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Abstract

In collective classification, classes are predicted simultane-

ously for a group of related instances, rather than predicting

a class for each instance separately. Collective classification

has been widely used for classification on relational datasets.

However, the inference procedure used in collective classifi-

cation usually requires many iterations and thus is expen-

sive. We propose stacked graphical learning, a meta-learning

scheme in which a base learner is augmented by expand-

ing one instance’s features with predictions on other related

instances. Stacked graphical learning is efficient, especially

during inference, capable of capturing dependencies easily,

and can be implemented with any kind of base learner. In

experiments on eight datasets, stacked graphical learning is

40 to 80 times faster than Gibbs sampling during inference.

1 Introduction

Traditional machine learning methods assume that in-
stances are independent, while in reality there are many
relational datasets, such as hyperlinked webpages, scien-
tific literature with dependencies among citations, and
social networks. The dependencies among instances in
relational data can be complex.

Collective classification has been widely used for
classification on relational datasets. In collective classi-
fication, classes are predicted simultaneously for a group
of related instances, rather than predicting a class for
each instance separately. Recently there have been stud-
ies on relational models for collective inference, such as
relational dependency networks [1], relational Markov
networks [2], and Markov logic networks[3]. Collective
classification can be formulated as an inference problem
over graphical models. Consider collective classification
in the context of Markov random fields (MRFs). In-
ference in MRFs is intractible, in the general case. One
common scheme for approximate inference is Gibbs sam-
pling [4]. Gibbs sampling for an MRF with parameters
learned to maximize pseudo-likelihood is closely related
to conditional dependency networks [4]. However, Gibbs
sampling usually takes many iterations to converge and
thus graphical models are usually expensive, especially

when exact inference is infeasible.
We propose a meta-learning method, stacked graph-

ical learning, for learning and inference on relational
data. In stacked graphical learning, a base learner is
augmented by providing the predicted labels of related
instances. First a base learner is applied to the training
data in a cross-validation-like way to make predictions.
Then we expand the features by adding the predictions
of related examples into the feature vector. Finally the
base learner is applied to the expanded feature set to
obtain a stacked model.

One advantage of stacked graphical learning is that
the inference is very efficient. Experimental results show
that compared to Gibbs sampling, stacked graphical
learning can achieve similar performance in only one or
two iterations, while Gibbs sampling usually converges
after 100 iterations.

In stacked graphical learning, the dependencies
among data can be captured easily using a relational
template which finds the related instances given one ex-
ample. Stacked graphical learning can be implemented
with any base learning algorithm, i.e., the base learner
does not have to be a graphical model. Stacked graph-
ical learning is also easy to implement.

2 Algorithm

2.1 Stacked Graphical Learning We consider here
collective classification tasks, in which the goal is to
“collectively” classify some set of instances. In our
notation, a dataset is D = {(x,y)}. An instance is a
pair of (x,y) where x is itself a high-dimensional feature
vector and y is a label from a small set Y. In this paper
we use upper case letters such as Y for random variables
and their bold-faced equivalents (e.g., Y) for vectors of
random variables. We use lower case letters for concrete
assignments to these variables.

We consider a model that captures the dependency
by expanding the feature of an instance xi with “pre-
dicted” labels for the related instances. We use pre-
dicted labels instead of true labels since during inference
there is no way to get true labels. We use a relational



• Parameters: a relational template C and a cross-validation parameter J.

• Learning algorithm: Given a training set D = {(x,y)} and a base learner A:

– Learn the local model, i.e., when k = 0:
Let f0 = A(D0). Please note that D0 = D,x0 = x,y0 = y.

– Learn the stacked models, for k = 1...K:

1. Construct cross-validated predictions ŷk−1 for x ∈ Dk−1 via calling the subroutine in Figure 2.
2. Construct an extended dataset Dk = (xk,y) by converting each instance xi to xk

i as follows:
xk

i = (xi, C(xi, ŷk−1)), where C(xi, ŷk−1) will return the predictions for examples related to xi

such that xk
i = (xi, ŷ

k−1
i1

, ..., ŷk−1
iL

).

3. Let fk = A(Dk).

• Inference algorithm: given x :

1. ŷ0 = f0(x).

