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Abstract

Many complex reasoning tasks in Artificial Intel-
ligence (including relation extraction, knowledge
base completion, and information integration) can
be formulated as inference problems using a proba-
bilistic first-order logic. However, due to the dis-
crete nature of logical facts and predicates, it is
challenging to generalize symbolic representations
and represent first-order logic formulas in proba-
bilistic relational models. In this work, we take a
rather radical approach: we aim at learning contin-
uous low-dimensional embeddings for first-order
logic from scratch. In particular, we first con-
sider a structural gradient based structure learn-
ing approach to generate plausible inference for-
mulas from facts; then, we build grounded proof
graphs using background facts, training examples,
and these inference formulas. To learn embeddings
for formulas, we map the training examples into
the rows of a binary matrix, and inference formulas
into the columns. Using a scalable matrix factor-
ization approach, we then learn the latent continu-
ous representations of examples and logical formu-
las via a low-rank approximation method. In ex-
periments, we demonstrate the effectiveness of rea-
soning with first-order logic embeddings by com-
paring with several state-of-the-art baselines on two
datasets in the task of knowledge base completion.

1 Introduction

Learning to reason and understand the world’s knowledge is
a fundamental problem in Artificial Intelligence (AI). Tradi-
tional symbolic AI methods were popular in the 1980s, when
first-order logic rules were mostly handwritten, and reason-
ing algorithms were built on top of them. In the 90s, more
and more researchers were interested in statistical methods
that deal with the uncertainty of the data, using probabilistic
models.

In Statistical Relational Learning, many researchers ask a
vital question: is it possible to integrate both the symbolic and
statistical approaches for building intelligent systems? For
example, in many probabilistic logic programming frame-
works, from Stochastic Logic Programs [Muggleton, 2000]

to Markov Logic Networks (MLNs) [Richardson and Domin-
gos, 2006] to ProbLog [Gutmann et al., 2008], one can de-
termine the importance of each inference formula by learning
a weight parameter from data. However, a logical formula is
made of many important components: quantifiers, predicates,
connectives, negations, the number of arguments, goals, vari-
able order and positions etc. Therefore, a key research ques-
tion that we ask in this paper is: what would be an expres-
sive and learnable representation for logical inference formu-
las that can deal with uncertainty when working with large,
noisy datasets in the real world?

In recent years, learning low-dimensional embeddings be-
comes very successful in representing language, entities, and
relations. For example, Mikolov et al. [2013] have developed
Word2Vec: a tool that allows one to learn the multidimen-
sional embeddings of words and phrases from large corpora.
When working with relational data, Bordes et al. [2013] find
that learning continuous embedded vectors for relations to-
gether with head and tail entities improves knowledge base
completion [Bordes et al., 2011]. In addition to effectiveness,
their approaches are also efficient enough to deal with very
large knowledge bases.

In this work, we explore the possibility of learning low-
dimensional first-order logic embeddings from scratch. More
specifically, we are interested in learning latent, distribu-
tional representations of Horn clauses to enhance logic-based
knowledge base completion for large datasets. To start with,
we first use a structural gradient approach [Wang er al.,
2014a] to identify a set of plausible formulas from knowledge
bases. Then, we utilize a scalable probabilistic logic called
ProPPR [Wang et al., 2013], and produce a grounded proof
graph using these logical formulas, training examples, and
the background knowledge base. In ProPPR’s proof graph,
the activated first-order logic formulas become the edges, and
the nodes are intermediate states of the proof. To perform
representation learning on the formulas, we map the proof
graphs to a binary matrix, and use a scalable low-rank ap-
proximation based framework to learn the embeddings of the
examples and formulas. Finally, we transform these learned
embeddings to the parameters for the formulas, and enable
first-order logic inference with learned formula embeddings.
In experiments, we evaluate the proposed method on a Free-
base 15K dataset and a WordNet dataset with hundreds of
thousands of facts, and demonstrate the advantage of reason-



about(X,Z) :- handLabeled(X,Z) # base.
about(X,Z) :- sim(X,Y),about(Y,Z)  # prop.
sim(X,Y) :- links(X,Y) # sim,link.
sim(X,Y) :-
hasWord(X,W),hasWord(Y,W),
linkedBy(X,Y,W) # sim,word.
linkedBy(X,Y,W) :- true # by(W).

