
Personalized Recommendations using Knowledge Graphs:
A Probabilistic Logic Programming Approach

Rose Catherine
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA, USA

rosecatherinek@cs.cmu.edu

William Cohen
Machine Learning Department

Carnegie Mellon University
Pittsburgh, PA, USA

wcohen@cs.cmu.edu

ABSTRACT
Improving the performance of recommender systems using
knowledge graphs is an important task. There have been
many hybrid systems proposed in the past that use a mix of
content-based and collaborative filtering techniques to boost
the performance. More recently, some work has focused on
recommendations that use external knowledge graphs (KGs)
to supplement content-based recommendation.

In this paper, we investigate three methods for making KG
based recommendations using a general-purpose probabilis-
tic logic system called ProPPR. The simplest of the models,
EntitySim, uses only the links of the graph. We then extend
the model to TypeSim that also uses the types of the entities
to boost its generalization capabilities. Next, we develop a
graph based latent factor model, GraphLF, which combines
the strengths of latent factorization with graphs. We com-
pare our approaches to a recently proposed state-of-the-art
graph recommendation method on two large datasets, Yelp
and MovieLens-100K. The experiments illustrate that our
approaches can give large performance improvements. Ad-
ditionally, we demonstrate that knowledge graphs give max-
imum advantage when the dataset is sparse, and gradually
become redundant as more training data becomes available,
and hence are most useful in cold-start settings.

Keywords
Knowledge Graph based Recommendations; Probabilistic
Logic Programming; Graph based Matrix Factorization

1. INTRODUCTION
Recommendation is usually social or content-based, with

social methods best for problems with many users and rel-
atively few items (e.g., movie recommendation for Netflix)
and content-based best on cold start or “long tail” settings.
An important research problem is how to leverage external
knowledge for improving content-based recommendations.
Content features are usually available for both users and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

RecSys ’16, September 15-19, 2016, Boston , MA, USA
c© 2016 ACM. ISBN 978-1-4503-4035-9/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2959100.2959131

items. For users, these are typically their demographics.
For items like movies, these may include the actors, genre,
directors, country of release, etc. and for items like restau-
rants, these may include the location, cuisine, formal vs.
casual, etc. Although many methods have been proposed in
the past that use content, not many use the interconnections
between the content itself and external knowledge sources,
which we refer to as a knowledge graph (KG).

However, in recent work [27], the authors propose a meta-
path based method to infer users’ preferences to items that
have not been explicitly rated by them, and showed state-
of-the-art results on two large real-world datasets. In this
paper, we show how KG recommendations can be performed
using a general-purpose probabilistic logic system called
ProPPR[26]. We formulate the problem as a probabilistic
inference and learning task, and present three approaches for
making recommendations. Our formulations are not identi-
cal to that proposed in [27], but are similar in spirit. We
show that a number of engineering choices, such as the choice
of specific metapaths and length of metapaths, can be elim-
inated in our formalism, and that the formalism allows one
to easily explore variants of the metapath approach. Our
best methods outperform the latter.

Bob

Schindler's
List

Liam
Neeson

actor

Alice Kumar

The Terminal

Good Will
Hunting

Bridge of
Spies

Saving Private
Ryan

Steven
Spielberg

director
Tom

Hanks

actor
Matt

Damon

actor

?

Users

Movies

Knowledge Base

Figure 1: Example of Movie Recommendation

A typical movie recommendation example is depicted in
Figure 1 where users watch and/or rate movies, and con-
tent about the movies are available in a database. The links
in the figure show the content associated with each of the
movies as well as the movies that each of the users watched.
EntitySim, the simplest of the methods proposed in this
paper, learns users’ preferences over the content, and lever-
ages the link structure of the KG to make predictions. In
some cases, it is also possible to obtain a type information

about the content. For example, Tom Hanks is of type Actor.
TypeSim, the second method, builds on EntitySim but addi-
tionally models the type popularities and type similarities.
It is closest to the method of [27] in that it uses the type
information of the nodes to prioritize certain paths in the
graph. GraphLF, the most complex of the models proposed
in this paper, is a latent factorization model over the knowl-
edge graph, and is type agnostic i.e. it does not required
typed KGs. By comparing our methods to the published
results of the state-of-the-art method that uses KGs in gen-
erating recommendations [27], we show that our methods
are able to achieve a large improvement in performance.

We also study the behavior of the methods with changing
dataset densities and show that at higher densities, just the
graph link structure suffices to make accurate recommenda-
tions and the type information becomes redundant. Addi-
tionally, our experiments show that at much larger densities,
the knowledge graph itself becomes redundant and simple
methods can perform as well or better. However, in sparse
datasets with few training examples, the knowledge graph
is a valuable source of information.

The rest of the paper is organized as follows: Section 2
discusses the prior relevant work. The approaches proposed
in this paper are detailed in Section 3 followed by experi-
ments and a discussion of results in Section 4. In Section 5
we conclude and give future directions of research.

2. RELATED WORK
Recommendation systems have been popular for a long

time now and are a well researched topic. However, there
has not been much effort directed at using external KGs for
improving recommendations.

A recent method [27], called HeteRec_p, proposed the use
of KGs for improving the recommender performance. Since
this method is the present state-of-the-art against which we
compare our approaches, we detail it in Section 2.1. An-
other link-based method [28] proposed by the same authors
precedes [27], and learns a global model of recommendation
based on the KG, but does not attempt to personalize the
recommendations.