For k = 1...K,

2. Carry out Step 2 above to produce xk.

3. yk = fk(xk).

Return yK .

Figure 1: Stacked Graphical Learning and Inference

template C to pick up the related instances. A relational
template is a procedure that finds all the instances re-
lated to a given example and returns their indices. For
instance xi, C(xi) retrieves the indices i1, ..., iL of in-
stances xi1 , ..., xiL that are related to xi. Given predic-
tions ŷ for a set of instances x, C(xi, ŷ) returns the pre-
dictions on the related instances, i.e., ŷi1 , ..., ŷiL . Since
the relation between xi and xj might be one-to-many,
for example, webpages link to different numbers of web-
pages, we allow aggregation functions to combine pre-
dictions on a set of related instances into a single fea-
ture.

One practical difficulty to obtain predictions for
training examples is that, while learning methods pro-
duce reasonably well-calibrated probability estimates on
unseen test data, their probability estimates on training
data are biased. Thus, to obtain the “predictions” for
training examples, we apply a cross-validation-like tech-
nique suggested by a meta-learning scheme, stacking [5].
The procedure to obtain the predictions for training ex-
amples is shown in Figure 2.

Finally we end up with the inference and learning
methods of Figure 1 for collective classification. The
relational template can be extended to include aggrega-
tion functions based on ŷ and xi. We will demonstrate
the use of this algorithm and aggregations in Section 3.1.

Given a training set D = {(x,y)} and a base learner
A, construct cross-validated predictions ŷ for x ∈ D as
follows:

1. Split D into J equal-sized disjoint subsets D1...DJ .

2. For j = 1...J , let fj = A(D−Dj). That is, train a
classifier fj , based all the data from D except the
subset Dj .

3. For x ∈ Dj , ŷ = fj(x). That is, for data in Dj ,
apply the classifier fj to obtain its prediction.

Figure 2: A cross-validation-like technique to obtain
predictions for training examples

3 Experimental Results

3.1 Datasets We evaluated stacked graphical learn-
ing on several classification problems. The first prob-
lem we studied is the task of text region detection in
the system called the Subcellular Location Image Finder
(SLIF) [8, 9]. SLIF is a system which extracts informa-
tion from both figures and the associated captions in bi-
ological journal articles. Usually there are multiple pan-
els (independently meaningful sub-figures) within one
figure. Finding the text regions, i.e., the regions in
panels containing their labels, is one important task in
SLIF. The problem studied in this paper is to classify
if the candidate regions found via image processing are



text regions or not. The text region detection dataset
contains candidate regions found in 1070 panels from
207 figures.

There are dependencies among the locations of
candidate regions. Intuitively, if after image processing
a candidate text region was found at the upper-left
corner of panel B and two candidate regions were found
in panel A, one located at the upper-left corner, another
in the middle, it is more likely the candidate region at
the upper-left of panel A is the real text region. We
define the neighbor of a candidate text region to be the
region located in the “same” position in adjacent panels
in the same figure and consider the neighbors on four
directions (left, right, up, and down). We also consider
the dependency among candidate regions within the
same panel, called competitors. Figure 3 is an example
figure in SLIF which demonstrates candidate regions,
neighbors and competitors.

Figure 3: An example figure in SLIF

Let xi be a candidate region, x be a vector of
candidate regions from one figure. The relational
template returns the predictions on xi’s neighbors and
competitors. If a neighbor does not exist, 0 is assigned
to the corresponding feature. Since one candidate region
can have several competitors from the same panel, we
apply an EXISTS aggregator to the competitors, i.e.,
as long as there is one competitor which is predicted
to be a text region, we assign 1 to the corresponding
feature added during stacking. For instance, considering
Candidate 1 in Figure 3, if Candidate 2(right neighbor)
has been predicted as 1, Candidate 3(down neighbor)
as 1, and the competitor as 0, C(xi, ŷ) returns (1, 0, 0,
1, 0).

We use a maximum entropy learner as the base
learner. The features for the base learner are obtained

via image processing and contain binary features in-
dicating whether Optical Character Recognition(OCR)
extracts a character or not from the candidate region
and its neighbors [8].

