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ABSTRACT

We consider the problem of improving named entity recog-
nition (NER) systems by using external dictionaries—more
specifically, the problem of extending state-of-the-art NER
systems by incorporating information about the similarity
of extracted entities to entities in an external dictionary.
This is difficult because most high-performance named en-
tity recognition systems operate by sequentially classifying
words as to whether or not they participate in an entity
name; however, the most useful similarity measures score
entire candidate names. To correct this mismatch we for-
malize a semi-Markov extraction process, which is based on
sequentially classifying segments of several adjacent words,
rather than single words. In addition to allowing a natural
way of coupling high-performance NER methods and high-
performance similarity functions, this formalism also allows
the direct use of other useful entity-level features, and pro-
vides a more natural formulation of the NER problem than
sequential word classification. Experiments in multiple do-
mains show that the new model can substantially improve
extraction performance over previous methods for using ex-
ternal dictionaries in NER.

Categories and Subject Descriptors: H.3.1[Information
Storage and Retrieval]: Content Analysis and Indexing—
Dictionaries; 1.2.6[Artificial Intelligence]: Learning

General Terms: Algorithms, Experimentation.

Keywords: Learning, information extraction, named en-
tity recognition, data integration, sequential learning.

1. INTRODUCTION

Named entity recognition (NER) is finding the names of
entities in unstructured text. Well-studied cases of NER are
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identifying personal names and company names in newswire
text (e.g., [5]), identifying gene and protein names in biomed-
ical publications (e.g., [7, 20]), and identifying titles and
authors in on-line publications (e.g., [25, 29]). Named en-
tity recognition is an important step in deriving structured
database records from text.

In many cases, the ultimate goal of this information ex-
traction process is to answer queries which combine infor-
mation from structured and unstructured sources. For ex-
ample, a biologist might want to look for publications about
proteins from a particular superfamily, where the superfam-
ily is defined in a structured database of biomedical informa-
tion; a business analyst might want to find articles concern-
ing companies in a particular industry sector; or an intelli-
gence analyst might wish to look for documents that “link”
persons previously known to have engaged in suspicious ac-
tivity. In each of these applications, NER is successful only
to the extent that it finds entity names that can be matched
to something in a pre-existing database.

When NER methods are used as the first step of such a
query process, it is natural to want to optimize them so that
they perform best on the most important entities—i.e., en-
tities that appear in the external databases that will be used
in these structured queries. Moreover, it is reasonable to ex-
pect that a large collection of names of known entities (such
as the collection associated with some type in a structured
database) would improve NER performance.

This paper investigates this problem—i.e., the task of
improving NER systems using external dictionaries. This
problem is surprisingly subtle. Naively, one might ex-
pect that given a large dictionary, simply looking for ex-
act matches to some dictionary entry would be a reasonable
NER method. In fact, this is seldom the case. The sur-
face form of a name in free text can vary substantially from
its dictionary version, leading to issues analogous to those
that arise in linking or “de-duping” heterogeneous database
records [10, 32]. This problem is compounded in extract-
ing from text which is informal or otherwise prone to noise
and errors, such as the email corpus and the address corpus
we consider in the experiments in this paper. Thus taking
a good external dictionary and transforming it to a useful
NER system is often difficult.

Conversely, taking a state-of-the-art NER system and in-
corporating information about possible linkage to an exter-
nal dictionary is also non-trivial. The primary issue here



is that most high-performance NER systems operate by se-
quentially classifying words as to whether or not they par-
ticipate in an entity name, while record-linkage systems op-
erate by scoring entire candidate names by similarity to an
existing dictionary entry. This fundamental mismatch in
representation means that incorporating dictionary informa-
tion is awkward, at best.

In this paper we will discuss a new formalism for NER that
corrects this mismatch. We describe a semi-Markov extrac-
tion process which relaxes the usual Markov assumptions
made in NER systems. This process is based on sequen-
tially classifying segments of adjacent words, rather than
single words. In addition to allowing a natural way of link-
ing NER and high-performance record linkage methods, this
formalism also allows the direct use of other useful entity-
level features, such as the length of an entity. It is also
arguably a more natural formulation of the NER problem
than sequential word classification, in that it eliminates cer-
tain decisions about problem encoding.

Below we will present the new model and describe a learn-
ing algorithm for it. We then present experimental results
for the new algorithm, discuss related work, and conclude.

2. ALGORITHMS FOR NAME-FINDING
2.1 Name-Finding as Word Tagging

Named entity recognition (NER) is the process of anno-
tating sections of a document that correspond to “entities”
such as people, places, times and amounts. As an example,
the output of NER on the email document

Fred, please stop by my office this afternoon.
might be

(Fred)person please stop by (my office)roc (this
afternoon)Time

A common approach to NER is to convert name-finding to
a tagging task. A document is encoded as a sequence x of
tokens z1,...,xnN, and a tagger associates with x a parallel
sequence of tags y = v1,...,yn~n, where each y; is in some
tag set Y. If these tags are appropriately defined, the name
segments can be derived from them. For instance, one might
associate one tag with each entity type above, and also add
a special “other” tag for words not part of any entity name,
so that the tagged version of the sentence would be

Fred please stop by my office  this afternoon
Person  Oth Oth  Oth Loc Loc Time Time

A common way of constructing such a tagging system is to
learn a mapping from x to y from data [3, 5, 27]. Typically
this data is in the form of annotated documents, which can
be readily converted to (x,y) pairs.

