
A Tale of Two Entity Linking and Discovery Systems

*Kathryn Mazaitis <krivard@cs.cmu.edu>,
† Richard C. Wang <rcwang@pagereactor.com>, † Frank Lin <frank@pagereactor.com>,

*Bhavana Dalvi <bbd@cs.cmu.edu>, *Jakob Bauer <jakobbauer@me.com>,
*William W. Cohen <wcohen@cs.cmu.edu>

*School of Computer Science, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, USA
† PageReactor.com, Mountain View, CA 94043

Abstract

The long-term research agenda of our group is
to evaluate the potential of probabilistic logics
for complex, large-scale problems which re-
quire data resources naturally encoded as rela-
tions. In pursuit of this goal, we compared two
systems for performing automated entity dis-
covery and linking in English-language text,
as submitted to the 2014 TAC Knowledge
Base Population Entity Discovery and Link-
ing (EDL) track. Both systems are based on
random-walk strategies for measuring similar-
ity within graphs. The first system is PageRe-
actor, a hand-engineering system originally
designed for task of wikification. The second
is based on ProPPR, a probabilistic logic pro-
gramming language.

1 Introduction

Modern entity (discovery and) linking systems rely
on a variety of approaches to generate and rank can-
didate KB entities to be associated with a query
string, or a “discovered” entity mention, in a
text. These approaches typically rely on a num-
ber of different large lexical resources, such as:
document-length descriptions of KB entities; hyper-
links among entity pages; hyperlinks to entity pages,
along with their anchor text; and disambiguation
pages. These diverse resources are linked together
with a number of natural heuristics, including en-
tity popularity and global coherence of entity assign-
ments, which are often expressed in terms of graph
algorithms over the various lexical resources avail-
able.

Systems of this sort are challenging to build, test
and integrate. One issue is that there is no consen-
sus on the architecture of a entity linking (and/or
entity discovery) system. Because the lexical re-
sources above, which are commonly employed in
this task, naturally take the form of relations and
graphs, rather than (say) numeric features of candi-
dates, it is not obvious how to best decompose the
task into a pipeline of well-studied subtasks, such as
retrieval and classification.

The long-term research agenda of our group is
to evaluate the potential of probabilistic logics for
tasks of this sort: complex, large-scale problems
which require data resources naturally encoded as
relations. The principle technical problem we are
seeking to address in this long-term agenda is the
tradeoff between efficiency and expressivity for such
logics, with the aim of making usefully expressive
logics work for practically interesting problems at
real-world scales. The KBP entity discovery and
linking (EDL) task appeared to us to be a natural
testbed to work on. We thus built two systems, one
for entity linking (EL) and one for EDL based on
ProPPR, a newly-developed probabilistic logic.

We were also fortunate to be able to work with
and compare to PageReactor1, a high-quality hand-
engineering system for the closely related task of
wikification. Wikification differs from EDL in that
it does not require classification of entities by type,
and does not require “NIL clustering” (i.e., cluster-
ing of novel entity mentions by referent); however,
being able to observe PageReactor’s performance
and having access to its designers helped us to pri-

1http://enfind.com/pagereactor

Table 1: A simple program in ProPPR. See text for ex-
planation.

about(X,Z) :- handLabeled(X,Z) # base.
about(X,Z) :- sim(X,Y),about(Y,Z) # prop.
sim(X,Y) :- links(X,Y) # sim,link.
sim(X,Y) :-

hasWord(X,W),hasWord(Y,W),
linkedBy(X,Y,W) # sim,word.

linkedBy(X,Y,W) :- true # by(W).

oritize the resources we used in our system.
Below, we describe the ProPPR-based system,

first presenting results on the 2013 EL task. We then
present the overall architecture of the ELD, present-
ing the changes made to adapt the EL system to the
2014 EDL task, including a description of PageRe-
actor. Finally we present our results and an error
analysis, and conclude.

2 The ProPPR System

Some of our submissions were based on ProPPR
(Wang et al., 2013), a first-order templating lan-
guage for defining complex random-walk based al-
gorithms. ProPPR includes learning methods for
tuning (although in the EDL submission we used
unit weights) and can incorporate arbitrary tabular
data easily.

2.1 Background on ProPPR

Below we will give an informal description of
ProPPR, based on a small example. More formal
descriptions can be found elsewhere (Wang et al.,
2013).