Another recent effort at using multiple sources of informa-
tion is the HyPER system [16], where the authors show how
to recommend using a Probabilistic Soft Logic framework
[2]. They formulate rules to simulate collaborative filter-
ing (CF) style recommendation. For instance, in the case of
user-based CF, the rule is of the form, SimilarUsers(u1, u2)∧
Rating(u1, i) ⇒ Rating(u2, i), where SimilarUsers indi-
cate if the users u1 and u2 are similar using a k-nearest
neighbor algorithm, computed offline using different sim-
ilarity measures like Cosine, Pearson etc. If the friend-
network of users is available, then they leverage it using
the rule Friends(u1, u2)∧Rating(u1, i)⇒ Rating(u2, i). If
other rating prediction algorithms like Matrix Factorization
(MF) are available, then they induce an ensemble recom-
mender using the rules RatingMF (u, i) ⇒ Rating(u, i) and
¬RatingMF (u, i) ⇒ ¬Rating(u, i). Eventually, during the
training phase, they learn a weight per rule using the PSL
framework, which is later used for predicting the ratings in
the test set. Similar to HyPER is the approach proposed in
[11] that uses Markov Logic Networks, and that proposed in
[6] that uses Bayesian networks to create a hybrid recom-
mender. Like these methods, we also base our methods on
a general-purpose probabilistic reasoning system. However,

we differ from these methods in our focus on using external
knowledge in recommendations.

Prior research has previously proposed using various kinds
of special purpose or domain–specific knowledge-graphs. In
[12], the authors proposed to use a trust-network connect-
ing the users especially for making recommendations to the
cold-start users. The latter is matched up against the net-
work to locate their most trusted neighbors, whose ratings
are then used to generate the predictions. Another popularly
used network is the social network of the users. Prior work
like [14] and [9] among various other similar approaches use
the social connection information of the users to find sim-
ilar users or “friends” in this case, and use their ratings to
generate recommendations for the former.

2.1 HeteRec_p
HeteRec_p [27] aims to find user’s affinity to items that

they have not rated using metapaths. Metapaths describe
paths in a graph through which two items may be con-
nected. In the example of Figure 1, an example meta-
path would be User→ Movie→ Actor→ Movie. Given a
graph/network schema GT = (A,R) of a graph G where A
is the set of node types and R is the set of relations between
the node types A, then, metapaths are described in the form

of P = A0
R1−−→ A1

R2−−→ A2 . . .
Rk−−→ Ak and represent a path

in GT , which can be interpreted as a new composite relation
R1R2 . . . Rk between node-type A0 and Ak, where Ai ∈ A
and Ri ∈ R for i = 0, . . . k, A0 = dom(R1) = dom(P), Ak =
range(Rk) = range(P) and Ai = range(Ri) = dom(Ri+1)
for i = 1, . . . , k − 1. For the specific purpose of recom-
mending on user-item graphs, HeteRec_p uses metapaths
of the form user → item → ∗ → item. Given a metap-
ath P , they use a variant of PathSim [24] to measure the
similarity between user i and item j along paths of the
type P , a method the authors refer to as User Preference
Diffusion. For each P , they use the user preference dif-
fusion to construct the diffused user-item matrix R̃P . Let
R̃(1), R̃(2), ...R̃(L) be the diffused matrices corresponding to
L different metapaths. Each such R̃(q) is then approximated
as Û (q) · V̂ (q) using a low-rank matrix approximation tech-
nique. Then, the global recommendation model is expressed

as: r(ui, vj) =
∑
q∈L θq Ûi

(q) · V̂j
(q)

where, θq is a learned
weight for the path q.

To personalize recommendations, they first cluster the
users according to their interests. Then, the recommenda-
tion function is defined as: r∗(ui, vj) =

∑
k∈C sim(Ck, ui)∑

q∈L θ
(k)
q Ûi

(q) · V̂j
(q)

where, C represents the user clusters

and sim(Ck, ui) gives a similarity score between the kth clus-
ter center and user i. Note that the θq is now learned for
each of the clusters. This formulation of the rating predic-
tion function is similar to [5].

Although HeteRec_p performed well on the recommen-
dation tasks, the algorithm needs several hyper-parameters
that need to be determined or tuned, like choosing the spe-
cific L metapaths from a potentially infinite number of meta-
paths, and the number of clusters. It also requires a rich KB
with types for entities and links.

3. PROPOSED METHOD

3.1 Preliminaries

In this paper, we use the term entity as a generic term to
denote a word or a phrase that can be mapped onto a knowl-
edge base or an ontology. Since the knowledge bases used
in this paper are based on structured data, the mapping is
straightforward. However, when using a generic knowledge
base like Wikipedia1, Yago [23] or NELL [21], one might
require a wikifier or an entity linker [17].

A Knowledge Graph (KG) is a graph constructed by repre-
senting each item, entity and user as nodes, and linking those
nodes that interact with each other via edges. In [27], the
authors emphasize that their method is tailored to Heteroge-
nous Information Networks (HIN), which are essentially KGs
but with type mapping functions for entities and links, where
there is more than one type (heterogenous). Otherwise, the
network becomes homogenous. This is in contrast to prior
works that use graphs or networks of only one type of nodes,
like say, a friend network. A KG, as referred to in this paper,
is therefore a relaxed version of a HIN where the types of en-
tities and links may or may not be known. We assume that
the nodes are typically heterogenous even if their type infor-
mation is missing. If the types are unknown, then only the
two methods EntitySim and GraphMF are applicable. How-
ever, if the knowledge graph is indeed an HIN, then all three
methods apply.