Table 1: A simple ProPPR program. See text for explanation.

ing with first-order logic embeddings. Our main contributions
are two-fold:

e We propose a practical algorithm for learning first-order
logic embeddings for enhancing Statistical Relational
Learning;

e We demonstrate that the proposed approach can be
scaled to reasoning tasks on two large knowledge bases,
outperforming various strong baselines.

2 Related Work

Our work is closely related to recent studies of learning
knowledge graph embeddings. RESCAL [Nickel ef al., 2011]
is among the first to consider tensor decomposition for the
task of learning entity and relation embeddings. They use
a rank-3 tensor to represent relations, head, and tail enti-
ties, and deploy a least squares training method. A number
of energy based approaches for learning relational embed-
dings have also been proposed [Bordes er al., 2011; 2014;
Jenatton et al., 2012], showing strong performances. Re-
cently, Bordes et al. [2013] introduce a scalable method
for translating embeddings in knowledge base completion,
and together with its variants [Wang et al., 2014b; Lin et
al., 2015b], they achieve the state-of-the-art results in this
task. With the revival of neural network methods, Shi and
Zhu [2015] have investigated a deep Convolutional Neural
Networks approach for learning relational embeddings. Al-
though these approaches have considered learning embed-
dings for entities and relations, none of the above have ac-
tually investigated the possibility of learning first-order logic
embeddings.

There has been recent studies [Lin ef al., 2015a; Wang
et al., 2015] utilizing logic-like inference paths as constraints
for learning entity and relation embeddings. Guu et al. [2015]
leverage embedding learning techniques and path constraints
for path query answering. Wei et al. [2015] learn knowl-
edge base embeddings, and then use MLNs as a postpass
for ranking the instances. Our work also aligns with a pre-
liminary attempt of using entailment based first-order con-
straints [Rocktischel et al., 2014] for universal schema based
knowledge base completion [Riedel ef al., 2013]. To the best
of our knowledge, we are the first formal study to investi-
gate the problem of learning low-dimensional first-order logic
embeddings from scratch, while scaling formula embeddings
based probabilistic logic reasoning to large knowledge bases.

3 Background: ProPPR

Before introducing our first-order logic embedding approach,
we briefly review the scalable probabilistic inference frame-

work that our method is built on. Below we will give an infor-
mal description of ProPPR, based on a small example. More
formal descriptions can be found in [Wang er al., 2013].

ProPPR (for Programming with Personalized PageRank)
is a stochastic extension of the logic programming language
Prolog. A simple program in ProPPR is shown in Table 1.
Roughly speaking, the upper-case tokens are variables, and
the “:-” symbol means that the left-hand side (the head of a
rule) is implied by the conjunction of conditions on the right-
hand size (the body). In addition to the rules shown, a ProPPR
program would include a database of facts: in this exam-
ple, facts would take the form handLabeled(page,label), has-
Word(page,word), or linkedBy(pagel,page2), representing la-
beled training data, a document-term matrix, and hyperlinks,
respectively. The condition “true” in the last rule is “syntactic
sugar” for an empty body.

In ProPPR, a user issues a query, such as “about(a,X)?”,
and the answer is a set of possible bindings for the free vari-
ables in the query (here there is just one such varable, “X”).
To answer the query, ProPPR builds a proof graph. Each node
in the graph is a list of conditions Ry, ..., Ry that remain to
prove, interpreted as a conjunction. To find the children of a
node R1,..., Rk, you look for either

1. database facts that match R;, in which case the appro-
priate variables are bound, and R; is removed from the
list, or;

2. arule A < By,..., B,, withahead A that matches R,
in which case again the appropriate variables are bound,
and R, is replaced with the body of the rule, resulting in
the new list By, ..., By, Ra, ..., Ry.