The second problem is the document classification
problem. We consider the webpage classification on the
WebKB dataset[10], which contains webpages from four
computer science departments, and paper classification
on the Cora dataset and the CiteSeer dataset[11]. The
WebKB data contains aproximately 3800 webpages la-
belled from 6 categories and 8000 hyperlinks. The re-
lational template applies the COUNT aggregator and
returns the number of outgoing and incoming links in
each category, given one webpage. The Cora data[12]
contains 2708 papers labelled from seven categories and
5429 citations. If paper A cites paper B, we consider
there is a link from paper A to paper B. The relational
template applies the COUNT aggregator and returns
the number of outgoing and incoming links in each cat-
egory to one paper. The Citeseer data[13] contains 3312
papers labelled from six categories and 4732 citations.
The relational template is the same as the template for
the Cora data.

We use a maximum entropy learner as the base
learner in stacked graphical learning for document clas-
sification and a bag-of-word feature set.

The third problem we study is named entity ex-
traction from Medline abstracts and emails. We used
three datasets to evaluate our method for protein name
extractions. The University of Texas, Austin dataset
contains 748 labeled abstracts[14]; the GENIA dataset
contains 2000 labeled abstracts[15]; and the YAPEX
dataset contains 200 labeled abstracts[16]. We also
study person name extraction from the email message
corpus. The CSpace corpus we used in this paper con-
tains 216 email messages collected from a management
course at Carnegie Mellon University[17].

We use conditional random fields [18] as the base
learner and the feature set described in our previous
paper [19] for protein name extraction and the feature
set described in [20] for person name extraction. The
relational template will retrieve the predictions for the
nearby words (with window size 3) and for the same
word appearing in one abstract, apply the COUNT
aggregator, and return the number of words in each
category, given one word. That is, let xi be the word in
a document. For words xj = xi in the same document,
we count the number of times xj appearing with label
y and use it as one of the stacked features for xi.

3.2 Accuracy of Stacked Graphical Learning
To evaluate the effectiveness of stacked graphical learn-
ing, we compare five models. The first model is a com-



Table 1: Evaluation on five models. The accuracy for “SLIF” and “Document classification” and F1-measure for named
entity extraction are reported. We compared stacked graphical model to a local model, another relational model, and its
probabilistic ceiling. The local models for “SLIF” and “Document classification” are MaxEnt models, and the local models
for “named entity extraction” are CRFs. The competitive relational models for “SLIF” and “Document classification” are
RDN models, and the competitive relational models for “named entity extraction” are stacked sequential CRFs.

SLIF Document classification Named Entity Extraction
WebKB Cora CiteSeer UT Yapex Genia CSpace

Local model
MaxEnt 77.2 58.3 63.9 55.3 - - - -
CRFs - - - - 73.1 65.7 72.0 80.3

Competitive Model
RDNs 86.7 74.2 72.9 58.7 - - - -
Stacked Sequential CRFs - - - - 76.8 66.8 77.1 81.2

Stacked model (k=1) 90.1 73.2 73.8 59.8 78.3 69.3 77.9 82.5
Stacked model (k=2) 90.1 72.1 73.9 59.8 78.4 69.2 78.0 82.4

Ceiling for stacked model 96.3 73.6 76.9 62.3 80.5 70.5 80.3 84.6

petitive graphical model. For the SLIF and document
classification problems, we compare to relational depen-
dency network (RDN) models [1]. The RDN model uses
the same features as the stacked model, but learns via
a pseudo-likelihood method, and does inference with
Gibbs sampling, which usually converge after 100 it-
erations. For name extraction, we compare to a stacked
sequential CRF model [7]. The second model is a local
model, i.e., the model trained with the base learner. For
the SLIF and document classification problem, the lo-
cal model is a MaxEnt model. For the name extraction,
the local model is a CRF model. The third and fourth
models are stacked graphical models. The fifth model
is a probabilistic upper-bound (noted as ceiling model
in Table 1) for the stacked graphical model, i.e., we
use the stacked graphical model but allow true labels
of related instances to be added during the feature ex-
tension at both training and testing time. This can not
be implemented in practice but gives some idea of what
performance is theoretically achievable using collective
classification with our model.

Table 1 shows the accuracy1 for each of the five
models on eight real-world datasets. We used 5 fold
cross validation (except for WebKB data, where we used
4 fold cross validation by departments).

