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Abstract

Modeling networks is an active area of research and is used for many applications
ranging from bioinformatics to social network analysis. An important operation
that is often performed in the course of graph analysis is node clustering. Pop-
ular methods for node clustering such as the normalized cut method have their
roots in graph partition optimization and spectral graph theory. Recently, there
has been increasing interest in modeling graphs probabilistically using stochastic
block models and other approaches that extend it. In this paper, we present an em-
pirical study that compares the node clustering performances of state-of-the-art
algorithms from both the probabilistic and spectral families on undirected graphs.
Our experiments show that no family dominates over the other and that network
characteristics play a significant role in determining the best model to use.

1 Introduction

Much recent work on the problem of clustering graphs can be broadly classified into either the prob-
abilistic family or the spectral clustering family. Probabilistic approaches posit a generative model
for graphs or equivalently the adjacency matrix of the graph (an excellent survey on probabilistic
models is found in [1]). Spectral clustering and other graph partition methods use insights about the
nature of networks to tackle specific applications in graph analysis and work well empirically. While
there has been some work [2] in constructing a theoretical connection between spectral clustering
and stochastic block models, there has been relatively little work in comparing the strengths and
weaknesses of the two broad approaches. Here we empirically compare these broad approaches by
evaluating recent algorithms in each family on a range of sample datasets. From the spectral family,
we use the normalized cut method (NCut) [3] and the Ng-Jordan-Weiss algorithm (NJW) [4] and
the recently proposed power iteration clustering (PIC) method [5]. We compare these to the sparse
block model of Parkkinen et al. (PSK) [6].

2 Spectral methods

Spectral clustering methods were introduced to the machine learning community as elegant solutions
to graph partition problems, where the objective is to make a graph cut (a bisection of the graph).
This is usually done by (1) defining a graph Laplacian with a graph cut objective in mind, (2)
finding the “significant” eigenvector of the Laplacian (e.g., the second smallest eigenvector for the
normalized cut objective), and (3) thresholding the eigenvector. Nodes corresponding to elements
of the eigenvector above the threshold belong to one partition, and those below belong to the other.

A popular way to generalize these methods to create k partitions(clusters) is to find the k (or k − 1
in the case of NCut) most significant eigenvectors of the graph Laplacian, embed the data points in
the space spanned by these eigenvectors, and run k-means to produce the final clusters (partitions).

In this paper we pick two of the most popular spectral clustering methods for our purposes, NCut
and NJW; their graph Laplacians are defined as I − D−1A and I − D−1/2AD−1/2, respectively.
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A is the matrix form of the graph where A(i, j) is the edge weight between node i and j; I is the
identity matrix; D is the diagonal degree matrix where D(i, i) =

∑
j A(i, j).

Similarly to NCut and NJW, Power iteration clustering (PIC) [5] also embeds nodes in a space
defined by eigenvectors of the graph matrix, and produces clusters via k-means in the embedded
space. However, individual eigenvectors are never explicitly calculated. Instead, PIC performs
the power iteration with early stopping on an arbitrary initial vector using the normalized graph
matrix D−1A to produce a vector that is a weighted combination of the significant eigenvectors
as a one-dimensional embedding for the nodes. The early stopping criterion proposed in [5] is
acceleration, based on the observation that the power iteration converges at an accelerated pace
in the beginning, and later at a constant pace when non-significant eigenvectors (those with small
corresponding eigenvalues) are no longer contributing to this weighted combination. The basic PIC
algorithm is shown in Figure 1.

Input: A row-normalized matrix W = D−1A and the number of clusters k.
Output: Clusters C1, C2, ..., Ck.

1. Pick a random initial vector v0.
2. Set vt+1 ←Wvt and δt+1 ← |vt+1 − vt|.
3. Increment t and repeat above step until |δt − δt−1| ' 0.
4. Use k-means to cluster points on vt and return clusters C1, C2, ..., Ck.

Figure 1: The PIC algorithm.