ProPPR (for Programming with Personalized
PageRank) is a stochastic extension of the logic pro-
gramming language Prolog. A simple program in
ProPPR is shown in Table 1. Roughly speaking, the
upper-case tokens are variables, and the “:-” sym-
bol means that the left-hand side (the head of a rule)
is implied by the conjunction of conditions on the
right-hand size (the body). In addition to the rules
shown, a ProPPR program would include a database
of facts: in this example, facts would take the form
handLabeled(page,label), hasWord(page,word), or
linkedBy(page1,page2), representing labeled train-

ing data, a document-term matrix, and hyperlinks,
respectively. The condition “true” in the last rule is
“syntactic sugar” for an empty body.

In ProPPR, a user issues a query, such as “?-
about(a,X)”, and the answer is a set of possible bind-
ings for the free variables in the query (here there is
just one such varable, “X”). To answer the query,
ProPPR builds a proof graph. Each node in the
graph is a list of conditions R1, . . . , Rk that remain
to prove, interpreted as a conjunction. To find the
children of a node R1, . . . , Rk, you look for either

1. database facts that match R1, in which case the
appropriate variables are bound, and R1 is re-
moved from the list, or;

2. a rule A ← B1, . . . , Bm with a head A that
matches R1, in which case again the appropri-
ate variables are bound, andR1 is replaced with
the body of the rule, resulting in the new list
B1, . . . , Bm, R2, . . . , Rk.

The procedures for “matching” and “appropriately
binding variables” are somewhat cumbersome to de-
scribe formally2, but are intuitive, and illustrated in
Figure 1.3 An empty list of conditions (written 2

in the figure) corresponds to a complete proof of the
initial query, and by collecting the required variable
bindings, this proof can be used to determine an an-
swer to the initial query.

In Prolog, this proof graph is consructed on-the-
fly in a depth-first, left-to-right way, returning the
first solution found, and backtracking, if requested,
to find additional solutions. In ProPPR, however,
we will define a stochastic process on the graph,
which will generate a score for each node, and hence
a score for each answer to the query. The stochas-
tic process used in ProPPR is personalized PageR-
ank (Page et al., 1998; Csalogny et al., 2005), also
known as random-walk-with-restart. Intuitively, this
process upweights solution nodes that are reach-
able by many short proofs (i.e., short paths from the
query node.) Formally, personalized PageRank is

2Technically, R1, . . . , Rk is replaced with
(B1, . . . , Bm, R2, . . . , Rk) ◦ θ, where θ is the most gen-
eral unifier of A and R1, and ◦ indicates applying the
substitution θ.

3The edge annotations will be discussed later.

Figure 1: A partial proof graph for the query about(a,Z). The upper right shows the link structure between documents
a, b, c, and d, and some of the words in the documents. Restart links are not shown.

the fixed point of the iteration

pt+1 = αχv0 + (1− α)Wpt (1)

where p[u] is the weight assigned to u, v0 is the seed
(i.e., query) node, χv0 is a vector with χv0 [v0] = 1
and χv0 [u] = 0 for u 6= v, andW is a matrix of tran-
sition probabilities, i.e., W [v, u] is the probability of
transitioning from node u to a child node v. The pa-
rameter α is the reset probability, and the transition
probabilities we use will be discussed below.

Like Prolog, ProPPR’s proof graph is also con-
structed on-the-fly, but rather than using depth-first
search, we use PageRank-Nibble, a technique for in-
crementally exploring a large graph from a an ini-
tial “seed” node (Andersen et al., 2008). PageRank-
Nibble takes a parameter ε and will return an ap-
proximation p̂ to the personalized PageRank vector
p, such that each node’s approximated probability
(under p̂) is within an additive error ε of the cor-
rect value. PageRank-Nibble also requires time and
space O(1

αε), and in particular, will return a proof
graph with no more than O(1

αε) edges. This gives
ProPPR a fast approximate inference procedure.

We close this background section with some final
brief comments about ProPPR.

Scalability. ProPPR is currently limited in that
it uses memory to store the fact databases, and the
proof graphs constructed from them. ProPPR uses a
special-purpose scheme based on sparse matrix rep-
resentations to store facts which are triples, which
allows it to accomodate databases with hundreds of
millions of facts in tens of gigabytes. (No more than

35GB RAM was needed for the experiments of this
paper.)