Most methods for learning taggers exploit, in some way,
the sequential nature of the classification process. In gen-
eral, each tag depends on the tags around it: for instance,
if person names are usually two tokens long, then if y; is
tagged “Person” the probability that y;1+1 is a “Person” is
increased, and the probability that yiy2 is a “Person” is de-
creased. Hence the most common learning-based approaches
to NER learn a sequential model of the data, generally some
variant of a hidden Markov model (HMM) [15].

It will be convenient to describe our framework in the con-
text of one of these HMM variants, in which the conditional
distribution of y given x is defined as

x|

P(y[x) = [] P(wili, x, yi-1)

i=1

(Here we assume a distinguished start tag yo which begins
every observation.) This is the formalism used in maximum
entropy taggers [30], and it has been variously called a maxi-
mum entropy Markov model (MEMM) [28] and a conditional
Markov model (CMM) [21]. Inference in this model can be
performed with a variant of the Viterbi algorithm used for
HMMs. Given training data in the form of pairs (x,y),
the “local” conditional distribution P(y;li,x,y:—1) can be
learned from derived triples (y:,,%,yi—1), for example by
using maximum entropy methods.

2.2 Semi-Markovian NER

We will relax this model by assuming that tags y; do not
change at every position ¢; instead, tags change only at cer-
tain selected positions, and after each tag change, some num-
ber of tokens are observed. Following work in semi-Markov
decision processes [35, 18] we will call this a conditional
semi-Markov model (CSMM).

For notation, let S = (S1,...,Sum) be a “segmentation”
of x. Each segment S; consists of a start position t;, which
is an index between 1 and M, an end position u;, and a label
l; € Y. A segmentation S is valid if Vj, t; = uj—1 +1. We
will consider only valid segmentations.

Conceptually, a segmentation means that the tag ¢; is
given to all x;’s between ¢ = t; and ¢ = wuj, inclusive: al-
ternatively, it means that the tags y:, ...yu; corresponding
to @¢; ... xy; are all equal to £;. Formally, let J(S, 1) be the
index j such that ¢t; <4 < uj, and define the tag sequence y
derived from S to be £;(s 1y, -, Ly(s,|x|)-

For instance, a segmentation for the sample sentence
above might be S = {(1, 1, Person), (2,4, Oth), (5,6, Loc),
(7,8, Time)}, which could be written as

(Frod)Person (plCaSC stop bY)Oth (my Oﬂ:iCO)Loc (this
afternoon)Time

A CSMM is defined by a distribution over pairs (x,S) of
the form

P(Slx) = HP(Sjlthfj—l) (1)

J

More generally, we use the term semi-Markov model (SMM).
for any model in which each S; depends only on the label
£;—1 associated with S;_1, and is independent of S/ for all

i#5 0 #i-L
2.3 Discussion

Two issues need to be addressed: inference for CSMMs,
and learning algorithms for CSMMs. For inference, we will
present below a version of Viterbi for CSMMs that finds
the most probable S given x in time O(NL|Y|), where N
is the length of x and L is an upper bound on segment
length—that is, Vj, L > uj; —t;. Since L < N, this infer-
ence procedure is always polynomial. (In our experiments,
however, it is sufficient to limit L to rather small values.)

For learning, inspection of Equation 1 shows that given
training in the form of (x, S) pairs, learning the “local” dis-
tribution P(S;|tj,%,#;—1) is not much more complex than



for a CMM.! However, conditionally-structured models like
the CMM are not the ideal model for NER systems: better
performance can often be obtained by algorithms that learn
a single global model for P(y|x)[11, 24]. Below we will also
present an extension of one such “global” learning algorithm
to a semi-Markov distribution.

We emphasize that an SMM with segment length bounded
by L is quite different from an order-L CMM, as in an order-
L CMM, the next label depends on the previous L labels,
but not the corresponding tokens. A SMM is also different
from a CMM which uses a window of the previous L tokens
to predict y;, since the SMM makes a single labeling decision
for a segment, rather than making series of interacting deci-
sions incrementally. In Section 3.5.3 we will experimentally
compare SMM'’s and high-order CMMs.

2.4 Discriminative Training for SMMs

2.4.1 Perceptron-based Training

The learning algorithm we use for training SMMs is de-
rived from Collins’ perceptron-based algorithm for discrim-
inatively training HMMs [11], which can be summarized as
follows. Assume a local feature function £ which maps a pair
(x,y) and an index i to a vector of features f(7,x,y). Define

x|
F(x,y) =Y f(i,x,y)
and let W be a weight vector over the components of F.
During inference we need to compute V (W, x), the Viterbi
decoding of x with W, i.e.,

V(W,x) = argmazr,F(x,y) - W

For completeness, we will outline how V (W, x) is computed.
To make Viterbi search tractable, we must restrict f(i,x,y)
to make limited use of y. To simplify discussion here, we
assume that f is strictly Markovian, i.e., that for each com-
ponent f* of f,

fk(i7x7y) = fk(gk(i7x)7yi7yi*1)

For fixed y and 3, we denote the vector of f*(¢*(4,x),y,y’)
for all k as f'(,x,9,y’).