A shortcoming of one-dimensional embeddings is that, as k becomes large, the one-dimensional
embedding assigned to nodes from different clusters are increasingly likely be similar. One way to
avoid such ”collisions” is to set the initial vector such that nodes in different clusters likely to have
different initial values–for instance, letting the initial vector map a node some function of its degree.
Another way to avoid collisions is to run power iteration with early stopping d times (d << k)
and embed the nodes in the d-dimensional space spanned by these vectors. In this paper we choose
three variations of PIC for comparison: PICR (one random initial vector), PICD (initial vector set
according to the diagonal of D), and PICR4 (four random initial vectors).

3 A probabilistic model for sparse networks
In this section, we present the sparse network model which borrows concepts from topic models,
based on the model introduced by Parkkinen et al. [6]. Figure 2 shows the plate figure for the model
that generates a graph representing entity-entity links with an underlying block structure. Clusters in
this model are represented as distributions over nodes. Linked entities (i.e. edges) are generated from
cluster specific node distributions conditioned on the cluster pairs sampled for the edges. Cluster
pairs for edges(links) are drawn from a multinomial defined over the Cartesian product of the cluster
et with itself. Vertices in the graph representing nodes therefore have mixed memberships in clusters.
Let K be the number of latent clusters(topics) we wish to recover. The generative process to obtain
links in the graph is as follows.

1. Generate cluster distributions:

For each cluster z ∈ 1, . . . ,K, sample βz ∼ Dirichlet(γ), the cluster specific node distribution.

2. Generate the link matrix of entities:

• Sample πL ∼ Dirichlet(αL) where πL describes a distribution over the Cartesian product
of clusters with itself, for links in the dataset.

• For every link ei1 → ei2, i ∈ {1 · · ·NL}:
– Sample a cluster pair 〈zi1, zi2〉 ∼Multinomial(πL)
– Sample ei1 ∼Multinomial(βzi1)
– Sample ei2 ∼Multinomial(βzi2)

In contrast to MMSB[7], this model only generates realized links that are observed, making this
model better suited to sparse graphs.
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Figure 2: Sparse network model.

Given the hyperparameters αL and γ, the joint distribution over the links, the cluster pair distribution
and cluster assignments for edges is given by

p(πL,β, 〈z1, z2〉, 〈e1, e2〉|αL, γ) ∝
K∏

z=1

Dir(βz|γ)× Dir(πL|αL)

NL∏
i=1

π
〈zi1,zi2〉
L βei1

z1 β
ei2
z2 (1)

A commonly required operation when using latent variable models is to perform inference on the
model to query the latent variable distributions and the cluster assignments of documents and links.
Due to the intractability of exact inference in model, a collapsed Gibbs sampler is used to perform
approximate inference. It samples a cluster pair for every link conditional on cluster pair assignments
to all other links after collapsing πL using the expression:

p(zi = 〈z1, z2〉|〈ei1, ei2〉, z¬i, 〈e1, e2〉¬i, αL, γ) (2)

∝
(
nL¬i〈z1,z2〉 + αL

)
×

(
n¬iz1ei1 + γ

) (
n¬iz2ei2 + γ

)(∑
e n
¬i
z1 + |E|γ

) (∑
e n
¬i
z2 + |E|γ

)
E refers to the set of nodes in the graph. The n’s are counts of observations in the training set,
where nze is the number of times an entity e is observed under cluster z and nL〈z1,z2〉 the count of
links assigned to cluster pair 〈z1, z2〉.
The cluster multinomial parameters and the cluster pair distributions of links are easily recovered
using their MAP estimates after inference using the counts of observations.

β(e)
z =

nze + γ∑
e′ nze′ + |E|γ

, π
〈z1,z2〉
L =

nL〈z1,z2〉 + αL∑
z′
1,z

′
2
nL〈z′

1,z
′
2〉
+K2αL

A de-noised form of the entity-entity link matrix can also be recovered from the estimated parame-
ters of the model. Let B be a matrix of dimensions K × |E| where row k = βk, k ∈ {1, · · · ,K}.
Let Z be a matrix of dimensions K×K s.t Zp,q =

∑NL

i=1 I(zi1 = p, zi2 = q). The de-noised matrix
M of the strength of association between the entities in E is given by M = BTZB.