With respect to run-time, ProPPR’S scalability is
improved by the fast approximate inference scheme
used, which is typically an order of magnitude faster
than power iteration for moderate-sized problems
(Wang et al., 2013), and much faster on larger prob-
lems. Experimentation and learning are also sped
up because with PageRank-Nibble, each query is an-
swered using a “small”—size O(1

αε)—proof graph.
Many operations required in learning and experi-
mentation can thus be easily parallized on a multi-
core machine, by simply distributing different proof
graphs to different threads.

Learning. The personalized PageRank scores
are defined by a transition probability matrix W .
ProPPR allows “feature generators” to be attached
to its rules, as indicated by the code after the hash-
tags in the example program: for instance, when
matching the rule “sim(X,Y) :- links(X,Y)” to a con-
dition such as “sim(a,X)” the two features “sim”
and “link” are generated, and when matching the
rule “linkedBy(X,Y,W) :- true” to the condition
“linkedBy(a,c,sprinter)” the feature “by(sprinter)” is
generated. Since edges in the proof graph corre-
spond to rule matches, the edges can also be labeled
by features, and a weighted combination of these
features can be used to define a total weight for each
edge, which finally can be normalized used to define
the transition matrix W . Learning can be used to
tune these weights to data; ProPPR’s learning uses
a parallelized SGD method, in which inference on

KBP2010
system µ-average B3 F1 B3+ F1

ProPPR 2011 test set 0.599 0.950 0.533
Stanford-UBC nil (N1), 2011 0.5 0.475
Stanford-UBC nil (N2), 2011 0.5 0.418

median, 2011 0.716
best, 2011 0.846

median, 2013 0.746 0.574
best, 2013 0.833 0.746

Table 3: Results on 2013 task with 2011 data, relative to
published median and best scores. Also included for ref-
erence are the Stanford-UBC N1 and N2 baselines from
(Chang et al., 2011).

different examples is performed in different threads,
and weight updates are synchronized.

Even in the absence of learning, however, it is of-
ten the case that ProPPR’s personalized PageRank
weights will be a useful ranking. (The example pro-
gram, for instance, propagates labels using the algo-
rithm of Lin and Cohen (Lin and Cohen, 2010) on a
hybrid graph containing page and word nodes, and
hyperlink and word-to-page edges.) While learn-
ing has been used successfully for ProPPR in the
past, preliminary experiments suggested that it did
not improve performance on these tasks, so it was
not used in the final ELD submissions.

2.2 ProPPR on the 2011/2013 Entity-Linking
Task

To see if ProPPR was a plausible system to use in
KBP 2014, we first developed a ruleset and database
using the 2013 task definition and the TAC 2011
KBP English Evaluation Entity Linking Annotation
and Queries datasets. The database relations were
similar to those described in Section 3.2.1.

• queryName is the text of the query.

• entityName is the text of the entity name, as en-
coded in its TAC KB article.

• anchorText is the text of inlinks to the en-
tity, as gathered by (Spitkovsky and Chang,
2012), using exact name match to the TAC KB
entity name and thresholding the conditional
probabilities to p(entity|anchor) > 0.05 and
p(anchor|entity) > 0.001.

• inDocument relates a document to the tokens it
contains, and queryToken and entityToken are
analogous for queries and entities.

• inWikiPage relates a token to those entities
whose disambiguation text contain that token.

• hyperlink relates an entity to entities it is hy-
perlinked to in the TAC KB article for the first
entity.

These relations are binary, and are listed in Table 4.
(Note, however, that the number of entries per rela-
tion in this Table is given for the 2014 corpus. The
2011 corpus is about three times larger, with about
320M inDocument triples.

The ruleset is shown in Table 2.4 The first rules
in the program encode specific types of relatedness.
For instance, rule 1 states that “If the query text is
an exact match for an entity name, return that en-
tity” (which we call the exact name strategy). Rule
2 implements the exact anchor strategy, i.e., it states,
“if the query text is used as linktext to an entity any-
where on the web, return that entity.” Rule 3 imple-
ments the hub entity strategy, i.e., “If text anywhere
in the document is used as linktext to an entity, re-
turn it and all entities related to that entity.” Rule 4
implements a shared text strategy, i.e., “If the docu-
ment shares words with an entity’s article page, re-
turn that entity”, and Rule 5 implements a soft name
match strategy, i.e., “If the query text shares tokens
with an entity name, return that entity.”