Similar to [27], we too use binary user feedback. i.e. the
rating matrix entryRij for user i and item j is 1 if a review or
another form of interaction like clicking or liking is available.
Otherwise, Rij is 0.

3.2 Running Example
For example, consider a movie recommendation task, sim-

ilar to that of [27], where we are tracking three users Bob,
Alice and Kumar. From historical records, we know that Al-
ice has watched Saving Private Ryan and The Terminal,
both of which have Steven Spielberg as the Director and
Tom Hanks as an Actor, as specified by the knowledge base.
The knowledge base may also provide additional content like
plot keywords, language and country of release, awards won
etc. Similarly, we also know the movies that were watched
in the past by Bob and Kumar. In addition to watching, we
could also include user’s actions such as “reviewing” or “lik-
ing”, if available. Given the past viewing history of users,
we may want to know the likelihood of them watching a
new movie, say Bridge of Spies. This scenario is graph-
ically represented in Figure 1. Although in this particular
case, the movie-entity graph is bipartite, it is also common
to have links between movies themselves like say, Finding
Nemo and Finding Dory where the latter is a sequel to the
former, or between entities themselves like for example, Tom
Hanks and Best Actor Academy Award.

3.3 Recommendation as Personalized PageRank
Similar to the Topic Sensitive PageRank proposed in [10]

and the weighted association graph walks proposed in [4],
imagine a random walker starting at the node Alice in the
graph of Figure 1 (ignore the direction of the edges). At
every step, the walker either moves to one of the neighbors
of the current node with probability 1 − α or jumps back
to the start node (Alice) with probability α (the reset pa-
rameter). If repeated for a sufficient number of times, this
process will eventually give an approximation of the steady-
state probability of the walker being in each of the nodes.

1https://en.wikipedia.org

However, since we need only the ranking of the movies and
not the other entities like actors and directors, we consider
only those nodes corresponding to the movie nodes being
tested, and sort them according to their probability to pro-
duce a ranked list of movie recommendations.

In the above method, there is no control over the walk.
The final outcome of the walk is determined by the link
structure and the start node alone. However, recent research
has proposed methods to learn how to walk. Backstrom et.
al in [3] showed how a random walker could be trained to
walk on a graph. This is done by learning a weight vector
w, which given a feature vector φuv for an edge in the graph
u→ v, computes the edge strength as f(w, φuv), a function
of the weight and the feature vectors, that is used in the
walk. During the training phase, learning w is posed as an
optimization problem with the constraint that the PageRank
computed for the positive example nodes is greater than that
of the negative examples. In our case, the positive examples
would be those movies that the user watched, and negative
examples would be those that the user did not watch or give
an explicit negative feedback.

3.4 Learning to Recommend using ProPPR
ProPPR [26], which stands for Programming with

Personalized PageRank, is a first-order probabilistic logic
system which accepts a program similar in structure and
semantics to a logic program [18] and a set of facts, and
outputs a ranked list of entities that answers the program
with respect to the facts. ProPPR scores possible answers
to a query based on a Personalized PageRank process in the
proof graph (explained below) for the query. Below, we show
how it can be used for the task of learning to recommend.

For the recommendation task, the first step is to find a
set of entities that each user is interested in, from their past
behaviors. We call this set the seedset of the user because
it will later seed the random walk for that user. For this, we
use the ProPPR program of Figure 2. The first rule states
that the entity E belongs to the seedset of user U if U has
reviewed M which is linked to entity X and X is related to E.
Further, two entities are defined to be related if they are the
same (Rule 2), or if there is a link between X and another
entity Z which is related to E (Rule 3). This last rule is recur-
sive. The link and the type (isEntity, isItem and isUser)
information forms the knowledge graph in our case. Sample
entries from the knowledge graph in the ProPPR format are
shown in Figure 3. To find the seed set for Alice, we would
issue the query Q = seedset(Alice, E) to ProPPR.

seedset(U, E)←reviewed(U, M), link(M, X), related(X, E),

isEntity(E). (1)

related(X, X)←true. (2)

related(X, E)←link(X, Z), related(Z, E). (3)

Figure 2: Seed Set generation

link(Bridge of Spies, Tom Hanks) isEntity(Tom Hanks)

link(Tom Hanks, Saving Private Ryan) isEntity(Matt Damon)

link(Saving Private Ryan, Matt Damon) isItem(Bridge of Spies)

