando Pereira in Brit@blumbia” might bes =
((1,1,0),(2,2,0),(3,3,0),(4,4,0), (5,6, 1),(7,7,0),(8,9,1)), corresponding to the
label sequenceg = (0,0,0,0,1,1,0,1,1)

We assume a vectgrof segment feature functiogs= (g*, ..., ¢%), each of which maps
atriple (,x,s) to a measurement'(j,x,s) € R, and defineG(x,s) = Z'j' g(4,%,s).
We also make a restriction on the features, analogous tosiha&l Markovian assumption

made in CRFs, and assume that every compogleof g is a function only ofx, s;, and
the labely;_; associated with the preceding segment; . In other words, we assume that

everyg®(j,x,s) can be rewritten as
gk(j,X,S) :glk(yjayj—laxatjauj) (2)
for an appropriately defineg”. In the rest of the paper, we will drop tlgé notation and

useg for both versions of the segment-level feature functionsseii-CRFis then an
estimator of the form

Pr(s|x, W) = Z(lx)ew'%@ 3)

where agairW is a weight vector foG and Z(x) = 3, eW G(xs),

2.2 An efficient inference algorithm

The inference problenfor a semi-CRF is defined as follows: giv8N andx, find the
best segmentationygmaz Pr(s|x, W), wherePr(s|x, W) is defined by Equation 3. An



efficient inference algorithm is suggested Equation 2, tvimigplies that

argmaz g Pr(s|x, W) = argmaz W - G(x,s) = argmazr W - Z gy, yj—1, %, t;,u;)
J

Let L be an upper bound on segment length. 4,gtdenote set of all partial segmentation
starting from 1 (the first index of the sequence)itsuch that the last segment has the
labely and ending positio. Let Vi o w (i, y) denote the largest value oF - G(x,s’)

for anys’ € s;;. Omitting the subscripts, the following recursive caltida implements a
semi-Markov analog of the usual Viterbi algorithm:

maxy g=1..1 V(i —d,y')+ W g(y,y',x,i—d,i) ifi>0
Vi(i,y) =4 0 ifi=0 (4)
—00 ifi<0

The best segmentation then corresponds to the path traced:hyV (x|, v).

2.3 Semi-Markov CRFsvsorder-L CRFs

Since conventional CRFs need not maximize over possiblmeeglengthsi, inference
for semi-CRFs is more expensive. However, Equation 4 shbatsthe additional cost is
only linear in L. For NER, a reasonable value bfmight be four or fivet Since in the
worst casd. < |x|, the algorithm is always polynomial, even whers unbounded.

For fixed L, it can be shown that semi-CRFs are no more expressive thian-brCRFs.
For orderi. CRFs, however the additional computational cost is exptaen L. The
difference is that semi-CRFs only consider sequences iohwthiesamelabel is assigned
to all L positions, rather than ally|* L length-, sequences. This is a useful restriction, as
it leads to faster inference.

Semi-CRFs are also a natural restriction, as it is often eoi@nt to express features in
terms of segments. As an example, dgtdenote the length of a segment, and jlet
be the average length of all segments with labelNow consider the segment feature
" (j,x,8) = (dj — w)? - [y; = I]. After training, the contribution of this feature toward
Pr(s|x) associated with a lengtfientity will be proportional tewr(d=m°_je. it allows
the learner to model a Gaussian distribution of entity lbagt

In contrast, the feature*(j,x,y) = d; - [y; = I] would model an exponential dis-
tribution of lengths. It turns out thag®> is equivalent to the local feature function
fG,x,y) = [y: = I], in the following sense: for every triple,y,s, wherey are the
tags fors, > g*(j,x,s) = >, f(i,s,y). Thus any semi-CRF model based on the single

featureg®? could also be represented by a conventional CRF.

In general, a semi-CRF model can be factorized in terms ofgaivalent order-1 CRF
model iff the sum of the segment features can be rewrittersasreof local features. Thus
the degree to which semi-CRFs are non-Markovian dependsedieature set.

