
A Comparison of String Metrics for Matching Names and Records

William W. Cohen Pradeep Ravikumar Stephen E. Fienberg
Center for Automated Center for Automated Department of Statistics,

Learning and Discovery, Learning and Discovery, Center for Computer & Communications Security,

School of Computer Science, School of Computer Science, & Center for Automated Learning & Discovery

Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University

wcohen@wcohen.com pradeepr@cs.cmu.edu fienberg@stat.cmu.edu

Abstract

We describe an open-source Java toolkit of methods
for matching names and records. We summarize re-
sults obtained from using various string distance met-
rics on the task of matching entity names. These met-
rics include distance functions proposed by several dif-
ferent communities, such as edit-distance metrics, fast
heuristic string comparators, token-based distance met-
rics, and hybrid methods. We then describe an exten-
sion to the toolkit which allows records to be compared.
We discuss some issues involved in performing a simi-
lar comparision for record-matching techniques, and fi-
nally present results for some baseline record-matching
algorithms that aggregate string comparisons between
fields.

Introduction
The task of matching entity names has been explored by a
number of communities, including statistics, databases, and
artificial intelligence. Each community has formulated the
problem differently, and different techniques have been pro-
posed.

In statistics, a long line of research has been conducted
in probabilistic record linkage, largely based on the sem-
inal paper by Fellegi and Sunter (1969). This paper for-
mulates entity matching as a classification problem, where
the basic goal is to classify entity pairs as matching or non-
matching. Fellegi and Sunter propose using largely unsuper-
vised methods for this task, based on a feature-based repre-
sentation of pairs which is manually designed and to some
extent problem-specific. These proposals have been, by and
large, adopted by subsequent researchers, often with elabo-
rations of the underlying statistical model (Jaro 1989; 1995;
Winkler 1999; Larsen 1999; Belin & Rubin 1997). These
methods have been used to match individuals and/or fami-
lies between samples and censuses, e.g., in evaluation of the
coverage of the U.S. decennial census; or between admin-
istrative records and survey data bases, e.g., in the creation
of an anonymized research data base combining tax infor-
mation from the Internal Revenue Service and data from the
Current Population Survey.

Copyright c© 2003, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

In the database community, some work on record match-
ing has been based on knowledge-intensive approaches
(Hernandez & Stolfo 1995; Galhardaset al. 2000; Raman
& Hellerstein 2001). The use of string-edit distances as
a general-purpose record matching scheme was proposed
by Monge and Elkan (1997; 1996), and in previous work,
we proposed use of the TFIDF distance metric for the
same purpose (Cohen 2000). In the AI community, su-
pervised learning has been used for learning the parame-
ters of string-edit distance metrics (Ristad & Yianilos 1998;
Bilenko & Mooney 2002) and combining the results of
different distance functions (Tejada, Knoblock, & Minton
2001; Cohen & Richman 2002; Bilenko & Mooney 2002).
More recently, probabilistic object identification methods
have been adapted to matching tasks (Pasulaet al. 2002). In
these communities there has been more emphasis on devel-
oping autonomous matching techniques which require little
or or no configuration for a new task, and less emphasis on
developing “toolkits” of methods that can be applied to new
tasks by experts.

Recently, we have begun implementing an open-source,
Java toolkit of name-matching methods (Cohen & Raviku-
mar 2003) that includes a variety of different techniques. In
previous work (Cohen, Ravikumar, & Fienberg 2003), we
used this toolkit to conduct a comparison of several string
distances on the tasks of matching and clustering lists of en-
tity names. In addition to evaluating existing string-distance
methods, we also proposed some new ones, including a hy-
brid of cosine similarity and the Jaro-Winkler method (Win-
kler 1999), which performed well on many of our bench-
mark problems.

These previous experiments, while similar to previous ex-
periments in the database and AI communities, represent a
departure from the usual assumptions made in statistics. In
statistics, databases tend to have more structure and speci-
fication, by design. Thus the statistical literature on proba-
bilistic record linkage represents pairs of entities not by pairs
of strings, but by vectors of “match features” such as names
and categories for variables in survey databases. In this pa-
per we will review the previous experiments with matching
individual strings, and then discuss some recent, preliminary
experiments in extending our toolkit to matching structured
objects (i.e., records).