In Prolog, this proof graph is constructed on-the-fly in
a depth-first, left-to-right way, returning the first solution
found, and backtracking, if requested, to find additional so-
lutions. In ProPPR, however, we will define a stochastic pro-
cess on the graph, which will generate a score for each node,
and hence a score for each answer to the query. The stochas-
tic process used in ProPPR is personalized PageRank [Page
et al., 1998; Csalogny et al., 2005], also known as random-
walk-with-restart. Intuitively, this process upweights solu-
tion nodes that are reachable by many short proofs (i.e., short
paths from the query node.) Formally, personalized PageR-
ank is the fixed point of the iteration

P = axy, + (1 — a)Wp' (1)

where p[u] is the weight assigned to u, vy is the seed (i.e.,
query) node, X, is a vector with x,,,[vg] = 1 and X, [u] =
0 for u # v, and the parameter « is the reset probability.
W is a matrix of transition probabilities, i.e., W{v, u] is the
probability of transitioning from node « to a child node v:

Here Z is an appropriate normalizing constant, 6 is the weight
vector associated with the features ¢y, ,,) on edge [v,u]. The
edge strength functions f used in this study are rectified linear
united (ReLU) [Nair and Hinton, 2010] and the hyperbolic
tangent function (tanh) [Glorot and Bengio, 2010].



Like Prolog, ProPPR’s proof graph is also constructed
on-the-fly, but rather than using depth-first search, we use
PageRank-Nibble, a fast approximate technique for incre-
mentally exploring a large graph from a an initial “seed” node
[Andersen er al., 2008]. PageRank-Nibble takes a parame-
ter € and will return an approximation p to the personalized
PageRank vector p, such that each node’s estimated probabil-
ity is within € of correct. ProPPR can be viewed as a scalable
extension of stochastic logic programs[Muggleton, 1996;
Cussens, 2001; Van Daele et al., 2014]. We close this
background section with some final brief comments about
ProPPR.

Scalability. ProPPR is currently limited in that it uses
memory to store the fact databases, and the proof graphs con-
structed from them. ProPPR uses a special-purpose scheme
based on sparse matrix representations to store facts which
are triples, which allows it to accommodate databases with
hundreds of millions of facts in tens of gigabytes.

With respect to run-time, ProPPR’S scalability is improved
by the fast approximate inference scheme used, which is
typically an order of magnitude faster than power iteration
for moderate-sized problems [Wang er al., 2013], and much
faster on larger problems. Experimentation and learning are
also sped up because with PageRank-Nibble, each query is
answered using a “small”—size O(--)—proof graph. Many
operations required in learning and experimentation can thus
be easily parallelized on a multi-core machine, by simply dis-
tributing different proof graphs to different threads.

Parameter learning. The personalized PageRank scores
are defined by a transition probability matrix W. ProPPR
allows “feature generators” to be attached to its rules, as
indicated by the code after the hashtags in the example
program: for instance, when matching the rule “sim(X,Y)
:- links(X,Y)” to a condition such as “sim(a,X)” the two
features “sim” and “link” are generated, and when match-
ing the rule “linkedBy(X,Y,W) :- true” to the condition
“linkedBy(a,c,sprinter)” the feature “by(sprinter)” is gener-
ated. Since edges in the proof graph correspond to rule
matches, the edges can also be labeled by features, and a
weighted combination of these features can be used to define
a total weight for each edge, which finally can be normal-
ized used to define the transition matrix W. Learning can be
used to tune these weights to data; ProPPR’s learning uses a
parallelized SGD method, in which inference on different ex-
amples is performed in different threads, and weight updates
are synchronized.

Structure learning. Prior work [Wang et al., 2014a] has
studied the problem of learning a ProPPR theory, rather than
simply tuning parameters in an existing theory, a process
called structure learning. In particular, inspired by recent
advances in inductive logic programming [Muggleton erf al.,
2014], Wang et al. [2014a] propose a scheme called the
structural gradient which scores every rule in some (possi-
bly large) user-defined space R of potential rules, and then
adds high-scoring rules to a theory. In more detail, the space
of potential rules R is defined by a “second-order abductive
theory”, which conceptually constructs proofs using all rules
in R. The second-order theory is defined in such a way such
that each parameter in the second-order theory corresponds

to a rule in R, so the gradient of the parameter vector corre-
sponds to a scoring scheme for the rules in R. More specif-
ically, we use three generic structural templates (“if entail-
ment”, “inverse entailment”, and “chain entailment’), then
each parameter of this second-order theory will correspond
to a candidate first-order formula. Finally, a set of plausible
formula candidates are selected based on the gradient ranks of
each formula. The structure learning via parameter learning
idea of ProPPR’s structure learning method is broadly related
to joint structure and parameter learning of Markov Logic
Networks [Khot et al., 2011]. The iterated structural gradient
method that incrementally refines the hypothesized structure
space is also closely related to a learn-and-join algorithm for
learning Markov Logic Networks [Khosravi et al., 2010].