Rule 5, the soft name match strategy, is an exam-
ple of the expressive power of ProPPR rules. The
personalized PageRank scoring scheme will first
spread weight among the tokens of a query such that
for longer queries, each token counts for less; then
it spreads weight among the entities whose names
contain that token, such that frequent tokens (i.e.,
low IDF tokens like “a, an, the”) have less influence
in the scoring.

The “related entities” used in Rule 3 are defined
by another predicate. In the experiments, we used
only Rules 6-7, which consider entities related if
their pages are hyperlinked; adding Rule 8 would
use another personalized PageRank-style walk to de-
fine entity relatedness.

No NIL entities were predicted by the logic pro-
gram; instead, the top-scoring candidate was se-
lected for each query, without any type checking.

4We have added line numbers, for reference below, have
simplified slightly by removing one subpredicate that, in the
final program used, was defined using only one relation.

Table 2: A ProPPR program for entity linking.

1 answerQuery(Doc,Queryid,EntId) :- queryName(Queryid,Name),entityName(Name,EntId).
2 answerQuery(Doc,Queryid,EntId) :- queryName(Queryid,Name),anchorText(Name,EntId).
3 answerQuery(Doc,Queryid,EntId) :- inDocument(Doc,Name),anchorText(Name,Z),related(Z,EntId).
4 answerQuery(Doc,Queryid,EntId) :- inDocument(Doc,Word),inWikiPage(Word,EntId).
5 answerQuery(Doc,Queryid,EntId) :- queryToken(Queryid,Word),entityToken(Word,EntId).
6 related(X,X) :- true.
7 related(X,Y) :- hyperlink(X,Y).
8 related(X,Y) :- related(X,Z),hyperlink(Z,Y).

We assigned a unique NIL id to every query scoring
below a threshold (tuned on the training set). We
then scored the test set predictions using the 2013
scoring script (el_scorer.py v0.7).

This preliminary system produced extremely fa-
vorable results relative to the 2011 task, outperform-
ing the best B3 F1 scores from that year (see Table
3). It performed less well relative to the 2013 task,
scoring below the median on both micro-average
and B3+ F1.

This system ran in 25GB RAM and averaged
819ms per query. The fastest query ran in 176ms,
and the slowest in 11.431sec.

3 Entity Linking and Discovery

3.1 From EL to EDL

Entity discovery was a new aspect of the task this
year, requiring systems to first analyze a complete
document and extract regions of the text naming en-
tities to be linked. This required named entity ex-
traction. We used the Stanford CoreNLP NER tag-
ger to do most of the extraction, augmented by a
wrapper to exclude quoted text and include relevant
metadata (specifically, author annotations). We also
refined our linking approach, based on error analysis
on the 2014 development set. Notable additions in-
cluded query aliases, tokenized query lookups into
the anchor text table, and local context at the sen-
tence level.

For the purpose of comparison to other systems,
we included an alternate procedure to generate pro-
posed entity links, based on PageReactor. PageRe-
actor was augmented by a postpass to assign named-
entity categories to linked pages (which was not part

of the original system.)
Finally, since our EL did no NIL clustering, we

added a NIL clustering module, and explored the
use of some relatively sophisticated clustering meth-
ods for this task, based on research done elsewhere
at CMU. The same NIL clustering methods were
tested with PageReactor and the ProPPR-based sys-
tem. The overall architecture of our system is shown
in Figure 2.

3.2 ProPPR for the 2014 Entity Discovery and
Linking Task

3.2.1 Database

relation arg1 arg2 size (E87)
anchorText* string eid 1,214,052
entityName string eid 818,698
entityToken token eid 2,116,658
entityType eid type 818,741

extractedType qid type 3,953
hyperlink eid eid 2,397,645

inDocument did token 26,098
inSentence sid token 43,385

inWikiPage token eid 105,942,944
queryAlias qid string 3,287

queryName qid string 3,951
querySentence qid sid 3,953

queryToken qid token 14,753

Table 4: Relations in the linking database. anchorText
was excluded from the limited submission.