For experiments with the probabilistic models, we place priors which favor diagonal blocks over
off-diagonal blocks. In the sparse model, this is achieved by using a non-symmetric Dirichlet for
αL. In the MMSB model, the beta priors for the per-block binomials are set such that positive links
are favored more in the diagonal blocks than in the off-diagonal blocks. During the experiments
however, the MMSB model performed significantly worse than the other algorithms since the model
is not suited for sparse graphs as it expends significant effort in modeling negative links between
nodes. Airoldi et al. [7] propose variations of the MMSB model that take into account sparsity
but an implementation for those variations with which to run experiments was unavailable. We
therefore, do not report results with MMSB.

4 Datasets
We investigate the clustering properties of the two classes of approaches on three types of datasets.
The nodes in the graphs in all the datasets studied have labels, which are used only to evaluate the
accuracy of clustering.

The first type of datasets consists of social networks, citation networks, and similar networks that
have been studied in the sociology literature. The nodes in the PolBook dataset[8] are political
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Table 1: Dataset Statistics (N/E/C indicates Nodes / Edges / Clusters)
(a) Social network

Dataset N/E/C Dataset N/E/C
karate 34 / 156 / 2 umbc 404 / 4764 / 2
polbooks 105 / 882 / 3 mgemail 280 / 1344 / 55
dolphin 62 / 318 / 2 citeseer 2114 / 7396 / 6
football 115 / 1226 / 10 cora 2485 / 10138 / 7
msp 4324 / 37254 / 2
ag 1222 / 33428 / 2
senate 98 / 9506 / 2

(b) Author disambiguation
Dataset N/E/C Dataset N/E/C
jsmith 4120 / 21452 / 30 jrobinson 686 / 2846 / 12
akumar 801 / 2476 / 14 ktanaka 827 / 2758 / 10
cchen 424 / 1558 / 16 mbrown 579 / 2112 / 13
djohnson 1381 / 5344 / 15 mmiller 2106 / 9918 / 12
jmartin 424 / 1558 / 16 jlee 5820 / 23110 / 100
agupta 2485 /10208 / 26 ychen 5472 / 25584 / 71
mjones 961 / 3450 / 13 slee 5963 / 23086 / 86

books, and edges represent co-purchasing behavior. Books are labeled “liberal”, “conservative”, or
“neutral”, based on their viewpoint. The nodes in the Karate dataset[9] are members of a karate
club, and the edges are friendships. The labels are sub-communities, as defined by two subgroups
that formed after a breakup of the original community. The Dolphin dataset[10] is a similar social
network of associations between dolphins in a pod in Doubtful Sound, New Zealand, and labels cor-
respond to sub-community membership after a similar breakup. The nodes in the Football dataset
are Division IA colleges, the edges represent games in the 2000 regular season, and the labels repre-
sent conferences[11]. The nodes in the MGEmail corpus[12] are MBA students, organized in teams
of four to six members, who ran simulated companies over a 14-week period as part of a manage-
ment course at Carnegie Mellon University. The edges correspond to emails, and the true cluster
labels correspond to teams. In the UMBC [13], AG [14], and MSP [13] datasets, the nodes are
blogs, and an edge between two nodes represents hyperlinks. Blog sites are labeled either liberal
or conservative. The MSP dataset also contains news cites, which are unlabeled. In the Cora and
CiteSeer datasets, nodes are scientific papers, and links are citations. Node labels scientific subfield.
The nodes in the Senate dataset are US Senators, and edges are agreement on congressional votes.
The labels correspond to political party. Unlike other datasets, this is a complete graph.

The second type of datasets were used for author disambiguation [15]. Each of the dataset corre-
sponds to a first name initial and a common last name. The datasets were constructed by extracting
co-authorship information for papers authored by people with these ambiguous first initial-last name
pairs. In each dataset, there are two types of nodes: (a) one node for each distinct name string, and
(b)one node for each occurrence of a name in the list of authors of a paper. Edges link a name occur-
rence with the corresponding name string, and also link the name occurrence nodes for co-authors
of a paper. The label of name occurrence nodes correspond to the id of the person associated with
this name occurrence, and name string nodes are unlabeled.