The SecondString Toolkit
Overall Architecture
SecondString is an open-source Java toolkit of name-
matching methods. One fundamental type of object in Sec-
ondString is adistance function. A distance functionmaps a
pair of stringss andt to a real numberr, where a smaller
value of r indicates greater similarity betweens and t.
Since SecondString is designed to support learnable distance
functions, a distance function is always produced by adis-
tance function learner. A distance function learnercan be
“trained” in any of two ways:

• It can observe a set of strings from the distribution of
strings to be matched. (We call this stepstring obser-
vation).

• It can be presented with apool of unlabeled pairs of
strings, some of which must be matched. The learner may
then query an associateddistance function teacherfor la-
bels for pairs in the pool. In controlled experiments the
teacher answers queries using pre-labeled pairs; in real-
world settings, it would ask a user for labels. The teacher
may also refuse to answer a query. (We call this stepac-
tive learning).

At any point in the learning process, the learner can be asked
to produce adistance function—which will presumably be
trained on all evidence available so far. Thus the architec-
ture supports a range of types of learning, including unsu-
pervised, semi-supervised, supervised, batch and incremen-
tal.

Although designed to support learning, SecondString also
supports non-adaptive matching methods by including a de-
generate distance function “learner” that simply produces
a particular constant distance function. This allows non-
adaptive methods (e.g., Levenstein edit distance) to be easily
evaluated side-by-side with learned methods.

Implemented Distance Functions
SecondString supports a large number of non-adaptive dis-
tance functions, some of which are listed below. For more
details, the reader is referred to our previous paper (Cohen,
Ravikumar, & Fienberg 2003).

SecondString supports a range of metrics based onedit
distance, including Levenstein distance, which assigns a
unit cost to all edit operations); and theMonge-Elkandis-
tance function (Monge & Elkan 1996), a well-tuned affine
variant of the Smith-Waterman distance function (Durban
et al. 1998). It also supports theJaro metric (Jaro 1995;
1989), a metric widely used in the record-linkage commu-
nity, with and without a variation due to Winkler (1999).
Briefly, for two stringss andt, let s′ be the characters ins
that are “common with”t, and lett′ be analogous; roughly
speaking, a charactera in s is “in common” with t if the
same charactera appears in about the place int. Let Ts,t
measure the number of transpositions of characters ins′ rel-
ative tot′. The Jaro similarity metric fors andt is

Jaro(s, t) =
1
3
·
(|s′|
|s| +

|t′|
|t| +

|s′| − Ts′,t′
2|s′|

)

and the Winkler variant modifies this by slightly improving
the weight of poorly matching pairss, t that share a long
common prefix (Cohen, Ravikumar, & Fienberg 2003).

SecondString also supports a number of token-based dis-
tance metrics, which are defined by considering two strings
s and t to be multisets of words (or tokens). TheJaccard
similarity between the word setsS andT is simply |S∩T ||S∪T | .
TFIDF or cosine similarityis another measure, widely used
in the information retrieval community. Like Jaccard, the
TFIDF scheme depends on common terms, but terms are
weighted; these weights are larger for wordsw that are
rare in the collection of strings from whichs and t were
drawn. (Acquiring these weights is an example of “string
observation”.) We have also implemented token-based dis-
tance metrics based on Jensen-Shannon distance (Dagan,
Lee, & Pereira 1999) with various smoothing methods, and
a simplified form of Fellegi and Sunter’s method (Fellegi &
Sunter 1969), called SFS below.

SecondString also supports some hybrid distance func-
tions, which combine token-based and string-based match-
ing schemes. In addition to a variant of Monge and Elkan’s
“recursive matching scheme”, we have implemented a “soft”
version of TFIDF, in which similar tokens are considered
as well as tokens inS ∩ T . Let sim ′ be a secondary
similarity function. Let CLOSE (θ,S ,T) be the set of
words u ∈ S such that there is somev ∈ T such
that sim ′(u, v) > θ, and for u ∈ CLOSE (θ, S, T), let
N(u, T) = maxv∈T sim ′(u, v). We define

SoftTFIDF(S, T) =∑

u∈CLOSE(θ,S,T)

wt(u, S) · wt(v, T) ·N(w, T)

wherewt(u, S) is the TFIDF weight of wordu in S. In the
experiments, we used Jaro-Winkler as a secondary distance
sim ′ and usedθ = 0.9.