2.4 Learning algorithm

During training the goal is to maximize log-likelihood ovargiven training sefl’ =
{(x¢,8¢)}Y,. Following the notation of Sha and Pereira [16], we expréss log-
likelihood over the training sequences as

L(W) = "logPr(slxe, W) = Y (W - G(x¢,5,) — log Zw (x/)) (5)
4 4

1Assuming that non-entity words are placed in unit-lengtinsents, as we do below.



We wish to find aW that maximized.(W). Equation 5 is convex, and can thus be maxi-
mized by gradient ascent, or one of many related methodsuflimplementation we use
a limited-memory quasi-Newton method [13, 14].) The gratied L(W) is the following:

/ WG (x¢,8")
VL(W) = > G(xi,s0) — e G(sz,:e();) 6)
= Z G(Xg, Sg) — EPY(S/|W)G(X5, S/) (7)

The first set of terms are easy to compute. However, we mugheddarkov property of
G and a dynamic programming step to compute the normalizgf(x,), and the expected
value of the features under the current weight vedii s/ w)G(x¢,s’). We thus define
a(i,y) as the value OES,GSM eWG("x) where agains;.,, denotes all segmentations from
1to: ending at and labeled,. Fori > 0, this can be expressed recursively as

Z Z (it —d y Wg(y.,y’,x,z‘—d,i)

d=1y’'€y

with the base cases defined®®, y) = 1 anda(i, y) = 0 for i < 0. The value ofZw (x)
can then be written agw (x) = >_, a([x|,y).

A similar approach can be used to compute the expect@gﬂG(xz,s’)eW'G(x@=S').

For the k-th component of G, let 7*(i,y) be the value of the sum
Zs,esw Gk(S/,Xg)ew'G(x’f’s/), restricted to the part of the segmentation ending at
positioni. The following recursiofican then be used to comput(i, y):

Z i —dy) +ali = d,y)g" v,y x,1 — d, i) eV BBV i)
d=1y’cy

Finally we letEp, s jw)G* (s, x) = #(x) >, (1%, ).

3 Experiments with NER data

3.1 Baseline algorithms and datasets

In our experiments, we trained semi-CRFs to mark entity ssgmwith the label, and
put non-entity words into unit-length segments with labelWe compared this with two
versions of CRFs. The first version, which we call CRF/1, laberds inside and outside
entities withI andO, respectively. The second version, called CRF/4, repldees tag
with four tagsB, E, C, andU, which depend on where the word appears in an entity [2].

We compared the algorithms on five NER problems, associatbdiwee different corpora.
The Addresscorpus contains 4,226 words, and consists of 395 home amidres$ students

in a major university in India [1]. We considered extractarcity names and state names
from this corpus. Thdobscorpus contains 73,330 words, and consists of 300 computer-
related job postings [4]. We considered extraction of comypaames and job titles. The
18,121-wordEmail corpus contains 216 email messages taken from the CSPACE ema
corpus [10], which is mail associated with a 14-week, 27i&@e management game. Here
we considered extraction of person names.

2As in the forward-backward algorithm for chain CRFs [16]asp requirements here can be
reduced fromM L|)| to M |Y|, whereM is the length of the sequence, by pre-computing an appro-
priate set of3 values.



3.2 Features

As features for CRF, we used indicators for specific worde@tion:, or locations within
three words ofi. Following previous NER work [7]), we also used indicatoos €api-
talization/letter patterns (such as “Aa+” for a capitatiagord, or “D” for a single-digit
number).

As features for semi-CRFs, we used the same set of word-feaélres, as well their
logical extensions to segments. Specifically, we used atdis for the phrase inside a
segment and the capitalization pattern inside a segmentghss indicators for words
and capitalization patterns in 3-word windows before aterahe segment. We also used
indicators for each segment length£€ 1,..., L), and combined all word-level features
with indicators for the beginning and end of a segment.