Figure 3: Example entries from the knowledge graph

ProPPR performs inference as a graph search. Given a
program LP like that of Figure 2 and a query Q, ProPPR
starts constructing a graph G, called the proof graph. Each
node in G represents a list of conditions that are yet to be
proved. The root vertex v0 represents Q. Then, it recur-
sively adds nodes and edges to G as follows: let u be a node
of the form [R1, R2, ..., Rk] where R∗ are its predicates. If
ProPPR can find a fact in the database that matches R1,
then the corresponding variables become bound and R1 is
removed from the list. Otherwise, ProPPR looks for a rule
in LP of the form S ← S1, S2, ..., Sl, where S matches R1.
If it finds such a rule, it creates a new node with R1 re-
placed with the body of S as, v = [S1, S2, ..., Sl, R2, ..., Rk],
and links u and v. In the running example, v0 is
seedset(Alice, E) which is then linked to the node
v1 = [reviewed(Alice,M), link(M,X), related(X,E),

isEntity(E)] obtained using Rule 1. Then, ProPPR
would use the training (historical) data for reviewed to
substitute Saving Private Ryan and The Terminal for M

creating two nodes v2 and v3 as [link(Saving Private

Ryan,X), related(X,E), isEntity(E)] and [link(The

Terminal,X), related(X,E), isEntity(E)] respectively.
ProPPR would proceed by substituting for X from the knowl-
edge graph and related(X,E) using the rules and so on until
it reaches a node whose predicates have all been substituted.
These nodes are the answer nodes because they represent a
complete proof of the original query. The variable bindings
used to arrive at these nodes can be used to answer the
query. Examples would be:

seedSet(Alice, E = TomHanks)

seedSet(Alice, E = StevenSpielberg)

Note that such a graph construction could be potentially
infinite. Therefore, ProPPR uses an approximate ground-
ing mechanism to construct an approximate graph in time
O(1

αε
), where ε is the approximation error and α is the re-

set parameter. Once such a graph has been constructed,
ProPPR runs a Personalized PageRank algorithm with the
start node as v0 and ranks the answer nodes according to
their PageRank scores.

The output of the program of Figure 2 is a ranked list
of entities for the user U and the first K of these will be
stored as U’s seed set. Note that the Personalized PageRank
scoring will rank high those entities that are reachable from
the movies that the user reviewed through multiple short
paths, and rank low the entities that are either far and/or
do not have multiple paths leading to them.

reviewed(U, M)← seedset(U, E), likesEntity(U, E),

related(E, X), link(X, M), isApplicable(U, M). (4)

likesEntity(U, E)← {l(U, E)}. (5)

Figure 4: EntitySim: ProPPR program for finding
movies that a user may like using similarity mea-
sured using the graph links

After generating the seed set for each user, the next step in
recommendation is to train a model and then use it to make
predictions. As one method, we use the ProPPR program
of Figure 4. It states that the user U may like a movie M

if there is an entity E belonging to U’s seed set, and U likes

E, and E is related to another entity X, which appears in
the movie M (Rule 4). The predicate isApplicable controls
the train and the test information for each user. During
training, it lists the positive and negative training examples
and during the test phase, that for the test, for each user.
The predicate related is defined recursively as before. For
the definition of the predicate likesEntity, note the term
{l(U,E)}. This corresponds to a feature that is used to
annotate the edge in which that rule is used. For example, if
the rule is invoked with U = Alice and E = Tom Hanks, then
the feature would be l(Alice, Tom Hanks). In the training
phase, ProPPR learns the weight of that feature from the
training data. During the prediction phase, ProPPR uses
the learned weight of the feature as the weight of the edge.
Note that these learned weights for each user-entity pair
are not related to the ranking obtained from the seed set
generation program of Figure 2, because these weights are
specific to the prediction function.

reviewed(Alice, M)

seedset(Alice, TomHanks),
likesEntity(Alice, TomHanks),

related(TomHanks, X), link(X, M),
isApplicable(Alice, M)

seedset(Alice, SSpielberg),
likesEntity(Alice, SSpielberg),

related(SSpielberg, X), link(X, M),
isApplicable(Alice, M)

link(TomHanks, M),
isApplicable(Alice, M)

link(SSpielberg, M),
isApplicable(Alice, M)

BridgeOfSpies

E = TomHanks E = SSpielberg

wt = l(Alice,TomHanks)
X = TomHanks

wt = l(Alice,SSpielberg)
X = SSpielberg

M = BridgeOfSpies M = BridgeOfSpies

seedset(Alice, E),
likesEntity(Alice, E),

related(E, X), link(X, M),
isApplicable(Alice, M)

CaptainPhillips

M = CaptainPhillips

Figure 5: Sample grounding of the EntitySim

ProPPR program

During the training phase, ProPPR grounds the program
similar to that for the seed set generation discussed earlier.
A sample grounding for EntitySim is depicted in Figure 5
where Bridge Of Spies and Captain Phillips are in the
set of test examples for Alice. We may have other test ex-
amples for Alice, but if they are not provable using the rules
(or beyond a certain approximation error), they will not be
present in the grounding. ProPPR then follows a procedure
similar to that proposed by Backstrom et. al in [3], to train
the random walker. This is done by learning a weight vector
w, which given a feature vector Φuv for an edge in the graph
u→ v, computes the edge strength as f(w,Φuv), a function
of the weight and the feature vectors. i.e. the probability of
traversing the edge P (v|u) ∝ f(w,Φuv). Our method uses
f(w,Φuv) = ew·Φuv .

During the training phase, learning of w is posed as an
optimization problem with the constraint that the PageRank
computed for the positive example nodes is greater than that
of the negative examples, as below:

−
m∑
k=1

(Im∑
i=1

log p[uk+i] +

Jm∑
j=1

log(1− p[uk−j])
)

+ µ‖w‖22 (6)

where, p is the PageRank vector computed with the edge

weights obtained with w. The optimization function of
Equation 6 used by ProPPR is the standard positive-negative
log loss function instead of the pairwise loss function used
in [3]. To learn w, we use AdaGrad [8] instead of the quasi-
Newton method used in [3] and SGD used in [26]. The
initial learning rate used by AdaGrad and the regulariza-
tion parameter µ are set to 1. For a thorough description of
ProPPR, we refer the reader to [26] and [25].