SecondString also supports tools for systematic experi-
mentation, and tools for “blocking”, or finding plausible
pairs of names to match (Cohen, Ravikumar, & Fienberg
2003).

Experiments with SecondString
The data used to evaluate these methods is shown in Table 1.
Most been described elsewhere in the literature. The Census
dataset is a synthetic, census-like dataset, from which only
textual fields were used (last name, first name, middle initial,
house number, and street).

To evaluate a method on a dataset, we ranked by distance
all candidate pairs from the appropriate blocking algorithm.
We computed the non-interpolated average precision of this
ranking, the maximum F1 score of the ranking, and also in-
terpolated precision at the eleven recall levels 0.0, 0.1, . . . ,
0.9, 1.0. Thenon-interpolated average precisionof a rank-
ing containingN pairs for a task withm correct matches is
1
m

∑N
r=1

c(i)δ(i)
i , wherec(i) is the number of correct pairs

ranked before positioni, andδ(i) = 1 if the pair at ranki is
correct and0 otherwise.Interpolated precisionat recallr is
themaxi

c(i)
i , where the max is taken over all ranksi such

that c(i)m ≥ r.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Monge-Elkan
Levenstein

Smith-Waterman
Jaro

Jaro-Winkler

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

TFIDF
Jensen-Shannon

SFS
Jaccard

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

SoftTFIDF
Level2 Jaro-Winkler

Level2 Jaro
Level2 Levenstein

Level2 Monge-Elkan

Figure 1: Relative performance of edit-distance measures compared to Monge-Elkan (left); token-based measures compared to TFIDF
(middle); and hybrid measures compared to SoftTFIDF.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
ax

 F
1

of
 S

of
tT

F
ID

F

max F1 of other distance metric

vs Monge-Elkan
vs Jaro

vs Jaro-Winkler
vs TFIDF

vs SFS
vs Level2 Jaro-Winkler

y=x

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

SoftTFIDF
Level2 Jaro-Winkler

TFIDF
SFS

Monge-Elkan
Jaro

Jaro-Winkler

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

SoftTFIDF
Learned metric

Figure 2: Relative performance of some “good” distance measures of each type on matching problems, relative to the SoftTFIDF metric,
viewed as a scatter plot of maximum F1 values (left) and as 11-pt interpolated average precision (middle). SoftTFIDF compared to a learned
combination of distance metrics (right).

Name Src #Strings #Tokens
animal 1 5,709 30,006
bird1 1 377 1,977
bird2 1 982 4,905
bird3 1 38 188
bird4 1 719 4,618
business 1 2,139 10,526
game 1 911 5,060
park 1 654 3,425
fodorZagrat 2 863 10,846
ucdFolks 3 90 454
census 4 841 5,765

Table 1: Datasets used in experiments. Column 2 indicates
the source of the data. Original sources are 1. (Cohen 2000)
2. (Tejada, Knoblock, & Minton 2001) 3. (Monge & Elkan
1996) 4. William Winkler (personal communication)

From Figure 1, we see that, on average, Monge-Elkan
performs best of the edit-distance-like methods; that TFIDF
performs best of the token-based methods; and that Soft-
TFIDF performs best of the hybrid measures. Figure 2 pro-
vides some more detail on the performance of SoftTFIDF
compared to the three best performing edit-distance like
methods, the two best token-based methods, and the two
best hybrid methods, using a similar methodology. Gener-

ally speaking, SoftTFIDF is the best overall distance mea-
sure for these datasets. In the scatter plot of Figure 2, each
point is a dataset, positioned so that the max F1 score for
SoftTFIDF is the x-axis position, and the max F1 score for
some other method is the y-axis position; thus points above
the liney = x indicate better performance of SoftTFIDF.