To exploit more of the power of semi-CRFs, we also implemeataumber of dictionary-
derived features, each of which was based on differentodiaty D and similarity function
sim. Lettingx,; denote the subsequenge; ...x,,), a dictionary feature is defined as
gPm(j,x,8) = argmaz ¢ psim(x,,, u)—i.e, the distance from the word sequence

to the closest element ID.

For each of the extraction problems, we assembledgteznal dictionanpf strings, which
were similar (but not identical) to the entity names in thewoents. For instance, for
city names in theAddress datawe used a web page listing cities in India. Due to vari-
ations in the way entity names are written, rote matchingehdictionaries to the data
gives relatively low F1 values, ranging from 22% (for the-jitte extraction task) to 57%
(for the person-name task). We used three different siityilanetrics (Jaccard, TFIDF,
and JaroWinkler) which are known to work well for name-maighin data integration
tasks [5]. All of the distance metrics are non-Markoviaines-the distance-based segment
features cannot be decomposed into sums of local featurese betail on the distance
metrics, feature sets, and datasets above can be foundelselg].

We also extended the semi-CRF algorithm to construct, orflfhan internal segment
dictionary of segments labeled as entities in the training data. To maasurements on
training data similar to those on test data, when finding tbsest neighbor ok, in the
internal dictionary, we excluded all strings formed franthus excluding matches &f ; to
itself (or subsequences of itself). This feature could lesved as a sort of nearest-neighbor
classifier; in this interpretation the semi-CRF is perfargwa sort of bi-level stacking [20].

For completeness in the experiments, we also evaluatetivecsions of the dictionary
features. Specifically, we constructed dictionary feawgthe formfP-5™ (i, x,y) =
argmaz, e psim(x;, w), whereD is either the external dictionary used above, oiraernal
word dictionaryformed from all words contained in entities. As before, vittix were
excluded in finding near neighborsg.

3.3 Results and Discussion

We evaluated F1-measure performanaeCRF/1, CRF/4, and semi-CRFs, with and with-
out internal and external dictionaries. A detailed tabataof the results are shown in Ta-

ble 1, and Figure 1 shows F1 values plotted against trairehgize for a subset of three of
the tasks, and four of the learning methods. In each expeatipeformance was averaged
over seven runs, and evaluation was performed on a holdebof 80% of the documents.

In the table the learners are trained with 10% of the avadlalalta—as the curves show,
performance differences are often smaller with more trgrdata. Gaussian priors were
used for all algorithms, and for semi-CRFs, a fixed valué @fas chosen for each dataset
based on observed entity lengths. This ranged between 4 famdHe different datasets.

In the baseline configuration in which no dictionary feataiee used, semi-CRFs perform

3F1is defined as 2*precision*recall/(precision+recall.)
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Figure 1: F1 as a function of training set size. Algorithms marked witHict” include external
dictionary features, and algorithms marked with “+int” lumbe internal dictionary features. We do
not use internal dictionary features for CRF/4 since theyl e reduced accuracy.

baseline]| +internal dict || +external dict +both dictionaries

F1 F1 Abase F1 Abase F1 Abase Aextern
CRF/1
state 20.8 || 445 1139 69.2 232.7| 55.2 165.4 -67.3
title 28.5 3.8 -86.7 || 38.6 35.4( 19.9 -30.2 -65.6
person 67.6 || 48.0 -29.0|| 81.4 20.4| 64.7 -4.3 -24.7
city 70.3 || 60.0 -14.7|| 80.4 14.4|| 69.8 -0.7 -15.1
company 51.4 || 16.5 -67.9|| 55.3 7.6|| 15.6 -69.6 -77.2
CRF/4
state 15.0 || 25.4 69.3| 46.8 212.0|| 43.1 187.3 -24.7
title 23.7 7.9 -66.7 || 36.4 53.6| 14.6 -38.4 -92.0
person 70.9 || 64.5 -9.0| 825 16.4|| 74.8 55 -10.9
city 73.2 || 70.6 -3.6| 80.8 10.4|| 76.3 4.2 -6.1
company 54.8 || 20.6 -62.4|| 61.2 11.7 || 25.1 -54.2 -65.9
semi-CRF
state 25.6 || 35.5 38.7| 62.7 144.9|| 65.2 154.7 9.8
title 33.8 | 37.5 109 || 41.1 215 || 40.2 18.9 -2.5
person 72.2 || 74.8 3.6 | 828 14.7 || 83.7 15.9 1.2
city 75.9 || 75.3 -0.8 || 84.0 10.7 || 83.6 10.1 -0.5
company 60.2 || 59.7 -0.8 || 60.9 1.2|| 60.9 1.2 0.0