The third type of datasets are synthetic. We generated datasets similarly to the planted partition
model [16], as follows. (1) The size of the clusters are drawn from a Gaussian distribution with a
mean at n=k. (2) Within-cluster edges are generated according to the Erdos-Renyi random graph
model in one variant (ER) and the Barabasi-Albert scale-free network model (BA), respectively in
the second. We also link all the nodes in the ER in a chain to avoid trivial, uninteresting clusters.
(3) Inter-cluster edges are drawn at random according to a noise parameter, which defines the ratio
of the probability of a within-cluster edges and to the probability of an inter-cluster edges. For each
of E-R and B-A cluster models, variant models, we first set the noise parameter to 0.05 and vary the
number of clusters; and then we fix the cluster size at 3 and vary the noise parameter. With clusters
sizes of of 2,3,5,8 and 13 and noise values of 1%, 5%, 10%, 20%, and 30%, we obtain a total of 20
synthetic datasets.

5 Results and analysis

Clustering using the sparse model presented can be performed using two methods. In the first
method, the number of clusters K is set to the number of known clusters in the dataset. After
inference, each node e is assigned to a cluster as determined by argmaxz β

e
z . The clusters are then

aligned with known class labels such that the alignment provides the best accuracy in predicting the
cluster label (the optimal alignment can be efficiently determined using the Hungarian algorithm). In
the second method, each node is associated with a distribution over clusters by normalizing βe

z and
the 1-NN algorithm is used to assign labels to nodes by using the Jensen-Shannon distance between
cluster distributions as the metric to measure the distance between two nodes.

4



Table 2: Node clustering quality
(a) NMI: Social networks

Dataset PSK PICD PICR PICR4 NCut NJW
Karate 0.98 0.65 0.75 0.76 0.76 0.78
Dolphin 0.61 0.89 0.86 0.89 0.89 0.89
UMBC 0.72 0.69 0.74 0.75 0.75 0.76
AG 0.73 0.67 0.70 0.72 0.02 0.00
MSP 0.51 0.00 0.00 0.00 0.00 0.02
Senate 0.88 0.93 0.93 0.93 0.93 0.93
PolBook 0.54 0.46 0.55 0.59 0.57 0.56
Football 0.83 0.53 0.57 0.72 0.80 0.77
MGEmail 0.62 0.69 0.70 0.83 0.83 0.82
CiteSeer 0.12 0.28 0.24 0.31 0.25 0.32
Cora 0.29 0.38 0.30 0.36 0.04 0.30

Average 0.62 0.56 0.58 0.62 0.53 0.56

(b) NMI: Author disambiguation

Dataset PSK PICD PICR PICR4 NCut NJW
AGupta 0.13 0.35 0.33 0.49 0.21 0.48
AKumar 0.18 0.32 0.31 0.38 0.37 0.41
CChen 0.39 0.54 0.57 0.68 0.30 0.63
DJohnson 0.11 0.27 0.32 0.41 0.28 0.44
JLee 0.26 0.45 0.50 0.69 0.35 0.67
JMartin 0.36 0.53 0.56 0.67 0.30 0.63
JRobinson 0.24 0.39 0.44 0.55 0.25 0.55
JSmith 0.12 0.34 0.30 0.48 0.30 0.52
KTanaka 0.10 0.34 0.36 0.40 0.36 0.34
MBrown 0.21 0.41 0.46 0.56 0.53 0.56
MJones 0.12 0.27 0.31 0.40 0.44 0.38
MMiller 0.07 0.30 0.29 0.40 0.25 0.46
SLee 0.20 0.42 0.48 0.65 0.38 0.65
YChen 0.20 0.47 0.54 0.71 0.35 0.68
Average 0.19 0.39 0.41 0.53 0.33 0.53