The database used for ELD included the follow-
ing relations, in addition to the ones used for the
linking task. The entityType relation gives the type
of an entity, as encoded in its TAC KB article.
The extractedType relation gives the type of a query
string, as extracted by the Stanford NER tagger. The
relation querySentence gives the ID of the sentence
containing a query, and the relation inSentence gives

Ruleset ProPPR

Spitovsky/
Chang 2012

Wikipedia inlinks

TAC KB
(2008 Wikipedia)

KBP Source
Documents

Candidate
Selection

NIL
Thresholding

NIL Clustering

threshold

Query Extractor
Page

Reactor

TAC Entity
Alignment

TAC Type
Alignment

FreeBase
Types

Submission 1:
pagereactor

Stanford NLPFacts Extractor Stanford NLP

DB

Submission 2:
baseline0

Submission 4:
baseline1

Submission 5:
semisupervised1

Submission 3:
limited.baseline0

ExploreEM

feature weights

Queries

Figure 2: Combined system diagram for the CMU submissions

the tokens in a sentence given its ID.
Finally, the queryAlias relation links a query

string q to the text of the first query in the document
to include this query’s text as a substring. This was
used for a simplified coreference resolution to han-
dle cases where, e.g., “Casey Jones” is used as the
first entity referent in a document, and only “Jones”
thereafter.

As noted the anchorText relation was not used in
the limited submission.

3.2.2 Logic Program

The logic program executed by ProPPR for the
EDL task took the form of a list of strategies similar
to those used for EL, but with the addition of con-
ditions specifying typeConstraints—learned condi-
tions on matches between the entity type and the

NER-extracted type. For example, extract match
strategy was extended to:

answerQuery(Doc,Queryid,Entityid) :-
queryString(Queryid,Name),
entityName(Name,Entityid),
typeConstraint(Queryid,Entityid).

The program was structured so that anywhere the
query text was used, the query alias could be substi-
tuted instead. This allowed for better coreference
resolution within a document. Two more strate-
gies were added, one using sentence-level rather
than document-level context, and one that allows the
NIL entity to be proposed regardless of type con-
straints. There were eight strategies (i.e., rules for
the answerQuery predicate) and 18 total rules in the
ProPPR program.

While ProPPR permits the use of learning meth-
ods to tune the weighting of different strategies in
the logic program, for this task we did not see im-
proved performance using trained weights. Engi-
neering features for the entity linking problem that
respond well to training is a priority for future work.

3.2.3 Candidate selection
ProPPR uses the logic program to generate a list

of candidate links for each of the queries identi-
fied in the discovery phase—-as many as 1000 such
candidates for this particular application. To se-
lect the best candidate link for each query, we take
the highest-scoring non-NIL link whose entity type
matches the extracted type for the query, or if all
criteria cannot be satisfied, the highest-scoring non-
NIL link, or else the highest-scoring link. We then
assign NIL to all responses whose score falls below
a threshold. This threshold was tuned on the devel-
opment data set.

3.3 PageReactor

PageReactor uses string-processing methods (tries)
to recognize candidate entity mentions, and builds a
graph connecting them to possible referents. Edges
in the graph are weighted based on corpus statistics
from a 2014 Wikipedia, and a random-walk algo-
rithm (Wang and Cohen, 2007) is used to rank the
referents. PageReactor, a prototype commercial sys-
tem, is carefully tuned for this task, but includes no
NIL-clustering tools: we created a new NIL cluster
for each 2014 entity that could not be aligned to a
TAC (2008) entity. A second postpass is used to as-
sign TAC types to entities, using heuristics based on
FreeBase types.

In more detail, PageReactor5 is a real-time sys-
tem for linking of entities to knowledge-bases in text
documents. PageReactor is composed of four main
components: 1) the learning module, 2) the named-
entity recognition module, 3) the entity disambigua-
tion module, and 4) the service module.

The learning module is responsible for running
batch data processing and statistics-gathering jobs
over the training data, which typically consists of
large corpora of documents and external knowledge-
base dumps. For this entity-linking task, we used the

5pagereactor.com

May 2014 dump of Wikipedia (wikipedia.org) pages
to train PageReactor’s learning module.

The learning module learns the entity names, their
synonyms, and how likely they are being linked to
its Wikipedia page when mentioned. For example,
we would link the abbreviation “THEM” to the TV
series “The Hidden Extreme Magic” only when the
surrounding text mentions things like TV shows and
magic tricks. The output of the learning module in-
cludes statistics about the frequency of the occur-
rence and co-occurrence of entities in the training
documents and the relationship between different
entities.