3.5 Approach 2: TypeSim
The EntitySim method uses only the knowledge graph

links to learn about user’s preferences. However, recall that
we are in fact using a heterogenous information network
where in addition to the link information, we also know
the “type” of the entities. For example, we know that New

York City is of type City and Tom Hanks is of type Actor.
To leverage this additional type information, we extend the
EntitySim method to TypeSim method as shown in Figure
6.

reviewed(U, R)← seedset(U, E), likesEntity(U, E),

popularEntity(E), related(E, X),

link(X, R), isApplicable(U, R). (7)

likesEntity(U, E)← {l(U, E)}. (8)

popularEntity(E)← entityOfType(E, T),

popularType(T){p(E)}. (9)

popularType(T)← {p(T)}. (10)

typeAssoc(X, Z)← entityOfType(X, S), entityOfType(Z, T),

typeSim(S, T). (11)

typeSim(S, T)← {t(S, T)}. (12)

Figure 6: TypeSim method for recommendations

TypeSim models the general popularity of each of the node
types in Rule 10 by learning the overall predictability offered
by the type of the entity using p(T). For example, nodes of
the type Actor may offer more insight into users’ preferences
than those of type Country. Note that, the learned weight
is not specific to the user and hence its weight is shared
by all the users. Similar to Rule 10, in Rule 9, the model
learns the overall predictability offered by the entity itself,
independent of the user using p(E). For example, it could
be that the movies directed by Steven Spielberg are more
popular than those by other lesser known directors. Type-

Sim also models a general traversal probability between two
types using Rules 11 and 12. For example, Actor → Movie

is generally a more predictive traversal on the graph com-
pared to Country→ Movie. These weights are incorporated
into the prediction rule of EntitySim as shown in Rule 7.

3.6 Approach 3: GraphLF
One of the most successful types of Collaborative Filter-

ing (CF) are the Latent Factor (LF) models [15]. They try
to uncover hidden dimensions that characterize each of the
objects thus mapping users and items onto the same feature
space for an improved recommendation performance. Ko-
ren et al. note in [15] that for movies, latent factors might
measure obvious dimensions such as comedy versus drama,
amount of action, or orientation to children, as well as less

well-defined dimensions such as depth of character devel-
opment, or quirkiness, or even uninterpretable dimensions.
For users, each factor measures how much the user likes
movies that score high on the corresponding factor. Singu-
lar Value Decomposition (SVD) is one of the more popular
methods of generating LF models for recommendation. An
SVD method assigns users and items with values along each
of the hidden dimensions while minimizing a loss function
over the predicted and actual rating matrix.

The main attraction of Collaborative Filtering methods is
that they do not require any knowledge about the users or
items and predict solely based on the rating matrix. Simi-
larly, the main attraction of Latent Factor based CF models
is that they develop a general representation of users and
items based on the ratings data that are more generalizable
and often indiscernible in the raw data.

reviewed(U, R)← related(U, E), related(E, X), link(X, R),

isApplicable(U, R). (13)

related(U, E)← seedset(U, E), simLF(U, E). (14)

related(X, X)← . (15)

related(X, Y)← link(X, Z), simLF(X, Z), related(Z, Y).
(16)

simLF(X, Y)← isDim(D), val(X, D), val(Y, D). (17)

val(X, D)← {v(X, D)}. (18)

Figure 7: GraphLF method for recommendations

Given that we have access to a KG that connects the items
via different entities, the third approach that we propose
in this paper, GraphLF, integrates latent factorization and
graph-based recommendation. The overall ruleset is defined
in Figure 7. Its principal rule is the definition of Latent
Factor Similarity simLF in Rules (17) and (18). Essentially,
simLF of two input entities X and Y is measured by first
picking a dimension D, and then measuring the values of X

and Y along D. If there are many dimensions D along which
the values of both X and Y are high, then probabilistically,
their similarity scores will also be high. The value of an
entity X along dimension D, val(X,D) is learned from the
data during the training phase, as defined in Rule (18).

Note how the recursive definition of the relatedness of two
entities related(X,Y) in Rule (16) has now changed to ac-
count for their latent factor similarity in addition to the
presence of a link between them. Also, the original predic-
tion rule has changed in Rule (13) to use a new relatedness
score between the user and the entity. Essentially, the def-
inition of related(U,E) in Rule (14) replaces the earlier
predicate likesEntity(U,E) with the latent factor similar-
ity simLF(U,E), between the user and an entity belonging to
their seedset. Therefore, the model no longer learns a weight
for each user-entity pair, and instead learns weights for the
users and entities separately along each of the dimensions.

It is also important to note that GraphLF is type-agnostic
unlike TypeSim and HeteRec_p. Types are not always avail-
able, especially in the case of general-purpose graphs like
the Wikipedia graph. Therefore, being type-agnostic is a
desirable property and increases its applicability to a wide
range of data domains.