Following previous researchers (Tejada, Knoblock, &
Minton 2001; Cohen & Richman 2002; Bilenko & Mooney
2002) we also used a learning scheme to combine several
of the distance functions above. Specifically, we repre-
sented pairs as feature vectors, using as features the nu-
meric scores of Monge-Elkan, Jaro-Winkler, TFIDF, SFS,
and SoftTFIDF. We then trained a binary SVM classifier (us-
ing SVM Light (Joachims 2002)) using these features, and
used its confidence in the “match” class as a score. The re-
sults are summarized again in Figure 2 (using a three-fold
cross-validation on nine of the matching problems). The
learned combination generally slightly outperforms the in-
dividual metrics, including SoftTFIDF, particularly at ex-
treme recall levels; however, it requires labeled training data,
which the other metrics do not.

Record matching
Extending the architecture
For performance reasons, it is frequently crucial to avoid re-
computing certain properties of a string—for instance, the
tokenized form of the string. For this reason, SecondString

interally manipulates objects calledstring wrappers, rather
than strings. Thestring wrapperfor string s allows addi-
tional information abouts to be cached as needed.

Extending SecondString to handle record-matching is
straightforward. We introduced a new type of string wrap-
per, called amulti-string wrapper. At creation time, this
string wrapper splits a strings into subfieldss1, . . . , sK
according to a specified scheme (for instance, comma-
separated fields). Subsequently any caller can access these
pre-constructed fields of a string. In parallel, we introduced
amulti-string distance function, which applies different dis-
tance functions to the different fields of a string, and then
aggregates them.

Properties of the Dataset

We will now discuss some preliminary experiments in us-
ing SecondString on record (rather than string) matching.
These experiments are preliminary in part because of lack
of datasets with associated fields. Although the problem of
record-linkage is well-motivated statistically, only two of the
datasets used in our previous work have multiple fields—the
Census and Cora datasets.

The Cora data (McCallum, Nigam, & Ungar 2000) was
collected from postcript papers that were automatically con-
verted to ascii text. The conversion procedure is error-prone,
and introduced certain types of errors that are perhaps not
representative of most text—for instance, a space is often
mistakenly inserted after a capital “T”. Tokens were grouped
into fields by another automatic process, which again intro-
duced errors of a particular type.

The Census data is artificially produced. In this case,
care was taken to generate representative data. However, the
Census dataset is generally speaking an outlier, compared to
the other data sets in our test suite, with respect to relative
performance of many of the string matching algorithms.

For example, the simple Levenstein distance metric per-
forms worst, on average, of the distance metrics considered
above. The difference between Levenstein and the stronger
methods is also quite consistent. Compared to SoftTFIDF,
for instance, Levenstein performs worse on 10 of the 11
datasets considered, and as shown by scatter plot of maxi-
mum F1 scores in Figure 3, the difference is often substan-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

M
ax

F
1

of
 L

ev
en

st
ei

n

MaxF1 of SoftTFIDF

Figure 3: Max F1 score of Levenstein compared to the Max F1
score of SoftTFIDF

tial. The one dataset on which Levenstein outperforms Soft-
TFIDF is the Census dataset.

It also appears that in Census, word frequency statistics
do not appear to carry the same importance as they do in
other settings. The weights used in TFIDF, and many other
token-based distance metrics, assume that frequent words
(like “Brown”) are less important than infrequent ones (like
“Zubinsky”). The relative performance of the token-based
distance metrics suggests that, on Census, this assumption
is incorrect1. On Census, TFIDF has a lower average preci-
sion precision than the Jaccard distance. Again, this result
is an outlier; Jaccard only outperforms TFIDF on one other
(smallish) dataset.

For these reasons, we decided to begin by exploring Cen-
sus a little more carefully. We will focus our remarks on
performance as measured by non-interpolated average pre-
cision, but other metrics behave similarly.

None of the token-based methods perform well on Cen-
sus. Unusually, Jaccard performs about as well as any of
the more complex methods. The hybrid methods perform
somewhat better—but are still generally worse than the pure
string-based methods. The best hybrid method for average
precision is SoftTFIDF, and the best hybrid method for max-
imum F1 is Level 2 Jaro-Winkler (an version of Monge and
Elkan’s recursive matching scheme). Results for TFIDF,
Jaccard, Level2 Jaro-Winkler, and SoftTFIDF are shown in
Table 2.