The named-entity recognition module, when
given a query document (in the form of a string of
plain text characters), scans through the document,
and annotates every entity name that it recognizes
by utilizing the statistical model learned from the
training corpora. Each annotation is then mapped to
all possible knowledge-base entities it may refer to
(e.g., Lincoln is mapped to both the United States
president Abraham Lincoln, the town car Lincoln
manufactured by the Ford Motor Company, and sev-
eral middle schools and high schools in the US.).

From the recognized entities, the entity-
disambiguation module instantiates a small
graph for this document. The difference between
this document-based graph and external knowledge-
bases such as Wikipedia and Freebase is that
relationships between entities in this graph are not
ontological (e.g., for answering questions like “is
Mark Melancon a team member of the baseball
team Pittsburgh Pirates”?) but statistical, based on
the occurrence counts in the training documents.
For instance, an edge might connects the entities
above if, when the words “Melancon” and “Pi-
rates” appear in close proximity to each other in
a document, it is likely that “Melancon” refers to
the baseball player Mark Mecanon and “Pirates”
refers to the baseball team Pittsburgh Pirates. The
final assignment of tokens to entities is jointly
inferenced using a random graph-walk algorithm
on this internal graph, similar to that used in prior
work by Wang and Cohen (Wang and Cohen, 2007).
Figure 3 illustrates two constructed graphs, one
for the short document “Jaguar is a luxury car”
and “Jaguar is an aggressive feline”, respectively.
The text token “Jaguar” can possibly link to many

Figure 3: Disambiguation graphs constructed by PageReactor from two short documents: “Jaguar is a luxury car”
(left) and “Jaguar is an aggressive feline” (right).

Wikipedia entries (light blue circles are text tokens
and point to entity candidates), but the presence and
absence of the text tokens “luxury car” and “feline”
helps the recognition module to determine the best
candidate.

As a post-processing step for the entity-linking
task, we collected a mapping of Wikipedia URL
to entity types (eg. albums, person, film, location,
books, etc.) from the August 2014 Freebase dump.
This information is used in the post-processing step
to filter out entities that have types irrelevant to this
KBP task.

The service module wraps all above-mentioned
modules so queries can be made via a RESTful
HTTP endpoint. Besides optimizing the parsing
of incoming HTTP queries and delivery of output
JSON results, it is also responsible for preprocessing
of input text and determining certain inference pa-
rameters to the modules based on meta-information
of the input text (e.g., document language, document
type, document length). PageReactor is also avail-
able to the public via the service module.6

6More information and online demos are available at
www.pagereactor.com; those interested in using the PageReac-
tor API can request an API key via info@pagereactor.com.

3.4 NIL Clustering

We implemented several different NIL clustering
methods. Baseline 0 and Baseline 1 group together
identical strings, and identical strings in the same
document, respectively. Both baselines use the ex-
act text for the query, ignoring the query alias. We
also used a more sophisticated k-means based SSL
method which introduces new clusters as needed,
guided by AICC measures of complexity (Dalvi et
al., 2013). We included the query tokens, tokens
from the query sentence, and the full list of can-
didate scores as features. This method was seeded
with NIL clusters identified by the PageReactor sys-
tem for queries matching those identified by the
ProPPR system’s discovery phase.

Unfortunately, the more complex NIL clustering
did seem to afford any improvements over the sim-
pler baselines in the development data, so based on
results, we used Baseline 0 for the limited submis-
sion.

4 Results on EDL

Although the PageReactor system scored above the
median for precision on the evaluation EDL data set,
the results overall were disappointing. As an error
analysis, we examined 100 random query responses
from each system for manual error analysis. The

development (E54) v1.1 2014 evaluation (E87) 2014
system WikiF1 CEAFmP CEAFmR CEAFmF1 WikiF1 CEAFmP CEAFmR CEAFmF1

best 0.678 0.750 0.712 0.730
median 0.509 0.480 0.670 0.559

PageReactor 0.338 0.277 0.211 0.240 0.422 0.611 0.272 0.377
ProPPR:limited.baseline0 0.178 0.689 0.238 0.354 0.144 0.308 0.232 0.265

matching subset 0.378 0.587 0.584 0.585
ProPPR:baseline0 0.189 0.693 0.239 0.356 0.143 0.307 0.232 0.264

matching subset 0.396 0.585 0.581 0.583
ProPPR:baseline1 0.189 0.681 0.235 0.350 0.143 0.301 0.227 0.259

matching subset 0.396 0.584 0.580 0.582
ProPPR:semisupervised1 0.189 0.337 0.117 0.173 0.143 0.193 0.146 0.166

matching subset 0.396 0.314 0.312 0.313

Table 5: CohenCMU results on the EDL task. Due to labeling issues with development dataset v1.1, we computed
scores relative to the entire set of gold labels, and to the subset of gold mentions located by ProPPR’s discovery phase.