Viterbi inference can now be defined by this recurrence,
where yo is the designated start state:

Vaw (1, y) = (2)
0 ifi=0and y=yo
—00 ifi=0and y # yo
max, Vew(i—1,9")
+W-f'(i,x,y,y’) ifi>0

and then V(W, x) = maxy, Va,w (|x/,9).

The goal of learning is to find a W that leads to the
globally best overall performance. This “best” W is found
by repeatedly updating W to improve the quality of the
Viterbi decoding on a particular example (x¢,yt). Specifi-
cally, Collin’s algorithm starts with Wy = 0. After the ¢-th
example (x¢,y¢), the Viterbi sequence y: = V(Wy, x¢) is
computed. If y: =y, Wit1 is set to Wi, and otherwise W,

!The additional complexity is that we must learn to predict
not only a tag type ¢;, but also the end position u; of each
segment (or equivalently, its length).

Perceptron-Based SMM Learning

Let £(j,%,S) be a feature-vector representation of segment
S;, and let F(x,8) = Y%, £(4,x,8).

Let SCORE(x,W;S) =W - F(x,8S).

For each each example x¢, Sy:

1. Use a modified version of Equation 3 to find the
K segmentations Si, ..., Sk that have the highest

SCORE(Xt7 Wt; Sz)
2. Let Wip1 = We.

3. For each i such that SCORE(x¢, Wy;S;) is greater
than (1 — ) - SCORE(xt, Wt; St), update W1 as
follows:

Wit — Wit + F(x¢, St) — F(xq, Sz)
As the final output of learning, return W, the average of the

Wy’s. To segment x with W, use Equation 3 to find the best
segmentation.

Figure 1: Discriminative training for SMM’s.

is replaced with
Wt+1 - Wt + F(Xt, yt) - F(Xn yt)

After training, one takes as the final learned weight vector
W the average value of W; over all time steps t.

This simple algorithm has performed well on a number
of important sequential learning tasks [11, 2, 34], includ-
ing NER. It can also be proved to converge under certain
plausible assumptions [11].

The natural extension of this algorithm to SMM’s assumes
training data in the form of pairs (x, S), where S is a segmen-
tation. We will assume a feature-vector representation can
be computed for any segment S; of a proposed segmenta-
tion S, 4.e., we assume a function f(j,x,S). Again defining
F(x,S) = Z‘Jsz‘l f(j,%,S), one can apply Collins’ method
immediately, as long as it is possible to perform a Viterbi
search to find the best segmentation S for an input x.

For SMM Viterbi search, we need to restrict each f* to
be of the form

fk(.% X,S) = fk(gk(tjvuﬁx)véjvéj*l)

and as before, we let f'(¢,u,x,y,y’) be the vector of f*’s.
To implement Viterbi, we use the recurrence:

Vaew (i, y) = 3)
0 ifi=0and y=1yo
—00 ifi=0and y # yo

maxy i <; Vaw (7',y')
+ W6 +1,4,x,y,y") ifi>0

Conceptually, V(i,y) is the score of the best segmentation
of the first ¢ tokens in x that concludes with a segment S;
such that u; = ¢ and ¢; = y.

2.4.2 Refinements to the Learning Algorithm

The SMM Viterbi search can be made more efficient if the
segment size is bounded by some number L. In this case we
can replace the i < i in the max term of Equation 3 to be
i —L<i <i.



We also experimentally evaluated a number of variants
of Collins’ method, and obtained somewhat better perfor-
mance with the following extension. As described above, the
algorithm finds the single top-scoring label sequence y, and
updates W if the score of ¥y is greater than the score of the
correct sequence y (where the “score” of y' is W-F(x,y’)).
In our extension, we modified the Viterbi method to find
the top K sequences y1, ..., ¥k, and then update W for all
yi’s with a score higher than (1 — 3) times the score of y.

The complete algorithm is shown in Figure 1. The same
technique can also be used to learn HMMSs, by replacing S
with y and Equation 3 with Equation 2.

Like Collins’ algorithm, our method works best if it makes
several passes over the data. There are thus four parameters
for the method: K, 3, L, and F, where E is the number of
“epochs” or iterations through the examples.

2.5 Features for SMMs

In a semi-Markov learner, features no longer apply to indi-
vidual words, but instead are applied to hypothesized entity
names. This makes it somewhat more natural to define new
features, as well as providing more context.

In the notation of this paper, recall that we assumed each
SMM feature function f* can be written as f*(j,x,S) =
FE(g" (t5,u5,%),£5,0;-1), where g" is any function of ¢;, u;,
and the sequence x. Typically, g* will compute some prop-
erty of the proposed segment <mtj ... %y;) (or possibly of
the tokens around it), and f* will be an indicator function
that couples this property with the label ¢;. Some concrete
examples of possible g*’s are given in Table 1.