4 Our Approach

We now describe the technical details of our approach. First,
we explain how we formulate the representation learning task.
Then, we introduce a scalable approach for learning low-
dimensional embeddings of first-order logic formulas.

4.1 Problem Formulation

In this work, we propose a novel matrix factorization ap-
proach to learning first-order logic embeddings. Figure 1
shows an overview of the framework.

More specifically, we first use ProPPR’s structural gradient
method [Wang er al., 2014a] to compute a set of candidate
formulas from knowledge bases. We then use this set of for-
mulas, background knowledge base, and training examples
to produce standard ProPPR proof graphs (see the left part
of Figure 1 for an example). In ProPPR’s grounding mech-
anism, we start from a query node (training example), and
incrementally apply each first-order logic formula to an edge
as the proof process proceeds. The process will stop once it
has reached a solution node, and now those activated formu-
las will be on the edges of this proof graph and the nodes will
become the intermediate states of the proof.

We formulate this first-order logic formula embedding
learning task as a matrix completion problem. Given a collec-
tion of proof graphs, we assume that there are m total exam-
ples, which are the rows in the our matrix. As for the columns,
each column represents a first-order logic formula. The total
number of columns in the input matrix is n. Our matrix F
now encodes training examples, and the activated first-order
logic formulas for each example. Here we use ¢ to index the
i-th example and j to index the j-th formula. The formu-
las take only binary values—either they are used in the proof
graph for this example or not.

4.2 Low-Rank Approximation

Since the Netflix competition [Bell and Koren, 20071, collab-
orative filtering techniques with latent factor models have had
huge success in recommender systems. These latent factors,
often in the form of low-rank embeddings, capture not only
explicit information but also implicit dependencies from the
input data. Following prior work [Koren et al., 20091, we are
interested in learning two low-rank matrices P € R**™ and
@Q € RF*™. The intuition is that P is the embedding of all
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Figure 1: The Matrix Factorization Framework for Learning First-Order Logic Embeddings.

examples, and @ is the embedding of first-order logic formu-
las.

Here £ is the number of latent dimensions, and we would
like to approximate F(; ;) ~ ﬁ;Tq}, where pj; is the latent em-
bedding vector for the i-th example and ¢; is the latent em-
bedding vector for the j-th column. We seek to approximate
the matrix F' by these two low-rank matrices P and ). We
can then formulate the optimization problem for this task:

. ST - — s
) Z (Fagy —pi @) + Apllzll? + Aollg1?

here, Ap and A are regularization coefficients to prevent the
model from overfitting. To solve this optimization problem
efficiently, a popular approach is stochastic gradient descent
(SGD) [Koren et al., 2009]. In contrast to traditional meth-
ods that require time-consuming gradient computation, SGD
takes only a small number of random samples to compute the
gradient. SGD is also natural to online algorithms in real-time
streaming applications, where instead of retraining the model
with all the data, parameters might be updated incrementally
when new data comes in. Once we have selected a random
sample F{; ;y, we can simplify the objective function:

(Fag) — 0 )+ Ap(03 9}) + Ao(d; T @)
Now, we can calculate the sub-gradients of the two latent vec-
tors p; and ¢; to derive the following variable update rules:

Pi < pi + 6L 52 — ApDi) 3)

Gj + 4 + 0P — Aqd;) “)
Here, § is the learning rate, whereas é(i, 7 is the loss function
that estimates how well the model approximates the ground
truth:

(i, j) = Fiij -’

The low-rank approximation here is accomplished by recon-
structing the F' matrix with two low-rank matrices P and @,

and we use the row and column regularizers to prevent the
model from overfitting to the training data.

In addition to standard loss functions such as logarithm
loss, hinge loss, and squared hinge loss, we have also experi-
mented with a pairwise loss function that resembles Bayesian
Personalized Ranking [Rendle er al., 2009]. Tt is recently
shown that BPR is effective in many knowledge graph learn-
ing problems [Riedel et al., 2013; Chen et al., 2015]. The idea
is that we assume that all positive, activated formulas should
be ranked above all missing formulas (i.e., unused formulas)
in each example row R. And the objective function could be
written as:

minp,q Z Z log(1 + exp(p;” (¢u — d;)))

(19)ER (iw) £ R:
+pl Pl + g (1G5 + llgall) )

Apiio A= .
+ 221150 + 2211 + a1

where R; is the set of positive formulas in the i-th row of R.
If we switch the notation of ¢ as column index, j and w as row
indexes, then this method will be optimizing column-oriented
BPR instead of row-oriented BPR. In this work, we follow a
recently proposed optimization approach called fast parallel
stochastic gradient descent (FPSG) [Chin et al., 2015] to learn
the latent first-order logic embeddings.