Table 1: Comparing various methods on five IE tasks, with and withactiahary features. The
columnAbase is percentage change in F1 values relative to the has@lhe colummextern is is
change relative to using only external-dictionary feagure

best on all five of the tasks. When internal dictionary feasuare used, the performance
of semi-CRFs is often improved, and never degraded by mane 26%. However, the
less-natural local version of these features often leadsltstantial performance losses for
CRF/1 and CRF/4. Semi-CRFs perform best on nine of the tdnvasants for which
internal dictionaries were used. The external-dictioffieagures are helpful to all the algo-
rithms. Semi-CRFs performs best on three of five tasks inkvbidy external dictionaries
were used.

Overall, semi-CRF performs quite well. If we consider thekgawith and without external
dictionary features as separate “conditions”, then seRi€using all available informa-
tion* outperform both CRF variants on eight of ten “conditions”.

We also compared semi-CRF to ordelcRFs, with various values df.5> In Table 2 we

“l.e,, the both-dictionary version when external dictionaries available, and the internal-
dictionary only version otherwise.

OrderZ CRFs were implemented by replacing the labelgetith )~. We limited experiments
to L < 3 for computational reasons.



CRF/1 CRF/4 semi-CRF

L=1|L=2|L=3|L=1|L=2]|L=3
AddressState 20.8 20.1 19.2 15.0 16.4 16.4 25.6
AddressCity 70.3 71.0 71.2 73.2 73.9 73.7 75.9
Emailpersons| 67.6 63.7 66.7 70.9 70.7 70.4 72.2

Table 2:F1 values for different order CRFs

show the result fol. = 1, L = 2, andL = 3, compared to semi-CRF. For these tasks, the
performance of CRF/4 and CRF/1 does not seem to improve myemiply increasing
order.

4 Related work

Semi-CRFs are similar to nested HMMs [1], which can also lenéd discrimini-
tively [17]. The primary difference is that the “inner motl&r semi-CRFs is of short,
uniformly-labeled segments with non-Markovian propestiehile nested HMMs allow
longer, diversely-labeled, Markovian “segments”.

Dyanamic CRFs [18] can, with an appropriate network archite, be used to implement
semi-CRFs. Another non-Markovian model recently used fBRNs relational Markov

networks (RMNs) [3]. However, in both dynamic CRFs and RMMNggrence is not

tractable, so a number of approximations must be made iminigaeand classification. An

interesting question for future research is whether thetibie extension to CRF infer-

ence considered here can can be used to improve inferenbeasdor RMNs or dynamic

CRFs.

In recent prior work [6], we investigated semi-Markov leagimethods for NER based
on a voted perceptron training algorithm [7]. The voted ppton has some advantages
in ease of implementation, and efficierfcydowever, semi-CRFs perform somewhat bet-
ter, on average, than our perceptron-based learning ttigariProbabilistically-grounded
approaches like CRFs also are preferable to margin-bagedaghes like the voted percep-
tron in certain setting®.g, when it necessary to estimate confidences in a classificatio

5 Concluding Remarks

Semi-CRFs are a tractible extension of CRFs that offer mdittheopower of higher-order
models without the associated computational cost. A majeaatage of semi-CRFs is that
they allow features which measure properties of segmeattsgrthan individual elements.
For applications like NER and gene-finding [11], these feztican be quite natural.

Appendix

An implementation of semi-CRFs is available at http:/&wtirceforge.net, and a NER
package that uses it is available on http://minorthirdrseforge.net.
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