Since any of these features can be applied to one-word
segments (i.e., ordinary tokens), they can also be used for
a HMM-like, word-tagging NER system. However, some
of the features are much more powerful when applied to
multi-word segments. For instance, the pattern “X+ X+”
(two capitalized words in sequence) is more indicative of a
person name than the pattern “X+”. As another example,
the “length” feature is often informative for segments.

2.6 Distance Features

Since we are no longer classifying tokens, but are instead
classifying segments as to whether or not they correspond
to complete entity names, it is straightforward to make use
of similarity to words in an external dictionary as a feature.

Let D be a dictionary of entity names and d be a distance
metric for entity names. Define gp/q(e’) to be the minimum
distance between e’ and any entity name e in D:

gpja(e’) = min d(e,e’)

For instance, if D contains the two strings “frederick flint-
stone” and “barney rubble”, and d is the Jaro-Winkler dis-
tance metric [37], then gp/q( (Fred) ) = 0.84, and gp/4(
(Fred,please) ) = 0.4, since d(“Fred”,“frederick flintstone”)
= 0.84 and d(“Fred please”, “frederick flintstone”) = 0.4. A
feature of the form gp /4 can be trivially added to the SMM
representation for any pair D and d.

One problem with distance features is that they can be
relatively expensive to compute, particularly for a large dic-
tionary. In the experiments below, we pre-processed each
dictionary by building an inverted index over the charac-
ter n-grams appearing in dictionary entries, for n = 3,4, 5,
discarding any “frequent” n-grams that appear in more than
80% of the dictionary entries. We then approximate gpq(e’)

by finding a minimum over only those dictionary entries that
share a common non-frequent n-gram with e’.

3. EXPERIMENTAL RESULTS
3.1 Baseline Algorithms

To evaluate our proposed method for learning SMMs, we
compared it with the HMM-based version of the same algo-
rithm. This is a strong baseline. In previous experimental
studies, Collins’ method has proved to be superior to max-
imum entropy CMM-based tagging methods for NER and
shallow parsing, and a close competitor to conditional ran-
dom fields for POS tagging and shallow parsing [2, 11, 34].
Our extension to the method performs better on four of the
five NER tasks we use (and also usually gives comparable
improvements to both the SMM and HMM version of the
algorithm—see Section 3.5.1 below). In the experiments, we
used 8 =0.05, K =2, and F = 20.

As features for the i-th token, we used a history of length
one, plus the lower-cased value of the token, letter cases,
and letter-case patterns (as illustrated in Figure 1) for all
tokens in a window of size three centered at the i-th token.
Additional dictionary-based features are described below.

We experimented with two ways of encoding NER as a
word-tagging problem. The simplest method, HMM-VP ),
predicts two labels y: one label for tokens inside an entity,
and one label for tokens outside an entity.

The second encoding scheme we used is due to Borthwick
et al [5]. Here four tags y are associated for each entity
type, corresponding to (1) a one-token entity, (2) the first
token of a multi-token entity, (3) the last word of a multi-
token entity, or (4) any other token of a multi-token entity.
There is also a fifth tag indicating tokens that are not part
of any entity. For example, locations would be tagged with
the five labels Locunique, LOCbegin, LiOCend; LOCcontinue, and
Other, and a tagged example like

(Fred)person, please stop by the (fourth floor meet-
ing room)roc

is encoded (omitting for brevity the “Other” tags) as

(Fred)Personypique » Please stop by the (fourth)recy i,
(floor meeting)Loc,ontinue (FOOM)Locyyq

We will call this scheme HMM-VP 4.

To add dictionary information to HMM-VP 1y, we simply
add one additional binary feature fp which is true for every
token that appears in the dictionary: i.e., for any token x;,
fp(zi) =1 if z; matches any word of the dictionary D and
fp(zi) = 0 otherwise. This feature is then treated like any
other binary feature, and the training procedure assigns an
appropriate weighting to it relative to the other features.

To add dictionary information to HMM-VP 4, we again
follow Borthwick et al [5], who proposed using a set of four
features7 fD.uniquey fD.first7 fD.last7 and fDAcontinue- These
features are analogous to the four entity labels: for each
token x; the four binary dictionary features denote, respec-
tively: (1) a match with a one-word dictionary entry, (2) a
match with the first word of a multi-word entry, (3) a match
with the last word of a multi-word entry, or, (4) a match
with any other word of an entry. For example, the token
z;="“flintstone” will have feature values fp.unique(zi) = 0,
fDAfz'rst(xi) = 07 fDLontinue(xi) = 07 and fD.la,st(xi) =1
(for the dictionary D used in Table 1).



