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Abstract: The aim of this study is to incorporate the technique of programming 

by demonstration (PBD) into an authoring tool for Cognitive Tutors. The pri-

mary motivation of using PBD is to facilitate the authoring of Cognitive Tutors 

by educators, rather than AI programmers. That is, instead of asking authors to 

build a cognitive model representing a task to be taught, a machine-learning 

agent – called the Simulated Student – observes the author performing the target 

task and induces production rules that replicate the author’s performance. FOIL 

is used to learn conditions appearing in the production rules. An evaluation in 

an example domain of algebra equation solving shows that observing 10 prob-

lems solved in 44 steps induced 9 correct and 1 wrong production rules. Two of 

the correctly induced rules were overly general hence produced redundant solu-

tions.  

1 Introduction 

This study considers the application of programming by demonstration (PBD) to an 

unusual task domain: constructing intelligent tutoring systems, or Cognitive Tutors. 

Cognitive Tutors are known to be an effective means of tutoring students in various 

topics including algebra, chemistry, and physics [1]. However, building a Cognitive 

Tutor is difficult, as it requires knowledge of the subject matter, a good understanding 

of the prior abilities of the students who will use the system, and extensive program-

ming skills. Our goal is to allow educators – i.e., people with knowledge of the sub-

ject matter and students’ abilities, but little programming skills – to build Cognitive 

Tutors. To accomplish this, we wish to construct a system in which an author can 

construct a GUI for a Cognitive Tutor, and then use this GUI to present examples of 

how the human students should solve problems.  A PBD learning system, called the 

Simulated Student, will then generalize these examples and build a set of production 

rules for solving problems in the task domain.  

It is clearly desirable for the Simulated Student to learn a cognitive model that can 

be easily communicated with the authors. It is also clearly desirable for the Simulated 

Student to learn the “correct” generalizations (the ones intended by the authors) as 

quickly as possible. Less obviously, it is also useful for the Simulated Student to pro-

duce generalizations that are incorrect, but consistent with those that a human student 

might produce: such incorrect but plausible generalizations are often incorporated in 

the Cognitive Tutors to model possible human errors. 

There have been a number of studies reported so far to integrate PBD into an au-

thoring tool to build Cognitive Tutors. Jarvis et al [2] have successfully identified 

working memory elements and a sequence of operators that must be involved in a 
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production rule, but they have not addressed the issue of extracting conditions for the 

production rules to be fired, hence their production rules tended to be overly general. 

Blessing developed Demonstr8 [3] that also induces working memory elements and a 

sequence of operators for production rules from authors’ demonstrations. It also has a 

tool for the authors to manually specify conditions of firing rules that must be embed-

ded into the condition part. The interface to specify conditions apparently include pre-

defined predicate symbols hard-coded into Demonstr8 hence the flexibility for au-

thors to add new conditions is unclear.  

In the current study all necessary conditions of firing rules are learned using FOIL 

[4] and embedded into production rules. Simulated Students are modular in both con-

dition extraction and operator synthesis hence the background knowledge can be 

added and deleted easily. The resulted production rules would be just as good in qual-

ity as the ones hand-written by expert cognitive scientists, who are skillful in both 

cognitive task analysis and AI-programming.  

2 Overview of Cognitive Tutors 

2.1 Example domain: Algebra Equation Solving 

As an example domain, we use algebra equation solving. Fig. 1 shows an example 

tutor interface. It consists of two tables; one for left-hand side of the equation and the 

other one for right-hand side.  

An equation is supposed to be solved by filling a cell on the left- or right-hand side 

alternatively, one at a time, from top to bottom without skipping any cells.  At the 

moment shown in Fig. 1, the term “4x” on the left-hand side has been just entered. 

The next desirable action is then to enter the term “2x+5+2” in the empty cell on the 

right hand side immediately below “2x+5.” These two steps, entering “4x” and 

“2x+5+2,” together complete a higher-level goal in transposing the term “-2” from 

one side of the equation to the other. In the following sections, the first step that en-

ters “4x” is refereed to as trans-lr-lhs, and the second step to tern “2x+5+2” is 

called trans-lr-rhs. 

2.2 Model Tracing  

One of the distinguished features of Cognitive Tutors is the way it recognizes and 

Fig. 1: Example of a Cognitive Tutor.
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assesses students competent on each of the cognitive skills. For every problem-

solving steps performed by a student, the Cognitive Tutor provides flagged feedback, 

which merely tells the student what he/she just did is correct or wrong. The judgment 

is based on a cognitive model that represents individual cognitive skills required to 

perform a target task. Given a cognitive model, one can generate a solution graph 

representing all possible solutions derived from the given cognitive model as a di-

rected graph. Nodes in the graph represent an intermediate state reflecting a particular 

status of the GUI. Links in the graph represent a single production rule application.  