4.3 Learning First-Order Logic Embeddings

We outline our matrix factorization based method in Algo-
rithm 1. Since this is a supervised learning approach, we as-
sume the dataset includes a collection of triples as examples
T.

During training, we first apply the gradient-based structure
learning method [Wang et al., 2014a] to all training triples
T to derive a set of plausible first-order formulas S. Given
this subset of formulas, we then traverse all training exam-
ples to produce grounded ProPPR proof graphs GG. For each
training example ¢, we construct a row Fj in a matrix F'. The
columns correspond to the formulas learned by structural gra-
dient, and Fj is non-zero if this particular formula is used
during grounding. Figure 1 illustrates the transformation pro-
cess. Then, we perform stochastic gradient descent training to



Algorithm 1 A Matrix Factorization Based Algorithm for
Learning First-Order Logic Embeddings

1: Input: training examples 7" in the form of relation triples.
2: procedure TRAINING(T"")

3: S < StructureLearning(7"")

4 for each training example 7" in T*" do

5: G + Grounding(T}",S)

6: F; + GraphToMatrix(G;)
7.
8

for each epoch e do
for each cell 7, j in F; do

9: 5 = P + 6Ly al” = Appi )
10: G G+ 5l ppl? = Xa @)
11: end for
12: end for
13: end for
14: for each formula embedding @Q); in ) do
15: 0; < mean(Q;)

16: end for

17: end procedure
18: procedure TESTING(T"*¢)

19:  for each test example 7;¢ in ¢ do
20: A + QueryAnswering(T}¢,5,0)
21: end for

22: end procedure

Datasets  #Rel. #En. #Train #Valid  #Test
WordNet 18 40,943 141,442 5,000 5,000
FB15K 1,345 14,951 483,142 50,000 59,071

Table 2: Statistics of the two publicly available datasets used
in the knowledge base completion experiments. Rel.: rela-
tions. En.: entities.

learn the hidden low-rank embeddings of examples and for-
mulas P and @ using the update rules outlined earlier. After
learning the embeddings for the formulas, we average all the
dimensions of the learned embedding of each formula to de-
rive a parameter ;. During testing, we still ground the test-
ing examples using a set of candidate formulas S, but now
the transition of the proof process will be guided by the 6;s.

5 Experiments

In this section, we first introduce datasets used in this knowl-
edge base completion study and the evaluation protocol.
Then, we highlight the baselines. Finally, we show empirical
results on these two datasets, including analyses on robust-
ness and the effects of different loss functions for learning
first-order logic embeddings.

5.1 Datasets and Evaluation Setup

We choose two popular datasets for the task of knowledge
base completion. The statistics of the datasets are shown in
Table 2. The task is to predict the missing head or tail enti-
ties in a relation fact triple: given the relation and an entity,
we rank the candidate entities. Following prior work [Bordes
et al., 2013], we use the Hits@ 10 measure, which indicates
the portion of correct answers falling in the top-10 rank. For
example, if all testing queries have correct answers returned
in the top-10 positions, then the system will have a perfect

Methods Hits@10
Unstructured [Bordes et al., 2014] 4.5

RESCAL [Nickel et al., 2011] 28.4
SE [Bordes et al., 2011] 28.8
SME [Bordes et al., 2014] 31.3
LFM [Jenatton et al., 2012] 26.0
TransE [Bordes et al., 2013] 34.9
ConvNets [Shi and Zhu, 2015] 37.7
TransH [Wang et al., 2014b] 45.7
TransR [Lin et al., 2015b] 48.4
PTransE [Lin et al., 2015al 51.8
ProPPR 59.0
ProPPR+MF (k=8) 61.0

Table 3: Comparing our approach with various baselines on
the FB15K dataset.

