
41

Building Cognitive Tutors

with Programming by Demonstration

Noboru Matsuda, William W. Cohen, Kenneth R. Koedinger

School of Computer Science, Carnegie Mellon University

5000 Forbes Ave., Pittsburgh PA 15213
{mazda,wcohen,koedinger}@cs.cmu.edu

Abstract: The aim of this study is to incorporate the technique of programming

by demonstration (PBD) into an authoring tool for Cognitive Tutors. The pri-

mary motivation of using PBD is to facilitate the authoring of Cognitive Tutors

by educators, rather than AI programmers. That is, instead of asking authors to

build a cognitive model representing a task to be taught, a machine-learning

agent – called the Simulated Student – observes the author performing the target

task and induces production rules that replicate the author’s performance. FOIL

is used to learn conditions appearing in the production rules. An evaluation in

an example domain of algebra equation solving shows that observing 10 prob-

lems solved in 44 steps induced 9 correct and 1 wrong production rules. Two of

the correctly induced rules were overly general hence produced redundant solu-

tions.

1 Introduction

This study considers the application of programming by demonstration (PBD) to an

unusual task domain: constructing intelligent tutoring systems, or Cognitive Tutors.

Cognitive Tutors are known to be an effective means of tutoring students in various

topics including algebra, chemistry, and physics [1]. However, building a Cognitive

Tutor is difficult, as it requires knowledge of the subject matter, a good understanding

of the prior abilities of the students who will use the system, and extensive program-

ming skills. Our goal is to allow educators – i.e., people with knowledge of the sub-

ject matter and students’ abilities, but little programming skills – to build Cognitive

Tutors. To accomplish this, we wish to construct a system in which an author can

construct a GUI for a Cognitive Tutor, and then use this GUI to present examples of

how the human students should solve problems. A PBD learning system, called the

Simulated Student, will then generalize these examples and build a set of production

rules for solving problems in the task domain.

It is clearly desirable for the Simulated Student to learn a cognitive model that can

be easily communicated with the authors. It is also clearly desirable for the Simulated

Student to learn the “correct” generalizations (the ones intended by the authors) as

quickly as possible. Less obviously, it is also useful for the Simulated Student to pro-

duce generalizations that are incorrect, but consistent with those that a human student

might produce: such incorrect but plausible generalizations are often incorporated in

the Cognitive Tutors to model possible human errors.

There have been a number of studies reported so far to integrate PBD into an au-

thoring tool to build Cognitive Tutors. Jarvis et al [2] have successfully identified

working memory elements and a sequence of operators that must be involved in a

Matsuda, N., Cohen, W. W., & Koedinger, K. R. (2005). Building Cognitive Tutors with Program-

ming by Demonstration. In S. Kramer & B. Pfahringer (Eds.), Technical report: TUM-I0510 (Pro-

ceedings of the International Conference on Inductive Logic Programming) (pp. 41-46): Insti-

tut fur Informatik, Technische Universitat Munchen.

42

production rule, but they have not addressed the issue of extracting conditions for the

production rules to be fired, hence their production rules tended to be overly general.

Blessing developed Demonstr8 [3] that also induces working memory elements and a

sequence of operators for production rules from authors’ demonstrations. It also has a

tool for the authors to manually specify conditions of firing rules that must be embed-

ded into the condition part. The interface to specify conditions apparently include pre-

defined predicate symbols hard-coded into Demonstr8 hence the flexibility for au-

thors to add new conditions is unclear.

In the current study all necessary conditions of firing rules are learned using FOIL

[4] and embedded into production rules. Simulated Students are modular in both con-

dition extraction and operator synthesis hence the background knowledge can be

added and deleted easily. The resulted production rules would be just as good in qual-

ity as the ones hand-written by expert cognitive scientists, who are skillful in both

cognitive task analysis and AI-programming.

2 Overview of Cognitive Tutors

2.1 Example domain: Algebra Equation Solving

As an example domain, we use algebra equation solving. Fig. 1 shows an example

tutor interface. It consists of two tables; one for left-hand side of the equation and the

other one for right-hand side.

An equation is supposed to be solved by filling a cell on the left- or right-hand side

alternatively, one at a time, from top to bottom without skipping any cells. At the

moment shown in Fig. 1, the term “4x” on the left-hand side has been just entered.

The next desirable action is then to enter the term “2x+5+2” in the empty cell on the

right hand side immediately below “2x+5.” These two steps, entering “4x” and

“2x+5+2,” together complete a higher-level goal in transposing the term “-2” from

one side of the equation to the other. In the following sections, the first step that en-

ters “4x” is refereed to as trans-lr-lhs, and the second step to tern “2x+5+2” is

called trans-lr-rhs.

2.2 Model Tracing

One of the distinguished features of Cognitive Tutors is the way it recognizes and

Fig. 1: Example of a Cognitive Tutor.

43

assesses students competent on each of the cognitive skills. For every problem-

solving steps performed by a student, the Cognitive Tutor provides flagged feedback,

which merely tells the student what he/she just did is correct or wrong. The judgment

is based on a cognitive model that represents individual cognitive skills required to

perform a target task. Given a cognitive model, one can generate a solution graph

representing all possible solutions derived from the given cognitive model as a di-

rected graph. Nodes in the graph represent an intermediate state reflecting a particular

status of the GUI. Links in the graph represent a single production rule application.