The Cognitive Tutors monitor students’ problem-solving activities by using a solu-

tion graph. For every action a student makes, the tutor attempts to identify a node in 

the solution graph that has the same GUI status as the one the student has just reached, 

and verify if it is an immediate successor of the previous state. If such state is success-

fully identified, then the student’s action is considered to be correct, otherwise wrong. 

2.3 Production Rules as a Cognitive Model 

A production rule defines ways to manipulate objects (i.e., text fields, buttons, etc.) 

representing on the GUI.  Each of those elements has a corresponding working mem-

ory element (WME) appearing in production rules.  

A production rule consists of three major components: WME-path and feature tests 

in a condition part (or the left-hand side, LHS), and a set of operators in an action part 

(or the right-hand side, RHS).  

A WME-path is a chain of WMEs from the WME representing a problem to a cer-

tain WME. A WME is structured like a frame. That is, it has slots and slot-values. For 

example, in the Equation Tutor, the first element in the interface-elements slot 

of the problem WME is a table that corresponds to the left table in the GUI shown in 

Fig. 1. The first element of the column slot of the table WME is a column WME. 

Finally, the cells in the column WME are associated to the cell slot, each of which 

corresponds to a cell in the left hand side in the tutor interface shown in Fig. 1.  

A feature test specifies a condition in LHS as a relation that must be held among 

one or more of the WMEs.   

3 Next Generation Authoring 

3.1 Interaction between Authors and Simulated Students 

Authors first build a GUI for their desired tutor, like a one shown in Fig. 1. To do 

this, they use the Cognitive Tutor Authoring Tools [5], which basically is a collection 

of tools, including a GUI builder, to build a Cognitive Tutor.  

Next, authors need to specify all predicate symbols and operator symbols appear-

ing in production rules. A predicate symbol represents a test for a specific feature. An 

operator takes one or more arguments and returns a single value. Both predicate sym-

bols and operators are task dependent. They may be written by advanced authors.  

The authors then use the GUI and solve a number of problems just in a way that 

the human students are supposed to perform. Those demonstrations would then be fed 

to the Simulated Student to induce production rules that are sufficient to replicate the 

demonstrations. Each step of problem solving must be annotated in such a way that 

the steps that can be done with the same production rules have the same name. Also, 
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authors are required to specify all GUI elements involved in a production rule. Since 

every single GUI element is associated with a unique WME, this step is essentially 

identifying the WMEs that appear in a production rule. These GUI elements (or 

WMEs) are called the focus of attention. In the case of trans-lr-lhs shown in 

Fig. 1, the focus of attention consists of the top and the 2nd cells on the left-hand side 

and the top cell of right-hand side.  

Each time the author demonstrates a step, the Simulated Student induces produc-

tion rules with the learning technique described in Section 3.2. The resulted produc-

tion rules are then loaded to the Cognitive Tutor with the GUI component.  

After authors solve a number of problems, the Cognitive Tutor may be ready to 

run, that is, the induced production rules are capable of solving problems correctly. 

To test the production rules, authors enter a new problem to the Cognitive Tutor, and 

let the tutor solve it. When the tutor shows an incorrect or undesired performance, 

authors provide a feedback by first clicking a [Wrong] button and then entering a 

correct value into a correct place. This feedback then triggers a refinement of the 

incorrect production rule.  

Lastly and optionally, authors may directly modify production rules to obtain a de-

sired set of production rules without providing more problems to trigger further re-

finement of irrelevant production rules.  

3.2 Architecture of Simulated Students 

The Simulated Student applies three different techniques for three major components 

of a production rule mentioned in Section 2.2: WME paths, feature tests, and opera-

tors. Given focus of attention specified by the author, searching WME paths and an 

operator sequence can be done by a brute-force search.  To search a shortest operator 

sequence, the Simulated Student utilizes iterative-deepening depth first search.  

Brute-force searching for feature tests is computationally very expensive as they 

involve relationships between WME elements. We use FOIL [4] for this task. Each 

time a problem-solving step is demonstrated, the Simulated Student generates input 

data for FOIL that is a collection of positive and negative examples for applicability 

of each production rule; a step demonstrated becomes a positive example for a pro-

duction rule corresponding to the step.  At the same time, the step also becomes a 

negative example for all other production rules.  Those data are accumulated over the 

different problems, thus the number of positive and negative examples is continuously 

increasing as more steps are demonstrated.  