We use paired t-tests to access the significance of
the accuracy. The t-tests compare the stacked graphical
models with k=1 to each of the other four models.
The null hypothesis is that there is no difference in the
accuracy of the two models. On all of the eight datasets,
stacked graphical learning improves the performance of
the base learner significantly (p < .05). On all the

1For named entity extraction, we report the F1 accuracy.

tasks, stacked graphical learning achieves statistically
indistinguishable results to the competitive models,
except that on the SLIF data stacked graphical learning
is statistically significantly better than RDNs. On the
WebKB and Yapex datasets, stacked graphical learning
achieves comparable results to the ceiling models.

On all the tasks, there is no significant difference
(p < .05) in accuracy for k=1 and k=2 in stacking,
which suggests that stacking converges very quickly and
does not require many iterations.

3.3 Efficiency of Stacked Graphical Learning
One advantage of stacked graphical learning is that the
inference is very efficient. We compared the accuracy
and computational cost of inference in stacked graphical
models (with one iteration) to that of Gibbs sampling in
RDNs with 50 iterations and 100 iterations, evaluating
on the SLIF problem and the document classification
problems, to demonstrate this. Table 2 shows the
speedup, i.e., in the table “39.6” means the inference
in stacked graphical learning is 39.6 times faster than
Gibbs sampling. If the accuracy of stacked graphical
learning is statistically significantly better than the
accuracy of Gibbs sampling, there is a “+” marked
by the number indicating the speedup. If there is no
significant difference, there is no mark.

Table 2 shows that compared to Gibbs sampling
with 50 iterations, stacked graphical learning generally
achieves better accuracy but is about 40 times faster
during inference. Compared to Gibbs sampling with
100 iterations, stacked graphical learning can achieve
competitive or better accuracy but is more than 80
times faster during inference.

Figure 4 shows the convergence rate of stacking
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Figure 4: Convergence rate of stacking and Gibbs sampling

Table 2: Comparison on performance and efficiency. “39.6”
means that the inference in stacked graphical learning is
39.6 times faster than Gibbs sampling. “+” means that
the accuracy of stacked graphical learning is statistically
significantly better than the accuracy of Gibbs sampling.

Gibbs 50 Gibbs 100

SLIF 39.6+ 79.3+

WebKB 43.4+ 87.0
Cora 42.7+ 85.4
Citeseer 43.6+ 87.3

Average speed-up 42.3 84.8

compared to Gibbs sampling on RDNs. The plots were
generated using SLIF data and WebKB data. We run
10 iterations of stacking and 150 iterations of Gibbs
sampling on RDNs and recorded the accuracy. We
created the plots using a natural logarithmic scale of
iteration number k. In addition to the Gibbs sampling
with random starting points, we also evaluated Gibbs
sampling starting with same y0 as the corresponding
stacked graphical models, i.e., with predictions of local
models as starting points.

We observe that stacked models converge more
quickly than Gibbs sampling and achieve a satisfactory
performance much faster, even if the Gibbs sampling
starts with same y0 as the corresponding stacked graph-
ical models. Stacked graphical models can achieve sig-
nificant improvement over the base learner after the first
iteration. More iterations of stacking do not seem to be
more helpful, with the performance staying at about the

same level. We observe that Gibbs sampling converges
to the same level after many more iterations and the
convergence rate when k is small depends heavily on
the starting points. We plot error bars along the curve
for Gibbs sampling with random starting points. The
error bars are calculated over 5 randomly initial sam-
ples, i.e., in each fold, Gibbs sampling is run 5 times
with random initial starting points.

4 Formal Analysis

The previous sections show that stacked graphical learn-
ing works well in practice. In paper [22], we formally
analyze an idealized version of stacked graphical learn-
ing and provide a proof for the convergence of the algo-
rithm.

5 Conclusions

In this paper we presented stacked graphical learning,
a meta-learning scheme in which a base learner is
augmented by expanding one instance’s features with
predictions on other related instances. Formally stacked
graphical learning can be viewed as approximating a
homogeneous Markov chain by greedily extending a
short inhomogeneous Markov chain.