(c) Best alignment: Social networks

Dataset PSK PICD PICR PICR4 NCut NJW
Karate 1.00 0.91 0.93 0.95 0.95 0.95
Dolphin 0.90 0.98 0.98 0.98 0.98 0.98
UMBC 0.95 0.93 0.95 0.95 0.95 0.96
AG 0.95 0.91 0.94 0.94 0.52 0.51
MSP 0.88 0.63 0.63 0.63 0.63 0.64
Senate 0.98 0.99 0.99 0.99 0.99 0.99
PolBook 0.78 0.80 0.81 0.83 0.82 0.80
Football 0.76 0.47 0.51 0.66 0.72 0.67
MGEmail 0.28 0.39 0.40 0.64 0.59 0.56
CiteSeer 0.33 0.51 0.48 0.55 0.48 0.52
Cora 0.47 0.46 0.40 0.45 0.29 0.42

Average 0.75 0.73 0.73 0.78 0.72 0.73

(d) Best alignment: Author disambiguation

Dataset PSK PICD PICR PICR4 NCut NJW
AGupta 0.13 0.26 0.24 0.37 0.26 0.34
AKumar 0.20 0.29 0.31 0.37 0.35 0.40
CChen 0.30 0.43 0.44 0.53 0.24 0.50
DJohnson 0.15 0.24 0.33 0.46 0.47 0.35
JLee 0.11 0.20 0.23 0.41 0.17 0.39
JMartin 0.28 0.42 0.43 0.53 0.25 0.49
JRobinson 0.26 0.37 0.42 0.49 0.26 0.48
JSmith 0.11 0.22 0.21 0.41 0.31 0.42
KTanaka 0.19 0.36 0.41 0.45 0.45 0.43
MBrown 0.21 0.35 0.41 0.52 0.47 0.50
MJones 0.19 0.29 0.34 0.38 0.38 0.35
MMiller 0.14 0.30 0.41 0.52 0.52 0.53
SLee 0.08 0.19 0.23 0.41 0.23 0.39
YChen 0.10 0.23 0.28 0.47 0.23 0.46
Average 0.18 0.30 0.34 0.45 0.33 0.43

(e) 1-NN: Social networks

Dataset PSK PICD PICR PICR4 NCut NJW
Karate 1.00 1.00 0.99 0.99 1.00 0.97
Dolphin 0.89 0.95 0.95 0.95 0.95 0.98
UMBC 0.92 0.93 0.93 0.93 0.92 0.94
AG 0.92 0.94 0.93 0.93 0.88 0.89
MSP 0.84 0.76 0.73 0.86 0.64 0.59
Senate 0.97 1.00 1.00 1.00 1.00 1.00
PolBook 0.79 0.68 0.76 0.80 0.84 0.78
Football 0.89 0.43 0.45 0.85 0.94 0.95
MGEmail 0.22 0.27 0.26 0.72 0.80 0.81
CiteSeer 0.34 0.55 0.54 0.71 0.69 0.66
Cora 0.45 0.56 0.51 0.80 0.47 0.75

Average 0.75 0.73 0.73 0.87 0.83 0.85

(f) 1-NN: Author disambiguation

Dataset PSK PICD PICR PICR4 NCut NJW
AGupta 0.68 0.74 0.72 0.95 0.79 0.91
AKumar 0.82 0.69 0.74 0.85 0.79 0.81
CChen 0.77 0.73 0.74 0.89 0.75 0.85
DJohnson 0.81 0.81 0.83 0.95 0.85 0.92
JLee 0.55 0.61 0.68 0.92 0.79 0.91
JMartin 0.77 0.73 0.73 0.88 0.75 0.85
JRobinson 0.86 0.75 0.80 0.92 0.83 0.85
JSmith 0.65 0.75 0.67 0.93 0.85 0.91
KTanaka 0.81 0.84 0.86 0.95 0.90 0.90
MBrown 0.83 0.78 0.82 0.93 0.86 0.89
MJones 0.79 0.69 0.71 0.91 0.90 0.89
MMiller 0.81 0.83 0.81 0.99 0.97 0.98
SLee 0.59 0.69 0.77 0.92 0.85 0.92
YChen 0.57 0.73 0.79 0.95 0.84 0.94
Average 0.74 0.74 0.76 0.92 0.84 0.90