The Jaro method performs well, with an average precision
of 0.731, and a maximum F1 value slightlyhigher than the
best hybrid method. This is surprising since it is does not
seem to be intended for data of this type.2 Motivated by this
(and Jaro’s usefulness in hybrid methods), we considered

1This is possibly because Census includes several households
with a moderate number of individuals—for instance, there is a
family of seven Mosqueras at one address, and a family of five
Hoerrlings at another.

2Jaro seems designed for short strings, such as a last name,
while Census contains contains first name, last name, middle ini-
tial, street number, and street name appended together.

MaxF1 AvgPrec
SFS 0.528 0.357
TFIDF 0.518 0.369
Jaccard 0.567 0.402
L2 Jaro-Winkler 0.746 0.770
SoftTFIDF 0.685 0.782
Jaro-Winkler 0.648 0.703
Jaro 0.687 0.731
NaiveAvgOverlap 0.697 0.731
AvgOverlap 0.701 0.736
Levenstein 0.832 0.901
Jaro 0.728 0.789 trimmed
Scaled Levenstein 0.851 0.930 trimmed
Levenstein 0.865 0.925 trimmed

Table 2: Performance of various matching methods on Cen-
sus

two variations of the Jaro method.
To understand them, we will first review the method itself.

Consider the matrixM below, which compares the strings
s =“WILLIAM” and t =“WILLLAIM”. The boxed entries
are the main diagonal, andM(i, j) = 1 iff the i-th character
of s equals thej-th character oft.

W I L L I A M

W 1 0 0 0 0 0 0

I 0 1 0 0 1 0 0

L 0 0 1 1 0 0 0

L 0 0 1 1 0 0 0

L 0 0 1 1 0 0 0

A 0 0 0 0 0 1 0

I 0 1 0 0 1 0 0
M 0 0 0 0 0 0 1

The Jaro metric is based on the degree to which stringss
andt have characters “in common.” In terms of the matrix
above, thei-th character ofs is defined to bein common with
t if Mi,j = 1 for some entry(i, j) that is “sufficiently close”
to the main diagonal ofM . In the Jaro metric, “sufficiently
close” means that|i − j| < min(|s|, |t|)/2 (shown in the
matrix in bold.)

We looked at two variants of this rule. Let
Mi1,j1 , . . . ,Min,jn be the matrix entries that contain a “1”,
and letdk = ik−jk. Notice that ifs andt are highly similar,
then most of theMi,j entries will be near the main diagonal,
so most ofdk ’s will be near zero; conversely, if the strings
are dissimilar, thedk ’s will be widely scattered. The first
Jaro variant we explored fits a mixture of two Gaussians to
thedk ’s, where one “wide” Gaussian is constrained to have a
high variance and zero mean, and the second’s variance and
mean are unconstrained, and are set using E/M. The non-
zero matrix entriesMik,jk that have a high posterior proba-
bility of being generated by the “wide” Gaussian are consid-
ered to represent accidental matches, and the other matrix
entries are considered to be related to the “common struc-
ture” of s andt. We thus measure overlap betweens andt
as

overlap(s, t) =
|s|∑

i=1

(1−
∏

j:Mi,j=1

pWIDE (i− j))

MaxF1 AvgPrec
SoftTFIDF SVM 0.792 0.830
SoftTFIDF AVG 0.803 0.810
Levenstein SVM 0.890 0.928
Levenstein AVG 0.870 0.920
Jaro SVM 0.917 0.932
Jaro AVG 0.897 0.922
Jaro-Winkler SVM 0.930 0.933
Jaro-Winkler AVG 0.915 0.900
Levenstein-Winkler SVM 0.936 0.951
Levenstein-Winkler AVG 0.912 0.916

Table 3: Performance of various structure-exploiting meth-
ods on Census

wherepWIDE (d) is the posterior probability of generation
by the “wide” Gaussian. Similarity is then the average of
overlap(s, t) andoverlap(t , s).

Performance of this method improves slightly over Jaro
(shown in Table 2 under the nameAvgOverlap). However,
further experiments showed that replacingpWIDE in the for-
mula above with zero (shown asNaiveAvgOverlapin the Ta-
ble) works nearly as well.