3.7 Model Complexity

Let n be the number of users and m, the items. Let e be
the number of distinct entities and t be the types. Then the
complexity of the model as characterized by the number of
parameters learned for each of the methods proposed in this
paper are as below:
• EntitySim - O(n) : In this method, we learn one pa-

rameter per user-entity pair. However, by virtue of the
rules, we constrain the entities to be chosen from the
seedset of that user, which is of a constant size c.
• TypeSim - O(n + e + t2) : In addition to those pa-

rameters learned for EntitySim, it also learns e + t
weights for each of the entities and types. Moreover, it
also learns the type association between pairs of types
leading to an additional t2 parameters.
• GraphLF - O(n+m+ e): For each of the users, entities

and items, we learn a constant d number of weights
corresponding to the latent dimensions.

In typical domains, we would expect t � m. Therefore,
EntitySim is the simplest of the models and GraphLF is the
more complex of the models proposed in this paper, in terms
of the number of parameters.

4. EXPERIMENTS AND RESULTS

4.1 Datasets
To test our proposed methods, we use two well known

large datasets:

• Yelp2013: This is the 2013 version of the Yelp Dataset
Challenge2 released by Yelp3, available now at Kag-
gle4. We use this earlier version instead of the latest
version from the Yelp Dataset Challenge for the pur-
poses of comparing with the published results of the
HeteRec_p algorithm. Similar to [27], we discard users
with only 1 review entry.

• IM100K: This dataset is built from the MovieLens-
100K dataset5 unified with the content — director,
actor, studio, country, genre, tag — parsed out from
their corresponding IMDb pages6. We could not ob-
tain the dataset used in [27], which we will refer to as
IM100K-UIUC. Our dataset IM100K* is a close approxi-
mation to it, created from the same MovieLens-100K
dataset, but we have recovered the content of 1566
movies of the total 1682 movies compared to 1360 in
[27], and have 4.8% more reviews than [27].

For all the datasets, similar to [27], we sort the reviews in
the order of their timestamps, and use the older 80% of
the reviews as training examples and the newer 20% of the
reviews as the test examples. The overall statistics of these
datasets, viz. the number of users, the number of items and
the total number of reviews/ratings, are listed in Table 1.

4.2 Experimental Setup
We evaluate the performance using the standard metrics,

Mean Reciprocal Rank (MRR), and Precision at 1, 5 and 10
(P@1, P@5 and P@10) [19].
2https://www.yelp.com/dataset challenge
3http://www.yelp.com/
4https://www.kaggle.com/c/yelp-recsys-2013/data
5http://grouplens.org/datasets/movielens/
6http://www.imdb.com/

Dataset #Users #Items #Ratings

Yelp 43,873 11,537 229,907
IM100K-UIUC 943 1360 89,626
IM100K* 940 1566 93,948

Table 1: Dataset Statistics

In our experiments, we found that any reasonable choice
for the seed set size worked well enough. A fixed size serves
to constrain the number of parameters learned and hence,
the complexity of the model.

In the following sections, we compare our methods to the
state-of-the-art method HeteRec_p proposed in [27] on the
two datasets. We also compare the performance to a Näıve
Bayes (NB) baseline, which represents a recommender system
that uses only the content of the item without the knowl-
edge graph and link information, to make predictions. Näıve
Bayes classifiers have been previously shown to be as ef-
fective as certain computationally intensive algorithms [22].
For each user, the NB system uses the entities of the items
in that user’s training set as the features to train the model.
These are the same entities used by our methods. We use the
probabilities output by the classifier to rank the pages. The
implementation used is from the Mallet [20] package. Since
HeteRec_p was shown to be better than Popularity (which
shows the globally popular items to users), Co-Click (which
uses the co-click probabilities to find similar items), Non–
Negative Matrix Factorization[7] and Hybrid-SVM (which
uses a Ranking SVM[13] on metapaths) in [27], we refrain
from repeating those comparisons again.

4.3 Performance Comparison on Yelp
The performance of the algorithms proposed in this pa-

per as well as the baselines on the Yelp data are tabulated
in Table 2. It can be seen from the results that our meth-
ods outperform HeteRec_p by a large margin. For example,
GraphLF is 126% better on P@1 and TypeSim is 89% better
on MRR.

Also, we can note that using the type information
(TypeSim) improves the performance drastically compared
to EntitySim. For example, P@1 improves by 118% and
MRR by 51%. Similarly, we can note that discovering the
latent factors in the data (GraphLF) also improves the per-
formance tremendously compared to its lesser-generalizable
counterpart (EntitySim). For example, P@1 improves by
115% and MRR by 37%.

However, there is no clear winner when comparing Type-

Sim and GraphLF: while the former scores better on MRR,
the latter is better on P@1.

The NB baseline’s performance is poor, but that was ex-
pected since the dataset is extremely sparse.

4.4 Performance Comparison on IM100K
The performance of HeteRec_p on the IM100K-UIUC

dataset, and that of the algorithms proposed in this paper
and the Näıve Bayes baseline on the IM100K* dataset, are
tabulated in Table 3.

As noted in Section 4.1, the IM100K-UIUC dataset and
the IM100K* dataset are slightly different from each other.
Therefore, we cannot compare the performance of the meth-
ods directly; the most that can be said is that the methods
appear to be comparable.