Hits@10 score of 100. We do not filter any triples in the ex-
periments. Except for subsection 5.4, the latent dimension
of first-order logic embeddings is set to 8. ProPPR’s reset pa-
rameter « is set to 0.1, and the approximation error parameter
eissetto 1 x 1073,

5.2 Baselines

To demonstrate the effectiveness of our method, we compare
with a number of competitive and state-of-the-art baselines—
Unstructured [Bordes et al., 2014]: a TransE [Bordes et al.,
2013] baseline that considers the data as mono-relational and
sets all translations to 0; RESCAL [Nickel et al., 2011]: a
collective matrix factorization model that factorizes a rank-
3 tensor; SE [Bordes er al., 2011], SME [Bordes et al.,
2014], and LFM [Jenatton et al., 2012]: energy-based struc-
tured embedding models of knowledge bases; TransE [Bor-
des et al., 2013]: a popular multi-relational model that con-
siders relationships as translations in the embedding space;
ConvNets [Shi and Zhu, 2015]: a recent study on con-
volutional neural network based concept learning model.
TransH [Wang et al., 2014b]: an improved TransE-style
model that considers reflexive, 1-to-/N, N-to-1, and N-to-
N relations; TransR [Lin et al., 2015b]: a state-of-the-art
model that builds entity and relation embeddings in separate
entity space and relation spaces; PTransE [Lin er al., 2015al:
a state-of-the-art TransE-style method that uses path-based
constraints to learn KB embeddings'.

5.3 Comparing with Various Baselines

We show the comparison of our approaches with various
methods on the FB15K dataset in Table 3. We see that
TransE and its variants outperform energy based models
such as SE, SME, and LFM. The ConvNets model also
achieves reasonable results. The best results from prior work
on this dataset is from PTransE, a TransE-like model with
relational path as constraints during training. We see that
the structural gradient based approach from ProPPR obtains
a strong performance, leveraging the effectiveness of sym-
bolic reasoning and probabilistic modeling. Finally, leading

"Note that PTransE and ConvNets do include results for the
WordNet dataset.



Methods Hits@10
Unstructured [Bordes et al., 2014] 35.5

RESCAL [Nickel et al., 2011] 37.2
SE [Bordes et al., 2011] 68.5
SME [Bordes et al., 2014] 65.1
LFM [Jenatton et al., 2012] 71.4
TransE [Bordes et al., 2013] 75.4
TransH [Wang et al., 2014b] 75.4
TransR [Lin et al., 2015b] 79.8
ProPPR 83.0
ProPPR+MF (k=8) 94.1

Table 4: Comparing our approach with various baselines on
the WordNet dataset.
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Figure 2: The Hits@10 scores of varying #dimensions for
retrieving head and tail entities on the WordNet dataset.

the scoreboard is our first-order logic embedding enhanced
ProPPR model with a Hits@10 score at 61.0.

On the WordNet dataset, we show the comparison of per-
formances in Table 4. We observe similar trends of re-
sults from prior work: TransE and its variants have dom-
inated the score sheet on this WordNet dataset. ProPPR’s
structure learning produces a strong result of 83.0, showing
ProPPR’s advantage on modeling hypernym and hyponym re-
lations. When considering first-order formula embeddings,
we observe a large improvement of Hits@ 10 score to 94.1.
Comparing to the prior experimental results from the FB15K
dataset, we believe that the large-margin improvement ob-
served from the WordNet experiment is due to the nature of
these two datasets. FB15K has more than 1K relations, but it
has only about 15K entities. We observe a large number of
first-order formula candidates after structure learning, while
the training examples for learning first-order logic embed-
dings are relatively sparse. In contrast, the WordNet data set
has only over a dozen relations, but the size of total entities
are about three times larger, allowing more training examples.

5.4 Varying the Latent Dimensions

In this experiment, we vary the latent dimension & for learn-
ing first-order logic embeddings. The results are shown in
Figure 2. We see that the latent dimension has an effect on
the performance of the WordNet dataset. When choosing a

98
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Hinge Pairwise Log  Log Loss

Loss

Figure 3: The Hits@10 scores of different loss functions for
learning embeddings to retrieve head and tail entities on the
WordNet dataset.

single dimension or a large dimension, they do not yield the
best result. k£ = 4 yields the best overall performance.