The quality of clustering can also be evaluated by measuring the normalized mutual informa-
tion(NMI) between the most likely clusters for each node and the known cluster labels. If Ẑ is
the random variable denoting the cluster assignments and Z, the random variable denoting the true
class labels, then NMI is defined as I(Ẑ;Z)

(H(Ẑ)+H(Z))/2
where I(Ẑ;Z) is the mutual information be-
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Figure 3: Varying number of clusters in synthetic datasets

tween Ẑ and Z and H denotes entropy. NMI values range from 0 to 1 with higher values indicating
better clustering.

A similar approach is used with the spectral techniques after replacing Jensen-Shannon divergence
with Euclidean distance. In all our experiments, we set the number of partitions or clusters to be the
number of known clusters in the dataset.

Table 2 shows the clustering performance by the different algorithms presented on the social net-
work and author disambiguation datasets. The performance is measured using 1-NN accuracy, best
alignment accuracy and using normalized mutual information as described above. Bold entries in
each row highlight the score of the best algorithm for the given metric and dataset. For all the data
sets except the Senate dataset, we ignore edge weights during probabilistic modeling. Since the
senate vote dataset has an edge between every pair of nodes, we eliminate those edges with weights
below a threshold and use the remaining edges in an unweighted fashion.
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Figure 4: Varying noise in synthetic datasets

Table 2 shows that the spectral methods perform better consistently for the author disambiguation
tasks. These datasets on average have a larger number of nodes, edges and classes than the social net-
work datasets. The probabilistic model considered has parameters that scale quadratically with the
number of clusters which tends to lead to over-fitting problems and slower convergence with approx-
imate inference techniques. For the social network datasets however, especially with datasets with
fewer classes, the probabilistic techniques are competitive and often work better than the spectral
techniques, especially when the network intrinsically has many edges between nodes from different
clusters. This difference is studied further in the experiments with synthetic datasets. Within the
spectral techniques, the most competitive algorithms are PIC with 4 random initial vectors and the
NJW technique.

A noteworthy result to point out is PSK’s strong performance compared to spectral methods on the
MSP dataset—all spectral methods failed completely (∼0 NMI) to reproduce clusters resembling
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class labels on this dataset. This network dataset is peculiar in that it is strongly bipartite—it consists
of blog sites that points to news articles but rarely to another blog. This results in an off-diagonal
block structure in the graph matrix, which may not be what spectral methods expect (spectral clus-
tering can be explain via matrix perturbation of block-diagonal matrices). While a bipartite graph
can be “folded” into a unipartite graph [17] if such underlying structures are known a priori, this
result suggests that since PSK make less assumptions about the graph structure, it may be more
robust to various types of graph data compared to spectral methods.

Figures 3 and 4 show the performance of clustering using the same three metrics on the synthetic
datasets. The first six subplots study the effect of varying the noise parameter in the datasets while
the last six plots study the effect of cluster size. As noted, it can seen that PIC methods drop accuracy
at a faster rate than the probabilistic method when the noise parameter is increased. This behavior
is less pronounced with PICR4 than with PICR and PICD. A similar behavior is observed when the
number of clusters is increased. PICR4 exhibits a small drop but with PICR and PICD, the accuracies
and NMI drop significantly. With all the synthetic datasets, the sparse network model exhibits better
performance than the spectral techniques due to the low number of classes in the datasets.

We can therefore see that in cases where there is a higher incidence of inter-cluster edges(noise),
probabilistic techniques with the right priors are more suitable than spectral techniques. However
as the number of nodes and edges increase, the increase in the number of parameters to fit leads to
over-fitting making the spectral techniques more attractive.

6 Conclusion
We presented an empirical study of node clustering algorithms from the spectral and probabilistic
model families. Our experiments show that the neither class completely dominates the other and that
spectral techniques, the best of which was PICR4, works better for larger graphs and that the sparse
network model works well with smaller number of clusters and is not sensitive to inter cluster noise.
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