diagnostic (R51) 2014
system all in KB NIL

best 0.821 0.796 0.855
median 0.698 0.648 0.767

ProPPR:baseline0 0.276 0.159 0.412
ProPPR:baseline1 0.273 0.159 0.406

ProPPR:semisupervised1 0.152 0.159 0.083

Table 6: CohenCMU B3+ F1 results on diagnostic data
set (perfect discovery)

count type
17 substring
11 PER

4 GPE
2 ORG
7 mistaken identity
6 team or city
3 non-sequitor

33 total

Table 7: Linking errors in 100 random ProPPR responses.
See text for explanation.

count type
2 NIL:PER → NIL:ORG
1 NIL:GPE → NIL:PER
1 NIL:GPE → NIL:ORG
1 substring (ORG)
5 total

Table 8: Linking errors in 100 random PageReactor re-
sponses. See text for explanation.

results are tabulated in Tables 7 and 8. Our hand-
labeled sample overestimates the precision of our
systems, but was done identically between the two
and is thus a valid metric for comparing them.

For this analysis, at 95% precision compared to
ProPPR’s 67%, PageReactor leads the two systems
in accuracy. The majority of the PageReactor er-
rors are regarding the type of an entity not found
in the TAC KB. For example, the query “Boe” was
assigned a NIL entity of type GPE by PageReactor,
when in the source document “Boe” is short for a
person named “Roy Boe” and thus should have re-
ceived type PER.

The most common linking error in the ProPPR
system is one where the query and entity name share
a common substring, but this substring is not enough
to fully identify the entity. For example, ProPPR an-
swered a query for “Edgar Velasquez” with an entity
named “Nick Velasquez.” This issue arises because,
while the ProPPR system does personalized PageR-
ank scoring does understand the value of high-IDF
tokens, it has no understanding of name morphol-
ogy; in particular, it treats last and first names iden-
tically, rather than learning the relative weight for
matching a given name compared to a surname.
Permitting substring matches is important in many
cases, such as when the entity name contains a little-
used middle name, but we need to leverage addi-
tional information in order to determine when the
presence of non-matching text should penalize a
candidate link. In the PageReactor system, we saw
a similar error occur when the query “Navy” was
linked to the entity for the Naval Academy instead
of the US Navy.

The second most common linking error in
ProPPR concerns mistaken identity; when the entity
name and the query text match, but a different en-
tity is meant. The ProPPR system notably predicted
Hoover (the seal) for a query that should have ref-
erenced Hoover (the president), and cricket player
Bill O’Reilly for a query that should have referenced
the political commentator. We predict that many
of these errors could be addressed by considering a
prior over entity pages as a function of their number
of inlinks, since the president and the political com-
mentator are likely to be mentioned more often than
the seal or the cricket player—an additional step of
feature engineering that would be straightforward to
perform. In principle, improved weights for the con-
sideration for the similarity of the vocabulary of the
entity’s disambiguating text with the text of the doc-
ument should also help with this problem.

There are also a number of ProPPR errors involv-
ing the notorious problem of determining when a
city name is being used as a reference to a location
and when it is being used to stand in for a sports
team.

The 2014 ProPPR system required more mem-
ory than the preliminary 2013/2011 system due to
the increased size of the database for local context
information, but it still ran in a respectable 35GB
RAM. Each query took on average 337ms to run,
with the fastest query running in 97ms and the slow-
est in 9.325sec.