5.5 Varying the Loss Functions

In this subsection, we investigate the effects of choosing var-
ious loss functions for learning first-order logic embeddings.
We see that the general loss functions, such as the logarithm
loss, hinge loss, and the squared hinge loss do not make much
difference on the results. Interesting, when considering row-
oriented pairwise log loss, we obtain the best performance.
This pairwise loss function resembles Bayesian Personalized
Ranking [Rendle et al., 2009], which assumes that all positive
first-order logic formulas should be ranked above all missing
formulas in an example. This is a useful assumption for the
pairwise loss function, which allows us to model the non-
existent “negative” formulas. Interestingly, column-oriented
pairwise log loss obtains the lowest performances, because it
is strange to compare formulas across totally different exam-
ples.

6 Conclusion

In this paper, we introduce a method of learning first-order
logic embeddings for probabilistic inference. The approach
is built on prior work of embedding entities and relations, as
well as structure learning in a scalable probabilistic logic. We
show that by using a matrix factorization method, it is pos-
sible to learn embeddings for first-order logic formulas. In
empirical studies, we show that representation learning for
first-order logics improves the task of knowledge base com-
pletion on two large datasets. In the future, we are interested
in learning joint entity, relation, and formula embeddings for
combining symbolic and statistical inference.

Acknowledgment

This work was sponsored in part by DARPA grant
FA87501220342 to CMU.

References

[Andersen et al., 2008] Reid Andersen, Fan R. K. Chung, and
Kevin J. Lang. Local partitioning for directed graphs using pager-
ank. Internet Mathematics, 5(1):3-22, 2008.



[Bell and Koren, 2007] Robert M Bell and Yehuda Koren. Lessons
from the netflix prize challenge. ACM SIGKDD Explorations
Newsletter, 9(2):75-79, 2007.

[Bordes et al., 20111 Antoine Bordes, Jason Weston, Ronan Col-
lobert, and Yoshua Bengio. Learning structured embeddings of
knowledge bases. In AAAZ 2011.

[Bordes et al., 2013] Antoine Bordes, Nicolas Usunier, Alberto
Garcia-Duran, Jason Weston, and Oksana Yakhnenko. Trans-
lating embeddings for modeling multi-relational data. In NIPS,
2013.

[Bordes et al., 2014] Antoine Bordes, Xavier Glorot, Jason We-
ston, and Yoshua Bengio. A semantic matching energy func-
tion for learning with multi-relational data. Machine Learning,
94(2):233-259, 2014.

[Chen er al., 2015] Yun-Nung Chen, William Yang Wang, Anatole
Gershman, and Alex I. Rudnicky. Matrix factorization with
knowledge graph propagation for unsupervised spoken language
understanding. In ACL-1IJCNLP, Beijing, China, 2015. ACL.

[Chin er al., 2015] Wei-Sheng Chin, Yong Zhuang, Yu-Chin Juan,
and Chih-Jen Lin. A fast parallel stochastic gradient method for
matrix factorization in shared memory systems. ACM Transac-
tions on Intelligent Systems and Technology (TIST), 6(1):2,2015.

[Csalogny et al., 2005] Kroly Csalogny, Dniel Fogaras, Balzs Rcz,
and Tams Sarls. Towards scaling fully personalized PageRank:
Algorithms, lower bounds, and experiments. Internet Mathemat-
ics, 2(3):333-358, 2005.

[Cussens, 2001] James Cussens. Parameter estimation in stochastic
logic programs. Machine Learning, 44(3):245-271, 2001.

[Glorot and Bengio, 2010] Xavier Glorot and Yoshua Bengio. Un-
derstanding the difficulty of training deep feedforward neural net-
works. In AISTATS, 2010.

[Gutmann et al., 2008] Bernd Gutmann, Angelika Kimmig, Kris-
tian Kersting, and Luc De Raedt. Parameter learning in proba-
bilistic databases: A least squares approach. In Machine Learn-
ing and Knowledge Discovery in Databases, pages 473—488.
Springer, 2008.

[Guu et al., 2015] Kelvin Guu, John Miller, and Percy Liang.
Traversing knowledge graphs in vector space. In EMNLP, 2015.

[Jenatton ef al., 2012] Rodolphe Jenatton, Nicolas L Roux, Antoine
Bordes, and Guillaume R Obozinski. A latent factor model for
highly multi-relational data. In NIPS, 2012.

[Khosravi et al., 2010] Hassan Khosravi, Oliver Schulte, Tong
Man, Xiaoyuan Xu, and Bahareh Bina. Structure learning for
Markov logic networks with many descriptive attributes. In
AAAI 2010.