The Cognitive Tutors monitor students’ problem-solving activities by using a solu-

tion graph. For every action a student makes, the tutor attempts to identify a node in

the solution graph that has the same GUI status as the one the student has just reached,

and verify if it is an immediate successor of the previous state. If such state is success-

fully identified, then the student’s action is considered to be correct, otherwise wrong.

2.3 Production Rules as a Cognitive Model

A production rule defines ways to manipulate objects (i.e., text fields, buttons, etc.)

representing on the GUI. Each of those elements has a corresponding working mem-

ory element (WME) appearing in production rules.

A production rule consists of three major components: WME-path and feature tests

in a condition part (or the left-hand side, LHS), and a set of operators in an action part

(or the right-hand side, RHS).

A WME-path is a chain of WMEs from the WME representing a problem to a cer-

tain WME. A WME is structured like a frame. That is, it has slots and slot-values. For

example, in the Equation Tutor, the first element in the interface-elements slot

of the problem WME is a table that corresponds to the left table in the GUI shown in

Fig. 1. The first element of the column slot of the table WME is a column WME.

Finally, the cells in the column WME are associated to the cell slot, each of which

corresponds to a cell in the left hand side in the tutor interface shown in Fig. 1.

A feature test specifies a condition in LHS as a relation that must be held among

one or more of the WMEs.

3 Next Generation Authoring

3.1 Interaction between Authors and Simulated Students

Authors first build a GUI for their desired tutor, like a one shown in Fig. 1. To do

this, they use the Cognitive Tutor Authoring Tools [5], which basically is a collection

of tools, including a GUI builder, to build a Cognitive Tutor.

Next, authors need to specify all predicate symbols and operator symbols appear-

ing in production rules. A predicate symbol represents a test for a specific feature. An

operator takes one or more arguments and returns a single value. Both predicate sym-

bols and operators are task dependent. They may be written by advanced authors.

The authors then use the GUI and solve a number of problems just in a way that

the human students are supposed to perform. Those demonstrations would then be fed

to the Simulated Student to induce production rules that are sufficient to replicate the

demonstrations. Each step of problem solving must be annotated in such a way that

the steps that can be done with the same production rules have the same name. Also,

44

authors are required to specify all GUI elements involved in a production rule. Since

every single GUI element is associated with a unique WME, this step is essentially

identifying the WMEs that appear in a production rule. These GUI elements (or

WMEs) are called the focus of attention. In the case of trans-lr-lhs shown in

Fig. 1, the focus of attention consists of the top and the 2nd cells on the left-hand side

and the top cell of right-hand side.

Each time the author demonstrates a step, the Simulated Student induces produc-

tion rules with the learning technique described in Section 3.2. The resulted produc-

tion rules are then loaded to the Cognitive Tutor with the GUI component.

After authors solve a number of problems, the Cognitive Tutor may be ready to

run, that is, the induced production rules are capable of solving problems correctly.

To test the production rules, authors enter a new problem to the Cognitive Tutor, and

let the tutor solve it. When the tutor shows an incorrect or undesired performance,

authors provide a feedback by first clicking a [Wrong] button and then entering a

correct value into a correct place. This feedback then triggers a refinement of the

incorrect production rule.

Lastly and optionally, authors may directly modify production rules to obtain a de-

sired set of production rules without providing more problems to trigger further re-

finement of irrelevant production rules.

3.2 Architecture of Simulated Students

The Simulated Student applies three different techniques for three major components

of a production rule mentioned in Section 2.2: WME paths, feature tests, and opera-

tors. Given focus of attention specified by the author, searching WME paths and an

operator sequence can be done by a brute-force search. To search a shortest operator

sequence, the Simulated Student utilizes iterative-deepening depth first search.

Brute-force searching for feature tests is computationally very expensive as they

involve relationships between WME elements. We use FOIL [4] for this task. Each

time a problem-solving step is demonstrated, the Simulated Student generates input

data for FOIL that is a collection of positive and negative examples for applicability

of each production rule; a step demonstrated becomes a positive example for a pro-

duction rule corresponding to the step. At the same time, the step also becomes a

negative example for all other production rules. Those data are accumulated over the

different problems, thus the number of positive and negative examples is continuously

increasing as more steps are demonstrated.

4 Evaluation

To evaluate a performance of the Simulated Student, we have conducted an evalua-

tion with algebra equation as an example subject domain.

For the sake of efficiency, the evaluation was done in such a way that instructions

were provided with a text file. The output from the Simulated Student (i.e., production

rules) was manually examined. The evaluation was run on a PC with Pentium IV

3.4GHz processor with 1GB RAM. The Simulated Student was written in Java.

We used 8 feature predicates and 13 operators as background knowledge. In total

44 steps were demonstrated to solve the 10 problems shown in Fig. 2. Those prob-

lems were solved by 10 different rules (shown in the top row in Fig. 2). In other

45

words, the Simulated Student induced 10 production rules from 44 demonstrated

steps.