Method P@1 P@5 P@10 MRR Settings

HeteRec_p 0.0213 0.0171 0.0150 0.0513 published results

EntitySim 0.0221 0.0145 0.0216 0.0641 n = 20
TypeSim 0.0444 0.0188 [↑ 10%] 0.0415 [↑ 176%] 0.0973 [↑ 89%] n = 20
GraphLF 0.0482 [↑ 126%] 0.0186 0.0407 0.0966 n = 20, dim = 10

NB 0 0.0012 0.0013 0.0087

Table 2: Performance comparison on Yelp: The best score for each metric is highlighted in blue and the

lowest score in red . [↑ x%] gives the percent increase compared to the corresponding HeteRec_p score

Method P@1 P@5 P@10 MRR Settings

HeteRec_p 0.2121 0.1932 0.1681 0.553 published results
(on IM100K-UIUC)

EntitySim 0.3485 0.1206 0.2124 [↑ 26.3%] 0.501 [↓ −9.4%] n = 10
TypeSim 0.353 [↑ 66.4%] 0.1207 [↓ −37.5%] 0.2092 0.5053 n = 10
GraphLF 0.3248 0.1207 [↓ −37.5%] 0.1999 0.4852 n = 10, dim = 10

NB 0.312 0.1202 0.1342 0.4069

Table 3: Performance comparison on IM100K (IM100K-UIUC & IM100K*): The best score for each metric is high-

lighted in blue and the lowest score in red . [↑ x%] gives the percent increase compared to the corresponding
HeteRec_p score and [↓ x%], the percent decrease.

A more interesting and surprising result is that the sim-
plest of the methods, NB and EntitySim, perform as well or
better than the more complex TypeSim and GraphMF. In fact,
NB outperforms HeteRec_p on the P@1 metric. This leads
us to speculate that when there are enough training exam-
ples per user and enough signals per item, simple methods
suffice. We explore this conjecture more fully below.

4.5 Effect of Dataset Density on Performance
In the previous two sections, we saw how on the Yelp

dataset TypeSim and GraphLF performed extremely well in
comparison to the EntitySim method, whereas on the IM100K
dataset, the latter was as good as or better than the former
two. In this section, we explore this phenomenon further.

An important difference between the two datasets is that
Yelp is a complete real world dataset with review frequencies
exhibiting a power law distribution, while IM100K is a filtered
version of a real world dataset counterpart, as noted by the
authors of [27]: in IM100K dataset, each user has rated at
least 20 movies.

To quantitatively compare their differences, we define the
Density of a dataset as #reviews

#users×#items
, which is the ratio of

filled entries in the rating matrix to its size. Using this
definition, the density of Yelp was found to be only 0.00077
whereas that of IM100K* was 0.06382.

To study this further, we created 4 additional datasets
from Yelp by filtering out users and businesses that have
less than k reviews, where k =10, 25, 50 and 100. The MRR
scores of our methods and the NB baseline with varying k is
plotted in Figure 8 (with the left y axis). These are with a
seedset of size 20. The graph densities at the different k are
also plotted in the same Figure 8 (in green with the right y
axis). Note that the density increases to 0.11537 at k = 100,
which is 148 times higher than the density at k = 2.

From the figure, we can see that when the dataset is the
least dense (k = 2), the more complex methods TypeSim

k
0 20 40 60 80 100

M
R

R

0

0.2

0.4

0.6

D
e
n
s
it
y

0

0.05

0.1

0.15

EntitySim
TypeSim
GraphLF
NB
Density

Figure 8: Performance of different methods with
varying graph densities on Yelp

and GraphLF perform much better than the simple Enti-

tySim. However, as the density increases with larger k, we
can observe that EntitySim eventually equals TypeSim and
comes within 1% of that of GraphLF, at k = 100. Therefore,
we can deduce that, when we have enough training examples
and a dense graph connecting them, a simple method like
EntitySim that predicts based on just the links in the graph
can give good results.

Another observation from Figure 8 is that the NB recom-
mender, whose performance is poor at low graph densities
— 633% worse than EntitySim — slowly improves with in-
creasing k to eventually better all the KG based methods at
k = 100 (14% better than GraphLF). From this, we conjec-

ture that when there are enough training examples per user,
we can produce accurate predictions using a simple classi-
fier based recommender like NB. However, at slightly lower
densities, like at k = 50, the knowledge graph is a valuable
source of information for making recommendations, as can
be seen from the figure, where NB is 92% below EntitySim

at k = 50.

5. CONCLUSIONS AND FUTURE WORK
Recommender systems are an important area of research.

However, not many techniques have been developed in the
past that leverage KGs for recommendations, especially in
the case of sparse long-tailed datasets. In this paper, we pro-
posed three methods for performing knowledge graph based
recommendations using a general-purpose probabilistic logic
system called ProPPR. Our methods use the link structure
of the knowledge graph as well as type information about
the entities to improve predictions. The more complex of
the models proposed in this paper combined the strengths
of latent factorization with graphs, and is type agnostic. By
comparing our methods to the published results of the state-
of-the-art method that uses knowledge-graphs in generating
recommendations, we showed that our methods were able to
achieve a large improvement in performance.

We also studied the behavior of the methods with chang-
ing dataset densities and showed that at higher densities,
just the graph link structure sufficed to make accurate rec-
ommendations and the type information was redundant. In
addition, we showed that in sparse datasets, the knowledge
graph is a valuable source of information, but its utility di-
minishes when there are enough training examples per user.

In the future, we plan to use the sentiments expressed in
the reviews to improve the recommendations. Extending the
approach to account for the temporal dynamics would also
be an interesting direction for research.