[ Function g(¢,u, x)

Explanation

Examples |

g={(Tt,...,Tu) value of segment g9(1,1,x) = “Fred”
9(2,4,x) = “please stop by”
g = lowerCase((x¢, . .., Tu)) lower-cased value g9(1,1,x) = “fred”
g(2,4,x) = “please stop by”
g=u—t length of segment g(1,1,x) =1
9(27 47 X) =3
g = Tt—1 value of left window (size 1) g(1,1,x) = none
9(2,4,x) = “Fred”
9 = (Tut1, Tut2) value of right window (size 2) g(1,1,x) = “please stop”
9(2,4,x) = “my office”
g = translate(A-Za-z,Xx, (zt,...,Tu)) letter cases for segment g9(1,1,x) = “Kxxx"
9(2,4,x) = “xxxxxx XXxX XX
g = translateCompressed (A-Za-z,Xx, {x¢,...,Tu)) letter-case pattern for segment g(1,1,x) = “X+47
9(2,4,x) = “x+ x+ x+”
9D /JaroWinkler Jaro-Winkler distance to dictionary ¢(1,1,x) = 0.88
9(2,4,x) = 0.45

In examples above, x = (Fred,please,stop,by,my,office,this,afternoon) and D = {“frederick flintstone’

, “barney rubble}

Table 1: Possible feature functions g.

As an additional baseline NER method, we evaluated rote
matching against a dictionary (i.e., extracting all phrases
that exactly match a dictionary entry). This approach will
have low recall when the dictionary is incomplete, and can-
not handle variations between the way names appear in the
text and the dictionary (e.g., misspellings or abbreviations).
However, these results do provide an indication of the qual-
ity of the dictionary.

We note that in some cases better performance might be
obtained by carefully normalizing dictionary entries. One
simple normalization scheme might be to eliminate case and
punctuation; more complex ones have also been used in NER
[6, 7, 19]. However, just as in record linkage problems, nor-
malization is not always desirable (e.g., “Will” is more likely
to be a name than “will”, and “AT-6” is more likely to be a
chemical than “at 6”) and proper normalization is certainly
problem-dependent. In the experiments below we do not
normalize dictionary entries, except for making the match
case insensitive.

As a final “baseline” use of dictionary information for
HMM-VP¢;y and HMM-VP ), we extended the distance
features described to tokens—i.e., for each distance d, we
compute as a feature of token x; the minimum distance be-
tween x; and an entity in the dictionary D. These features
are less natural for tokens than for segments, but turned
out to be surprisingly useful, perhaps because weak partial
matches to entity names are informative.

To our knowledge features of this sort have not been used
previously in NER tasks. We used the dictionaries described
below, and three distance functions from the SecondString
open source software package [9, 10]: Jaccard, Jaro-Winkler,
and Soft TFIDF.

Briefly, the Jaccard distance between two sets S and S’ is
|SNS’|/|SUS’|: in SecondString, this is applied to strings by
treating them as sets of words. The Jaro- Winkler distance
is a character-based distance, rather than a word-based dis-
tance: it is based on the number of characters which appear
in approximately the same position in both strings. TFIDF
is another word-based measure. As with Jaccard distance,
TFIDF scores are based on the number of words in com-

mon between two strings; however, rare words are weighted
more heavily than common words. Soft TFIDF is a hybrid
measure, which modifies TFIDF by considering words with
small Jaro-Winkler distance to be common to both strings.?

3.2 The semi-Markov learner

Below we will use SMM-VP to denote our implementation
of the algorithm of Figure 1. The parameters §, K and E
are set as for HMM-VP(;y and HMM-VP 4.

Like HMM-VP (1), SMM-VP predicts only two label values
y, corresponding to segments inside and outside an entity.
We limit the length of entity segments to at most L, and
limit the length of non-entity segments to 1. The value of
L was set separately for each dataset to a value between 4
and 6, based on observed entity lengths.

We used the same baseline set of features that were used
by HMM-VP(;y and HMM-VP 4. Additionally, for each
feature used by HMM-VP 1, there is an indicator function
that is true iff any token of the segment has that feature;
an indicator function that is true iff the first token of the
segment has that feature; and an indicator function that is
true iff the last token of the segment has that feature. For
instance, suppose one of the baseline indicator-function fea-
tures used by HMM-VP(y) was fefice where foffice(j x,y)
was true iff z; has the value “office” and y; = i. Then SMM-
VP would also use a function fofic®2™ (¢ 4, x) which would
be true if any x; : t < i < u has the value ’office’; a function
petficefirst (¢ 4, x), which would be true if 2; has the value
‘office’; and an analogous e85t ke the 4-state output
encoding, these “first” and “last” features enable SMM-VP
to model token distributions that are different for different
parts of an entity.

As an alternative to the distance features as described in
Section 2.6, we also provided binary dictionary information
to SMM-VP by introducing a binary feature that is true for
a segment iff it exactly matches some dictionary entity.

230ft TFIDF corresponds to the JaroWinklerTFIDF class in
the SecondString code.



Dataset | # instances | # words | entity # entities | words/entity | #dictionary | words/entry
in text | in text entries | in dictionary

Email 216 18121 | person 661 | 1.70 844 2.33
Jobs 300 73330 | company 288 | 1.61 97 2.16
title 463 | 2.63 156 2.64

Address 395 4226 | state 87 | 2.31 30 1.30
city 359 | 1.32 554 1.14

Table 2: Description of data, tags and dictionary used in the experiments.

3.3 Datasets

We evaluated our systems on five information extraction
problems derived from three different datasets.

Address data. The Address dataset consists of 395 home
addresses of students in a major university in India. The ad-
dresses in this set are much less regular than US addresses,
and therefore extracting even relatively structured fields like
city names is challenging [4]. We found two external dictio-
naries, a list of cities in India and a list of state names in
India, and defined two corresponding extraction tasks: to
identify city names, and to identify state names.