4 Evaluation 

To evaluate a performance of the Simulated Student, we have conducted an evalua-

tion with algebra equation as an example subject domain.  

For the sake of efficiency, the evaluation was done in such a way that instructions 

were provided with a text file. The output from the Simulated Student (i.e., production 

rules) was manually examined. The evaluation was run on a PC with Pentium IV 

3.4GHz processor with 1GB RAM. The Simulated Student was written in Java. 

We used 8 feature predicates and 13 operators as background knowledge. In total 

44 steps were demonstrated to solve the 10 problems shown in Fig. 2. Those prob-

lems were solved by 10 different rules (shown in the top row in Fig. 2). In other 
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words, the Simulated Student induced 10 production rules from 44 demonstrated 

steps. 

A cell with the letter “C” shows that the corresponding production rule was a cor-

rect generalization of the demonstrations. The cells with “P” or “W” show that the 

Simulated Student induced a production rule that was overly general. The difference 

between “P” and “W” is that the former (plausible) production rule yields a correct 

performance, but such application is strategically not optimal (i.e., yielding redundant 

steps), whereas the application of latter (wrong) production rule might lead to a wrong 

result.  

An example of incorrectly generalized rule (a “W” in Fig. 2) is trans-lr-lhs 

learned from Problem 4 through 9 where the RHS operator says “write the first vari-

able term into the target cell.” While this rule correctly produces “3x=4–2” from 

“3x+2=4,” given that trans-lr-rhs is correctly induced, it incorrectly produces 

“3x=4–2” from “3x+2x+2=4.”   

An example of plausible over-generalization (“P”) is a rule div-rhs learned from 

Problem 4 and 5 where the feature tests in LHS say “apply this rule when LHS has a 

coefficient.” The RHS operators of this rule was correct hence the application of this 

rule always generates correct result, but since the conditions in LHS is still weak (i.e., 

overly generalized) this rule could apply to “3x+4=2x+5,” which is not a recom-

mended strategy.  

A shaded cell in Fig. 2 shows that a corresponding production rule appeared in the 

demonstration. It must be emphasized that, as described in a previous section, a dem-

onstration on a particular problem-solving step is not only used as a positive example 

for the specified production rule, but also serves as a negative example for the other 

production rules. Thus, a quality of production rule might also improve with a demon-

stration that does not involve that rule. See, for example, the rule div-lhs. Its first 

feature tests were captured (though they were overly generalized) on the 4th problem 

that does not involve div-lhs. It must be also emphasized that blank cells do con-

tribute for learning by serving as negative examples. Thus, do-arith[metic]-lhs, 

for example, had 3 positive examples (shaded ones) and 7 negative examples (the first 

7 blank cells in the same column).  

No Problem div-lhs div-rhs trans-lr-lhs trans-lr-rhs copy-lhs do-arith-rhs trans-rl-lhs trans-rl-rhs do-arith-lhs copy-rhs

1 3x = 6 P P

2 2x = 4 P P

3 4x = 12 P P

4 x - 5 = 3 P P W W P C

5 x + 2 = 6 P P W W P C

6 2 = -3x + 11 C P W W P C P W

7 3x - 4 = 2 C P W W P C P W

8 2x + 3x = 3 + 7 C P W W P C P W P P

9 3x = 2x + 4 C C W W C C C W P P

10 3x - 3 = 2x + 5 C C C C C C C W P P

Fig. 2: Results over sequential learning from demonstration. 
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5 Conclusion 

We have shown an application of programming-by-demonstration to a novel task 

domain of building Cognitive Tutors. With the Simulated Student, educators who are 

not necessarily skillful cognitive scientists can build their own Cognitive Tutors with-

out getting involved in heavy programming. Due to a mandatory demand of the task, 

the output of Simulated Student must be comprehensible for the authors. The prelimi-

nary evaluation showed that Simulated Student has effectively induced sufficient 

information to compose accurate production rules that are written in widely accepted 

programming language.  

The Simulated Student might learn incorrect rules that a human student might also 

learn, although we did not observed such erroneous learning in the evaluation. Further 

study is needed to investigate the amount of demonstrations necessary to learn stable 

production rules as well as the effect of different curriculum on the quality of learn-

ing. The current evaluation was conducted with only a small number of demonstra-

tions and a small set of background knowledge (i.e., feature predicates and operators). 

It must be scaled up so that cross validation can be taken place to have better under-

standing of both the quantitative and qualitative aspects of programming by demon-

stration.  
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