Compared to other graphical models, stacked
graphical learning is efficient, especially during infer-
ence. This property allows it to be very competitive
in applications where an efficient inference algorithm
is extremely important. The evaluations on eight real-
world datasets indicate that classification with stacked
graphical models can improve the performance of a base
learner significantly and achieve accuracy competitive



to other graphical models via much faster inference.
In this paper, we extend the stacked sequential

model[7] to a more general case, where relational data is
considered as the application. Krishnan and Manning[6]
independently developed a “two stage” learning method
for Named Entity Recognition, in which predictions
from one CRF are used to generate predictions for
another. This method is like Cohen and Carvalho’s
stacked CRFs [7], but in Krishnan and Manning’s ex-
periments, they used different functions to aggregate
the predictions of the base classifier. Stacked graphical
models are a generalization of Krishnan and Manning’s
method. McCallum and Sutton introduced parame-
ter independence diagrams for introducing additional
independence assumptions into parameter estimation
for efficient training of undirected graphical models[23].
Their method obtained a gain in accuracy via training in
less than one-fifth the time. Our work is focusing on an
approach which is efficient in inference. In paper [24], we
described an in-depth study of stacked graphical learn-
ing and applied it to the matching of two inter-related
sub-tasks in SLIF system.

Future work will compare stacked models to more
graphical models such as relational Markov networks,
and further explore relational template design and base
learner selection. For example, integrating an online
learning algorithm will enable fast training of stacked
graphical models. We are also considering more ap-
plications of stacked graphical learning to inter-related
classification problems in an information extraction sys-
tem.

References

[1] D. Jensen and J. Neville , Dependency Networks for
Relational Data, Proceedings of ICDM-04, Brighton,
UK 2004.

[2] B. Taskar and P. Abbeel and D. Koller , Dis-
criminative Probabilistic Models for Relational Data,
Proceedings of UAI-02, Edmonton, Canada, 2002.

[3] M. Richardson and P. Domingos, Markov Logic
Networks, Machine Learning, 62, pp107–136, 2006.

[4] D. Heckerman, et al., Dependency Networks for In-
ference, Collaborative Filtering, and Data Visualiza-
tion,Journal of Machine Learning Research, 1, pp49–
75, 2000.

[5] D. H. Wolpert, Stacked generalization, Neural Net-
works, vol. 5, pp241–259, 1992.

[6] V. Krishnan and C. D. Manning, An Effective Two-
Stage Model for Exploiting Non-Local Dependencies
in Named Entity Recognition, Proceedings of COL-
ING/ACL2006, Sydney, Australia, 2006.

[7] V. R. Carvalho and W. W. Cohen, Stacked Sequen-
tial Learning, Proceedings of the IJCAI-05, Edinburgh,
Scotland, 2005.

[8] Z. Kou, W. W. Cohen and R. F. Murphy, Ex-
tracting Information from Text and Images for Loca-
tion Proteomics, Proceedings of the BIOKDD 2003.

[9] R. F. Murphy, Z. Kou, J. Hua, M. Joffe and
W. W. Cohen, Extracting and Structuring Subcellular
Location Information from on-line Journal Articles:
the Subcellular Location Image Finder, Proceedings of
KSCE-04, St. Thomas, US Virgin Islands, 2004.

[10] M. Craven, et al., Learning to Extract Symbolic
Knowledge from the World Wide Web, Proceedings of
AAAI-98, Madison, WI, 1998.

[11] Q. Lu and L. Getoor, Link-based Classification,
Proceedings of ICML-03, Washington, DC, 2003.

[12] A. McCallum, K. Nigam, J. Rennie, and K.
Seymore, Automating the construction of internet
portals with machine learning, Information Retrieval,
3, pp127-63.

[13] C. L. Giles, K. Bollacker, and S. Lawrence,
Cite- Seer: An automatic citation indexing system,
ACM Digital Libraries 98.

[14] R. Bunescu, et al., Comparative Experiments on
Learning Information Extractors for Proteins and their
Interactions, Artificial Intelligence in Medicine, 33, 2
(2005), pp 139-155.

[15] N. Collier, et al., The GENIA project: Corpus-
based knowledge acquisition and information extraction
from genome research papers, Proceedings of EACL-99,
pp271-272.
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