A cell with the letter “C” shows that the corresponding production rule was a cor-

rect generalization of the demonstrations. The cells with “P” or “W” show that the

Simulated Student induced a production rule that was overly general. The difference

between “P” and “W” is that the former (plausible) production rule yields a correct

performance, but such application is strategically not optimal (i.e., yielding redundant

steps), whereas the application of latter (wrong) production rule might lead to a wrong

result.

An example of incorrectly generalized rule (a “W” in Fig. 2) is trans-lr-lhs

learned from Problem 4 through 9 where the RHS operator says “write the first vari-

able term into the target cell.” While this rule correctly produces “3x=4–2” from

“3x+2=4,” given that trans-lr-rhs is correctly induced, it incorrectly produces

“3x=4–2” from “3x+2x+2=4.”

An example of plausible over-generalization (“P”) is a rule div-rhs learned from

Problem 4 and 5 where the feature tests in LHS say “apply this rule when LHS has a

coefficient.” The RHS operators of this rule was correct hence the application of this

rule always generates correct result, but since the conditions in LHS is still weak (i.e.,

overly generalized) this rule could apply to “3x+4=2x+5,” which is not a recom-

mended strategy.

A shaded cell in Fig. 2 shows that a corresponding production rule appeared in the

demonstration. It must be emphasized that, as described in a previous section, a dem-

onstration on a particular problem-solving step is not only used as a positive example

for the specified production rule, but also serves as a negative example for the other

production rules. Thus, a quality of production rule might also improve with a demon-

stration that does not involve that rule. See, for example, the rule div-lhs. Its first

feature tests were captured (though they were overly generalized) on the 4th problem

that does not involve div-lhs. It must be also emphasized that blank cells do con-

tribute for learning by serving as negative examples. Thus, do-arith[metic]-lhs,

for example, had 3 positive examples (shaded ones) and 7 negative examples (the first

7 blank cells in the same column).

No Problem div-lhs div-rhs trans-lr-lhs trans-lr-rhs copy-lhs do-arith-rhs trans-rl-lhs trans-rl-rhs do-arith-lhs copy-rhs

1 3x = 6 P P

2 2x = 4 P P

3 4x = 12 P P

4 x - 5 = 3 P P W W P C

5 x + 2 = 6 P P W W P C

6 2 = -3x + 11 C P W W P C P W

7 3x - 4 = 2 C P W W P C P W

8 2x + 3x = 3 + 7 C P W W P C P W P P

9 3x = 2x + 4 C C W W C C C W P P

10 3x - 3 = 2x + 5 C C C C C C C W P P

Fig. 2: Results over sequential learning from demonstration.

46

5 Conclusion

We have shown an application of programming-by-demonstration to a novel task

domain of building Cognitive Tutors. With the Simulated Student, educators who are

not necessarily skillful cognitive scientists can build their own Cognitive Tutors with-

out getting involved in heavy programming. Due to a mandatory demand of the task,

the output of Simulated Student must be comprehensible for the authors. The prelimi-

nary evaluation showed that Simulated Student has effectively induced sufficient

information to compose accurate production rules that are written in widely accepted

programming language.

The Simulated Student might learn incorrect rules that a human student might also

learn, although we did not observed such erroneous learning in the evaluation. Further

study is needed to investigate the amount of demonstrations necessary to learn stable

production rules as well as the effect of different curriculum on the quality of learn-

ing. The current evaluation was conducted with only a small number of demonstra-

tions and a small set of background knowledge (i.e., feature predicates and operators).

It must be scaled up so that cross validation can be taken place to have better under-

standing of both the quantitative and qualitative aspects of programming by demon-

stration.

Acknowledgement

This research was supported by the Pittsburgh Science of Learning Center funded

by National Science Foundation award No. SBE-0354420.

Reference

[1] J. R. Anderson, A. T. Corbett, K. R. Koedinger, and R. Pelletier, "Cognitive

tutors: Lessons learned," Journal of the Learning Sciences, vol. 4, pp. 167-207,

1995.

[2] M. P. Jarvis, G. Nuzzo-Jones, and N. T. Heffernan, "Applying Machine Learn-

ing Techniques to Rule Generation in Intelligent Tutoring Systems," in Proceed-

ings of the International Conference on Intelligent Tutoring Systems, J. C. Les-

ter, Ed. Heidelberg, Berlin: Springer, 2004, pp. 541-553.

[3] S. B. Blessing, "A Programming by Demonstration Authoring Tool for Model-

Tracing Tutors," International Journal of Artificial Intelligence in Education,

vol. 8, pp. 233-261, 1997.

[4] J. R. Quinlan, "Learning Logical Definitions from Relations," Machine Learn-

ing, vol. 5, pp. 239-266, 1990.

[5] K. R. Koedinger, V. A. W. M. M. Aleven, and N. Heffernan, "Toward a Rapid

Development Environment for Cognitive Tutors," in Proceedigns of the Interna-

tional Conference on Artificial Intelligence in Education, U. Hoppe, F. Verdejo,

and J. Kay, Eds. Amsterdam: IOS Press, 2003, pp. 455-457.