Acknowledgments
We would like to thank Kathryn Mazaitis for her help with
the ProPPR code. This research was supported in part by
Yahoo! through the CMU InMind project [1].

6. REFERENCES
[1] A. Azaria and J. Hong. Recommender system with

personality. In Proc. RecSys, 2016.
[2] S. H. Bach, M. Broecheler, B. Huang, and L. Getoor.

Hinge-loss markov random fields and probabilistic soft
logic. arXiv:1505.04406 [cs.LG], 2015.

[3] L. Backstrom and J. Leskovec. Supervised random
walks: Predicting and recommending links in social
networks. In Proc. WSDM ’11, pages 635–644, 2011.

[4] M. Brand. A random walks perspective on maximizing
satisfaction and profit. In Proc. SDM, 2005.

[5] A. S. Das, M. Datar, A. Garg, and S. Rajaram. Google
news personalization: Scalable online collaborative
filtering. In Proc. WWW ’07, pages 271–280, 2007.

[6] L. de Campos, J. Fernández-Luna, J. Huete, and
M. Rueda-Morales. Combining content-based and
collaborative recommendations: A hybrid approach
based on bayesian networks. Int. J. Approx.
Reasoning, 2010.

[7] C. Ding, T. Li, and M. Jordan. Convex and
semi-nonnegative matrix factorizations. IEEE TPAMI,
2010.

[8] J. Duchi, E. Hazan, and Y. Singer. Adaptive
subgradient methods for online learning and stochastic
optimization. In JMLR ’11, pages 2121–2159, 2011.

[9] I. Guy, N. Zwerdling, D. Carmel, I. Ronen, E. Uziel,
S. Yogev, and S. Ofek-Koifman. Personalized
recommendation of social software items based on
social relations. In Proc. RecSys, 2009.

[10] T. H. Haveliwala. Topic-sensitive pagerank. In Proc.
WWW ’02, pages 517–526, 2002.

[11] J. Hoxha and A. Rettinger. First-order probabilistic
model for hybrid recommendations. In Proc. ICMLA
’13, pages 133–139, 2013.

[12] M. Jamali and M. Ester. Trustwalker: A random walk
model for combining trust-based and item-based
recommendation. In Proc. KDD, 2009.

[13] T. Joachims. Optimizing search engines using
clickthrough data. In Proc. SIGKDD, 2002.

[14] I. Konstas, V. Stathopoulos, and J. M. Jose. On social
networks and collaborative recommendation. In Proc.
SIGIR ’09, pages 195–202, 2009.

[15] Y. Koren. Factorization meets the neighborhood: A
multifaceted collaborative filtering model. In Proc.
KDD ’08, pages 426–434, 2008.

[16] P. Kouki, S. Fakhraei, J. Foulds, M. Eirinaki, and
L. Getoor. Hyper: A flexible and extensible
probabilistic framework for hybrid recommender
systems. In Proc. RecSys ’15, pages 99–106, 2015.

[17] T. Lin, Mausam, and O. Etzioni. Entity linking at web
scale. In Proc. AKBC-WEKEX ’12, pages 84–88, 2012.

[18] J. W. Lloyd. Foundations of Logic Programming.
Springer-Verlag New York, Inc., 1984.

[19] C. D. Manning, P. Raghavan, and H. Schütze.
Introduction to Information Retrieval. Cambridge
University Press, 2008.

[20] A. K. McCallum. Mallet: A machine learning for
language toolkit. http://mallet.cs.umass.edu, 2002.

[21] T. Mitchell, W. Cohen, E. H. Jr., P. Talukdar,
J. Betteridge, A. Carlson, B. Mishra, M. Gardner,
B. Kisiel, J. Krishnamurthy, N. Lao, K. Mazaitis,
T. Mohamed, N. Nakashole, E. Platanios, A. Ritter,
M. Samadi, B. Settles, R. Wang, D. Wijaya, A. Gupta,
X. Chen, A. Saparov, M. Greaves, and J. Welling.
Never-ending learning. In Proc. AAAI, 2015.

[22] M. Pazzani and D. Billsus. Learning and revising user
profiles: The identification ofinteresting web sites.
Mach. Learn., 27(3):313–331, June 1997.

[23] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A
core of semantic knowledge. In Proc. WWW, 2007.

[24] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu.
Pathsim: Meta path-based top-k similarity search in
heterogeneous information networks. PVLDB, 2011.

[25] W. Y. Wang and W. W. Cohen. Joint information
extraction and reasoning: A scalable statistical
relational learning approach. In Proc. ACL 2015,
pages 355–364, 2015.

[26] W. Y. Wang, K. Mazaitis, and W. W. Cohen.
Programming with personalized pagerank: A locally
groundable first-order probabilistic logic. In Proc.
CIKM ’13, pages 2129–2138, 2013.

[27] X. Yu, X. Ren, Y. Sun, Q. Gu, B. Sturt,
U. Khandelwal, B. Norick, and J. Han. Personalized
entity recommendation: A heterogeneous information
network approach. In Proc. WSDM, 2014.

[28] X. Yu, X. Ren, Y. Sun, B. Sturt, U. Khandelwal,
Q. Gu, B. Norick, and J. Han. Recommendation in
heterogeneous information networks with implicit user
feedback. In Proc. RecSys, 2013.