4.1 ProPPR Strategy Analysis

As an additional post-task analysis, we evaluated
the performance of the ProPPR system using mod-
ified rulesets that excluded each non-nil strategy
one at a time. For simplicity, instead of using
an exact threshold, we assigned NIL to the bot-
tom 60% of responses for each variant, and used a
unique nil id per query. The linking performance
(strong_typed_link_match) of each variant
is displayed in Table 9. We expect the most impor-
tant strategies to have the greatest negative effect on
the linking score when they are left out. Thus, in
descending order of importance, we have the strate-
gies exact name, anchor query string, document-
level shared text, hub entity, sentence-level shared
text, anchor query token, and token in name. For
this dataset, eliminating the token in name and an-

excluded strategy WikiP WikiR WikiF1
- 0.210 0.115 0.149

exact name 0.161 0.089 0.114
token in name 0.228 0.121 0.158

anchor query string 0.197 0.109 0.140
anchor query token 0.212 0.117 0.151

hub entity 0.207 0.115 0.148
shared text (document) 0.205 0.108 0.141

shared text (sentence) 0.210 0.115 0.149

Table 9: Wikification/linking performance on ruleset
variants excluding each one of the seven non-nil strate-
gies.

chor query token strategies would have resulted in a
higher score than we achieved on the evaluation.

5 Conclusion

Multistage NLP systems are needed to perform com-
plex tasks such as ELD, and systems of this sort
are challenging to build, test and integrate, partic-
ularly when they are based on many statistical re-
sources which naturally take the form of relations
and graphs, rather than numeric features. In this
paper we sought to evaluate the potential of a new,
efficient probabilistic logic called ProPPR for tasks
of this sort. In particular we built and evaluated
two systems, one for entity linking (EL) and one for
entity linking and discovery (ELD). We also com-
pared these to PageReactor, a high-quality hand-
engineering system for the closely related task of
wikification which used similar resources.

Our experience can be summarized as follows.
The logic-based systems clearly do scale to prob-
lems of this size, running queries in a third of a sec-
ond, on average, on a high-end desktop machine,
even over databases with hundreds of millions of tu-
ples. The implementation is concise, and it is rela-
tively easy to explore variants of the basic algorithm.
Further, the logic-based systems performed well on
the simpler task of EL.

Unfortunately, it is quite difficult to perform
detailed error analysis of results provided by
ProPPR—perhaps because they combine informa-
tion from many sources to derive an overall score.
As a consequence it was very difficult to debug logic
programs evaluated on large-scale problems, a dis-
advantage which ultimately negated any engineer-

ing advantages potentially offered by the architec-
ture. This problem was compounded by the failure
of learning to improve performance on either the
EL or ELD task, an issue which is being investi-
gated at the time of this writing, but far from be-
ing resolved. Hence one important conclusion is that
scalability is not enough for practicality—instead, it
seems likely that better tools for monitoring and vi-
sualizing performance are needed to make tools like
ProPPR practically useful for large-scale tasks.

Acknowledgements

This work was sponsored in part by DARPA grant
FA87501220342 to CMU under the DEFT program,
and a Google Research Award.

References

Reid Andersen, Fan R. K. Chung, and Kevin J. Lang.
2008. Local partitioning for directed graphs using
pagerank. Internet Mathematics, 5(1):3–22.

Angel X. Chang, Valentin I. Spitkovsky, Eneko Agirre,
and Christopher D. Manning. 2011. Stanford-UBC
entity linking at TAC-KBP, again. In Proceedings
of the Fourth Text Analysis Conference (TAC 2011),
Gaithersburg, Maryland, USA, November.

Kroly Csalogny, Dniel Fogaras, Balzs Rcz, and Tams
Sarls. 2005. Towards scaling fully personalized
PageRank: Algorithms, lower bounds, and experi-
ments. Internet Mathematics, 2(3):333–358.

Bhavana Dalvi, William W. Cohen, and Jamie Callan.
2013. Exploratory learning. In ECML/PKDD.

Frank Lin and William W. Cohen. 2010. Semi-
supervised classification of network data using very
few labels. In Nasrullah Memon and Reda Alhajj, edi-
tors, ASONAM, pages 192–199. IEEE Computer Soci-
ety.

Larry Page, Sergey Brin, R. Motwani, and T. Winograd.
1998. The PageRank citation ranking: Bringing order
to the web. In Technical Report, Computer Science
department, Stanford University.

Valentin I. Spitkovsky and Angel X. Chang. 2012. A
cross-lingual dictionary for English Wikipedia con-
cepts. In Proceedings of the Eighth International
Conference on Language Resources and Evaluation
(LREC 2012), Istanbul, Turkey, May.

Richard Wang and William W. Cohen. 2007. Language-
independent set expansion of named entities using the
web. In ICDM-2007.

William Yang Wang, Kathryn M. Mazaitis, and
William W. Cohen. 2013. Programming with per-
sonalized page-rank: A locally groundable first-order
probabilistic logic. In CIKM-2013.