Email data. This dataset consists of email messages from
the CSpace email corpus, which contains approximately
15,000 email messages collected from a management game
conducted at Carnegie Mellon University. In this game, 277
MBA students, organized in approximately 50 teams of four
to six members, ran simulated companies in different mar-
ket scenarios over a 14-week period [22]. All messages sent
during a one-day time period were manually tagged for per-
son names. Person names in email headers are more regular
than names in email bodies; to reduce the effect of this in
our testing, we used only two header fields, the “From” field
and the “Subject” field. As a dictionary, we used a list of
all students who participated in the game.

Jobs data. This is a set of 300 computer-related job post-
ings posted in the 1990’s to the Austin.jobs newsgroup.
These postings were manually annotated for various entities
by researchers from the University of Texas [8]. Two of the
annotated entities are “company names” and “job titles”.
To construct a dictionaries for these entities, we manually
extracted company names and job titles for current hi-tech
job listings in the Austin area from a large job-listing board.

In Table 2 we give a summary of the five extraction tasks,
listing the number of instances, entities, and dictionary en-
tries; the average number of words in an entity; and the
average number of words in dictionary entries. One indi-
cation of the difference between the dictionary entries and
the entities to be extracted is seen in the difference in the
number of tokens per entity in the two cases.

3.4 Results and Discussion

The results of our initial experiments are shown in Ta-
ble 3. Since many of these NER tasks can be learned rather
well regardless of the feature set used, given enough data,
in the table the learners are trained with only 10% of the
available data, with the remainder used for testing. (We
will later show results with other training set sizes.) All
results reported are averaged over 7 random selections of
disjoint training and test examples, and we measure accu-
racy in terms of the correctness of the entire extracted entity
(i.e., partial extraction gets no credit).

We compared each of the above NER methods on the
five different tasks, without an external dictionary (first col-
umn), with an external dictionary with binary features (sec-
ond column), and with an external external dictionary with
distance features (third column). For each we report recall,
precision and F1 values®. We make the following observa-
tions concerning the results of Table 3.

e Generally speaking, SMM-VP is the best-performing
method, and HMM-VP(yy is the worst. HMM-VP 4
outperforms or equals HMM-VP ;) on 13 of the 15
cases considered (five NER problems each with no dic-
tionary, binary dictionary features, or distance fea-
tures). The two exceptions are for address-state ex-
traction with dictionary features. Likewise, SMM-VP
outperforms HMM-VP 4y on 13 of the 15 cases.

e Binary dictionary features are helpful, but distance-
based dictionary features are more helpful. The ad-
dition of binary dictionary features improves all three
learners on all five problems. Replacing binary dic-
tionary features with distance features also improves
performance for all 15 cases.

e As expected, exact matches to the external dictionary
generally give low recall. Precision is also often sur-
prisingly poor (less than 30% for the job-title task).
Dictionary lookup alone is never as good as SMM-VP
with distance features.

For a more concise view of the results, Table 4 summarizes
the impact on performance of the two novel techniques pro-
posed in this paper—distance-based dictionary features and
semi-Markov extraction methods—and compares them to
the baseline method of HMM-VP 4 with binary dictionary
features, which we take to be representative of the previous
state of the art for using dictionary features in NER. F1 is
improved on all five NER tasks if the baseline is modified
by either using distance features rather than binary features
(the line labeled binary—distance), or by using SMM-VP
rather than HMM-VP 4 (the line labeled HMM—SMM).
SMM-VP with distance features improves F1 scores over
the baseline by an average of 44.5%.

3.5 Additional Experiments

Below, we will perform a more detailed comparison of
SMM-VP and HMM-VP 4 under various conditions. We
focus on comparing the F1 performance of SMM-VP and
HMM-VP 4 with distance features. We will not present any
detailed comparisons of running times of the two methods
since our implementation is not yet optimized for running

3F1 is defined as 2*precision*recall/(precision+recall).



Without dictionary With dictionary

Binary features Distance features
Recall Prec. F1 | Recall Prec. F1 | Recall Prec. F1

Address-state | lookup 32.2 100.0 48.7
HMM-VP 5.2  56.8 9.5 19.3 826 31.3 41.5 873 56.3
HMM-VP 4 8.9 90.7 16.2 13.0 973 230 25.7 100  40.9
SMM-VP 8.2 622 14.6 164 820 273 39.7 977 56.4

Address-city | lookup 14.8 68.8 243
HMM-VP 60.1  79.3 68.3 68.0 84.2 752 70.8 84 76.8
HMM-VP 4 59.1  87.3 70.5 64.1 91.2 75.2 68.1 906 77.7
SMM-VP 62.8 875 73.1 70.7  90.0 79.2 72.2 894 79.9

Email-person | lookup 38.7 82.6 57.3
HMM-VP 60.4 749 66.8 73.4  83.7 782 79.1 846 81.8
HMM-VP 4 60.9 80.2 69.3 71.1  87.6 785 771 89.2 827
SMM-VP 64.1 803 71.3 77.7 88.1 82.6 78.9 8385 83.4