The best off-the-shelf method on Census is the Levenstein
method. We conjectured that was because in our copy of
Census, the fields (like last name, first name, street name,
etc) are padded with blanks to be a uniform length. Intu-
itively, this simple “field alignment” should make compar-
isons easier with methods like Levenstein. However, this
conjecture proved false: “trimming” the fields (by replac-
ing multiple blanks with a single blank throughout)improves
performance for Levenstein, as well as for Jaro.

Record-matching results
As a baseline for record matching, we consider first a very
simple method which exploits record structure. Letf(s, t)
be a distance function on strings, and lets = (s1, . . . , sK)
and t = (t1, . . . , tK) be a decomposition ofs and t into
fields. One extension off to handle this field structure is
to use the average distance between corresponding fields:
1
K

∑
i f(si, ti).

Alternate rows of Table 3 (rows marked “AVG”) show
performance of this baseline record-matching method.

As the second baseline extension to handle field struc-
ture, we adaptively combine the distances between the cor-
responding fields using a binary classifier. Specifically, we
represented record-pairs as feature vectors, using as features
the distances between corresponding fields. We then trained
a binary SVM classifier (using SVM Light (Joachims 2002))
using these features, and used its confidence in the “match”
class as a score. Rows marked “SVM” in Table 3 show per-
formance of this record-matching method.

Using the field-structure in the above manner produces
little improvement for Levenstein, but (not unexpectedly)
substantially improves all the Jaro variants. With fields, the
Jaro-Winkler also performs better than Jaro (without fields,
Jaro-Winkler performs worse).

The Winkler variant is not immediately applicable to Lev-
enstein method, since it requires a distance metric which is
scaled between 0 and 1, whereas Levenstein counts the num-
ber of edit operations required to transforms to t. However,
following the same technique used by Monge and Elkan
(1996), the Levenstein distance also can be appropriately
scaled. Applying the Winkler variant to scaled Levenstein
gives the best average precision and maximum F1 score
among the baseline methods.3

Concluding remarks
In previous work (Cohen, Ravikumar, & Fienberg 2003), we
described an open-source Java toolkit of methods for match-
ing names and records, and presented results obtained from

3Without fields, scaled Levenstein obtains a lower average pre-
cision but a higher max F1 than unscaled Levenstein (see Table 2).

using various string distance metrics on the task of match-
ing entity names. These metrics include distance functions
proposed by several different communities, including edit-
distance metrics, fast heuristic string comparators, token-
based distance metrics, and hybrid methods.

While string distances are often useful, they are not suit-
able for comparing entities with non-trivial structures. In
many contexts, databases have non-trivial structure, and
in many communities—notably, the statistical literature on
probabilistic record linkage—pairs of entities are repre-
sented not by pairs of strings, but by vectors of “match fea-
tures” such as names and categories for variables in survey
databases. Motivated by this, we describe an extension to
our toolkit which allows records to be compared.

To our knowledge, few publically available datasets
which are naturally formed into records exist, which makes
a comprehensive multi-technique, multi-technique compari-
son difficult. We thus focused on a single dataset, and pre-
sented a series of experiments with various baseline record-
matching algorithms based on string comparisons between
fields.

The best method described here is a scaled version of
the Levenstein edit-distance metric, modified by a method
proposed by Winkler for the Jaro distance metric, with the
scores for corresponding fields being adaptively combined
by a (SVM) binary classifier. This method can be imple-
mented in a few lines of code using our toolkit, and it sub-
stantially improves over SoftTFIDF, the method which ap-
pears to work best on average on simple string comparisons
in our previous paper. For instance, non-interpolated aver-
age precision is improved from 0.782 (for SoftTFIDF) to
0.951 (for the new method).

Further work will focus on collecting additional struc-
tured datasets and exploring other approaches to record
matching, in order to improve this baseline performance.

Acknowledgements
The preparation of this paper was supported in part by Na-
tional Science Foundation Grant No. EIA-0131884 to the
National Institute of Statistical Sciences and by a contract
from the Army Research Office to the Center for Computer
and Communications Security with Carnegie Mellon Uni-
versity.

References
Belin, T. R., and Rubin, D. B. 1997. A method for calibrating
false-match rates in record linkage. InRecord Linkage – 1997:
Proceedings of an International Workshop and Exposition, 81–
94. U.S. Office of Management and Budget (Washington).