Job-company | lookup 14.1 54.8 223
HMM-VP 1.3 347 2.5 2.0 28.1 3.8 89 798 16.1
HMM-VP 4 3.6  59.8 6.8 11.5 80.6 20.2 18.6 934 31.1
SMM-VP 52 553 9.6 13.8 854 23.7 178 959 30.0

Job-title lookup 29.4 29.5 294
HMM-VP 18.4  43.7 25.9 23.9 432 308 309 442 364
HMM-VP 4 17.3  51.5 25.9 279 484 354 309 457 36.8
SMM-VP 20.9 520 29.8 349  48.8 40.7 36.2 479 41.2

Table 3: Performance of NER methods on five IE tasks under three conditions: with no external dictionary;
with an external dictionary and binary features; with an external dictionary and distance features.
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Figure 2: Comparing SMM-VP and HMM-VP ) with changing training set size on IE tasks from three
domains. The X-axis is the fraction of examples used for training and the Y-axis is field-level F1.
Address Email Job Address Email Job
State | City | Person | Co. | Title State | City | Person | Co. | Title
baseline method 23.0 | 75.2 78.5 | 20.2 35.4 HMM-VP 4 Collins 34.6 | 76.3 74.9 | 56.1 32.5
+ binary—distance 40.9 | 77.7 82.7 | 31.1 36.8 C&S | 40.9 | 77.7 82.7 | 31.1 | 36.8
+ HMM—SMM 27.3 | 79.2 82.6 | 23.7 40.7 SMM-VP Collins 49.1 78.2 78.1 | 53.0 33.9
+ both changes 56.4 | 79.9 83.4 | 30.0 41.2 C&S | 56.4 | 79.9 83.4 | 30.0 | 41.2

Table 4: Summary of improvements in F1 measure
over the baseline method of HMM-VP 4 with binary
dictionary features.

time. (As implemented, the SMM-VP method is 3-5 times
slower than HMM-VP 4), because of the more expensive dis-
tance features and the expanded Viterbi search.)

3.5.1 Effect of Extensions to Collins’ Method

Table 5 compares the F1 performance of (our implemen-
tation of) Collins’ original method (labeled Collins) to our
variant (labeled C & S). We also compare the natural semi-

Table 5: F1 performance of the voted perceptron
variant considered here vs the method described by
Collins.

Markov extension of Collins” method to SMM-VP. In both
cases Collins’ method performs much better on one of the
five problems, but worse on the remaining four. The changes
in performance associated with our extension seem to affect
both the Markovian and semi-Markovian versions of the al-
gorithm similarly. In none of the five tasks does the change
from Collins’ original method to our variant change the rel-
ative order of the two methods.



| History | Recall Prec. F1
Address-state

HMM-VP 4 1 25.7 100  40.9

2 23.2 100 37.7

3 24.7 100  39.6

SMM-VP 1 39.7 97.7 56.4
Address-city

HMM-VP 4 1 68.1 906 77.7

2 68.5 90.8 78.1

3 68.4 90.7 78.0

SMM-VP 1 72.2 894 79.9
Email-person

HMM-VP 4 1 771 89.2 827

2 77.0 88.6 824

3 77.0 887 824

SMM-VP 1 789 885 83.4

Table 6: Effect of increasing history size of HMM-
VP4 on F1 performance, compared to F1 perfor-
mance of SMM-VP.

3.5.2 Effect of training set size

In Figure 2 we show the impact of increasing training set
size on HMM-VP 4y and SMM-VP on three representative
NER tasks. Often when the training size is small, SMM-VP
is much better than HMM-VP 4, but when the training size
increases, the gap between the two methods narrows. This
suggests that the semi-Markov features are less important
when large amounts of training data are available. How-
ever, the amount of data needed for the two methods to
converge varies substantially, as is illustrated by the curves
for address-city and email-person.

3.5.3 Effect of history size

It is straightforward to extend the algorithms of this paper
so that HMM-VP 4y can construct features that rely on the
last several predicted classes, instead of only the last class.
Table 6 we show the result of increasing the “history size”
for HMM-VP 4y from one to three. We find that the perfor-
mance of HMM-VP 4y does not improve much with increas-
ing history size, and in particular, that increasing history
size does not change the relative ordering of HMM-VP 4
and SMM-VP. This result supports the claim, made in Sec-
tion 2.3, that a SMM-VP with segment length bounded by
L is quite different from an order-L HMM.

3.5.4 Alternative dictionaries

We re-ran two of our extraction problems on alternative
dictionaries to study sensitivity to dictionary quality. For
emails we used a dictionary of 16623 student names, ob-
tained from students at universities across the country as
part of the RosterFinder project [36]. For the job-title ex-
traction task, we obtained a dictionary of 159 job titles in
California from a software jobs website!. Recall that the
original email dictionary contained the names of the peo-
ple who sent the emails, and the original dictionary for the
Austin-area job postings was for jobs in the Austin area.

Table 7 shows the result, for HMM-VP 4 and SMM-VP
with distance features. Both methods seem fairly robust

‘http://www.softwarejobs.com

to using dictionaries of less-related entities. Although the
quality of extractions is lowered for both methods in three
of the four cases, the performance changes are not large.