Bilenko, M., and Mooney, R. 2002. Learning to combine
trained distance metrics for duplicate detection in databases.
Technical Report Technical Report AI 02-296, Artificial Intel-
ligence Lab, University of Texas at Austin. Available from
http://www.cs.utexas.edu/users/ml/papers/marlin-tr-02.pdf.

Cohen, W. W., and Ravikumar, P. 2003. Secondstring: An open-
source java toolkit of approximate string-matching techniques.
Project web page, http://secondstring.sourceforge.net.

Cohen, W. W., and Richman, J. 2002. Learning to match and
cluster large high-dimensional data sets for data integration. In

Proceedings of The Eighth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (KDD-2002).

Cohen, W. W.; Ravikumar, P.; and Fienberg, S. E. 2003. A com-
parison of string distance metrics for name-matching tasks. In
Proceedings of the IJCAI-2003 Workshop on Information Inte-
gration on the Web (IIWeb-03). To appear.

Cohen, W. W. 2000. Data integration using similarity joins and a
word-based information representation language.ACM Transac-
tions on Information Systems18(3):288–321.

Dagan, I.; Lee, L.; and Pereira, F. 1999. Similarity-based models
of word cooccurrence probabilities.Machine Learning34(1-3).

Durban, R.; Eddy, S. R.; Krogh, A.; and Mitchison, G. 1998.
Biological sequence analysis - Probabilistic models of proteins
and nucleic acids. Cambridge: Cambridge University Press.

Fellegi, I. P., and Sunter, A. B. 1969. A theory for record linkage.
Journal of the American Statistical Society64:1183–1210.

Galhardas, H.; Florescu, D.; Shasha, D.; and Simon, E. 2000. An
extensible framework for data cleaning. InICDE, 312.

Hernandez, M., and Stolfo, S. 1995. The merge/purge problem
for large databases. InProceedings of the 1995 ACM SIGMOD.

Jaro, M. A. 1989. Advances in record-linkage methodology as
applied to matching the 1985 census of Tampa, Florida.Journal
of the American Statistical Association84:414–420.

Jaro, M. A. 1995. Probabilistic linkage of large public health data
files (disc: P687-689).Statistics in Medicine14:491–498.

Joachims, T. 2002.Learning to Classify Text Using Support Vec-
tor Machines. Kluwer.

Larsen, M. 1999. Multiple imputation analysis of records linked
using mixture models. InStatistical Society of Canada Proceed-
ings of the Survey Methods Section, 65–71. Statistical Society of
Canada (McGill University, Montreal).

McCallum, A.; Nigam, K.; and Ungar, L. H. 2000. Efficient clus-
tering of high-dimensional data sets with application to reference
matching. InKnowledge Discovery and Data Mining, 169–178.

Monge, A., and Elkan, C. 1996. The field-matching problem:
algorithm and applications. InProceedings of the Second Inter-
national Conference on Knowledge Discovery and Data Mining.

Monge, A., and Elkan, C. 1997. An efficient domain-independent
algorithm for detecting approximately duplicate database records.
In The proceedings of the SIGMOD 1997 workshop on data min-
ing and knowledge discovery.

Pasula, H.; Marthi, B.; Milch, B.; Russell, S.; and Shpitser, I.
2002. Identity uncertainty and citation matching. InAdvances
in Neural Processing Systems 15. Vancouver, British Columbia:
MIT Press.

Raman, V., and Hellerstein, J. 2001. Potter’s wheel: An interac-
tive data cleaning system. InThe VLDB Journal, 381–390.

Ristad, E. S., and Yianilos, P. N. 1998. Learning string edit
distance. IEEE Transactions on Pattern Analysis and Machine
Intelligence20(5):522–532.

Tejada, S.; Knoblock, C. A.; and Minton, S. 2001. Learning ob-
ject identification rules for information integration.Information
Systems26(8):607–633.

Winkler, W. E. 1999. The state of record linkage and cur-
rent research problems. Statistics of Income Division, In-
ternal Revenue Service Publication R99/04. Available from
http://www.census.gov/srd/www/byname.html.