4. RELATED WORK

Besides the methods described in Section 3.1 for integrat-
ing a dictionary with NER systems [5, 7], a number of other
techniques have been proposed for using dictionary informa-
tion in extraction.

A method of incorporating an external dictionary for gen-
erative models like HMMs is proposed in [33, 4]. Here a
dictionary was treated as a collection of training examples
of emissions for the state which recognizes the correspond-
ing entity: for instance, a dictionary of person names would
be treated as example emissions of a “person name” state.
This method suffers from a number of drawbacks: there is
no obvious way to apply it in a conditional setting; it is
highly sensitive to misspellings within a token; and when
the dictionary is too large or too different from the training
text, it may degrade performance.

In concurrent work by one of these authors, a scheme is
proposed for compiling a dictionary into a very large HMM
in which emission and transition probabilities are highly con-
strained, so that the HMM has very few free parameters.
This approach suffers from many of the limitations described
above, but may be useful when training data is limited.

Krauthammer et al [23] describe an edit-distance based
scheme for finding partial matches to dictionary entries in
text. Their scheme uses BLAST (a high-performance tool
designed for DNA and protein sequence comparisons) to do
the edit distance computations. However, there is no obvi-
ous way of combining edit-distance information with other
informative features, as there is in our model. In experimen-
tal studies, pure edit-distance based metrics are often not
the best performers in matching names [10]; this suggests
that it may be advantageous in NER to be able to exploit
other types of distance metrics as well as edit distance.

Some early NER systems used a “sliding windows” ap-
proach to extraction, in which all word n-grams were clas-
sified as “entities” or “non-entities” (for n of some bounded
size) (e.g., [16]). Such systems can easily be extended to
make use of dictionary-based features. However, in prior ex-
perimental comparisons, sliding-window NER system have
usually proved inferior to HMM-like NER, systems. Sliding
window approaches also have the disadvantage that they
may extract entities that overlap.

Another mechanism of exploiting a dictionary is to use
it to bootstrap a search for extraction patterns from unla-
beled data [1, 12, 14, 31, 38]. In these systems, dictionary
entries are matched on unlabeled instances to provide “seed”
positive examples, which are then used to learn extraction
patterns that provide additional entries to the dictionary.
These extraction systems are mostly rule-based (with some
exceptions [12, 14]), and appear to assume a relatively clean
set of extracted entities. In contrast our focus is probabilis-
tic models and the incorporation of large noisy dictionaries.

To our knowledge, semi-Markov models have not been pre-
viously been used for information extraction, although they
have been used in other domains [18, 35]. To our knowl-
edge, the SMM with dictionaries is also the first method that
can combine arbitrary similarity measures on multi-word
segments with a Markovian, HMM-like extraction-learning
algorithm. In future work, we plan to explore adapting



Recall Prec. F1 | Recall Prec. F1 | Recall Prec. F1
Email-person No dictionary Original dictionary Student names
Dictionary lookup 85.3 57.3 0 0 0
HMM-VP 4 60.9 80.2 69.3 89.2 82.7 73.5 863 79.4
SMM-VP 64.1 80.3 T71.3 88.5 83.4 74.8 84.6 79.4
Job-title No dictionary Original (Austin job titles) | California job titles
Dictionary lookup 29.5 29.4 43 270 7.2
HMM-VP 4 173 515 259 45.7 36.8 26.8 475 343
SMM-VP 209 52.0 29.8 47.9 41.2 36.0 519 42.5

Table 7: Results with changing dictionary.

the semi-Markov NER learning algorithms discussed here
to conditional random fields [24, 34].

5. CONCLUSIONS

In many cases, the ultimate goal of an information ex-
traction process is to answer queries which combine infor-
mation from structured and unstructured sources. In these
applications, NER is successful only to the extent that it
finds entity names that can be matched to something in a
pre-existing database. However, extending state-of-the-art
NER systems by incorporating an external dictionary is dif-
ficult. In particular, incorporating information about the
similarity of extracted entities to dictionary entries is awk-
ward, because the best NER systems operate by sequentially
classifying words as to whether or not they participate in an
entity name, while the best similarity measures score entire
candidate names.

To correct this mismatch we relax the usual Markov as-
sumptions, and formalize a semi-Markov extraction process.
This process is based on sequentially classifying segments of
several adjacent words, rather than single words. In addi-
tion to allowing a way of coupling high-performance NER
methods and high-performance record linkage metrics, this
formalism also allows the direct use of other useful entity-
level features (such as the length of entity). It also provides
an arguably more natural formulation of the NER prob-
lem than sequential word classification. For instance, in
the usual formulation, one must design a new set of output
tags (and make a corresponding change in the tag-to-entity
decoding scheme) to account for distributional differences
between words from the beginning of an entity and words
elsewhere in an entity. In the semi-Markov formulation, one
merely adds new features for entity-beginning words.

We compared our proposed algorithm to a strong base-
line NER, which uses Collins’ perceptron-based algorithm
for training an HMM and a state-of-the art, multi-label en-
coding for dictionary information. The new algorithm is
surprisingly effective: on our datasets, it always outperforms
the previous baseline, sometimes dramatically.
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