[Khot et al., 2011] Tushar Khot, Sriraam Natarajan, Kristian Kerst-
ing, and Jude W. Shavlik. Learning Markov logic networks via
functional gradient boosting. In /ICDM, 2011.

[Koren et al., 2009] Yehuda Koren, Robert Bell, and Chris Volin-
sky. Matrix factorization techniques for recommender systems.
Computer, (8):30-37, 2009.

[Lin er al., 2015a] Yankai Lin, Zhiyuan Liu, and Maosong Sun.
Modeling relation paths for representation learning of knowledge
bases. EMNLP, 2015.

[Lin et al., 2015b] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang
Liu, and Xuan Zhu. Learning entity and relation embeddings for
knowledge graph completion. In AAAI, pages 2181-2187, 2015.

[Mikolov ef al., 2013] Tomas Mikolov, Kai Chen, Greg Corrado,
and Jeffrey Dean. Efficient estimation of word representations
in vector space. arXiv preprint arXiv:1301.3781, 2013.

[Muggleton et al., 2014] Stephen H Muggleton, Dianhuan Lin,
Jianzhong Chen, and Alireza Tamaddoni-Nezhad. Metabayes:
Bayesian meta-interpretative learning using higher-order
stochastic refinement. In Inductive Logic Programming, pages
1-17. Springer, 2014.

[Muggleton, 1996] Stephen Muggleton. Stochastic logic programs.
Advances in inductive logic programming, 32:254-264, 1996.

[Muggleton, 2000] Stephen Muggleton. Learning stochastic logic
programs. Electron. Trans. Artif. Intell., 4(B):141-153, 2000.

[Nair and Hinton, 2010] Vinod Nair and Geoffrey E Hinton. Rec-
tified linear units improve restricted boltzmann machines. In
ICML, 2010.

[Nickel et al., 2011] Maximilian Nickel, Volker Tresp, and Hans-
Peter Kriegel. A three-way model for collective learning on
multi-relational data. In ICML, 2011.

[Page er al., 1998] Larry Page, Sergey Brin, R. Motwani, and
T. Winograd. The PageRank citation ranking: Bringing order
to the web. In Technical Report, Computer Science department,
Stanford University, 1998.

[Rendle er al., 2009] Steffen Rendle, Christoph Freudenthaler,
Zeno Gantner, and Lars Schmidt-Thieme. Bpr: Bayesian per-
sonalized ranking from implicit feedback. In UAZ, 2009.

[Richardson and Domingos, 2006] Matthew Richardson and Pedro
Domingos. Markov logic networks. Machine Learning, 2006.

[Riedel et al., 2013] Sebastian Riedel, Limin Yao, Andrew McCal-
lum, and Benjamin M Marlin. Relation extraction with matrix
factorization and universal schemas. In NAACL-HLT, 2013.

[Rocktischel er al., 2014] Tim Rocktischel, Matko Bosnjak,
Sameer Singh, and Sebastian Riedel. Low-dimensional embed-
dings of logic. In ACL 2014 Workshop on Semantic Parsing,
2014.

[Shi and Zhu, 2015] Jiaxin Shi and Jun Zhu. Building memory with
concept learning capabilities from large-scale knowledge base.
NIPS 2015 Cognitive Computation workshop, 2015.

[Van Daele et al., 2014] Dries Van Daele, Angelika Kimmig, and
Luc De Raedt. Pagerank, proppr, and stochastic logic programs.
2014.

[Wang er al., 2013] William Yang Wang, Kathryn Mazaitis, and
William W Cohen. Programming with personalized pagerank: a
locally groundable first-order probabilistic logic. In CIKM, 2013.

[Wang er al., 2014a]l William Yang Wang, Kathryn Mazaitis, and
William W Cohen. Structure learning via parameter learning.
CIKM, 2014.

[Wang er al., 2014b] Zhen Wang, Jianwen Zhang, Jianlin Feng, and
Zheng Chen. Knowledge graph embedding by translating on hy-
perplanes. In AAAI pages 1112-1119. Citeseer, 2014.

[Wang et al., 2015] Quan Wang, Bin Wang, and Li Guo. Knowl-
edge base completion using embeddings and rules. In IJCAI,
2015.

[Wei et al., 2015] Zhuoyu Wei, Jun Zhao, Kang Liu, Zhenyu Qi,
Zhengya Sun, and Guanhua Tian. Large-scale knowledge base
completion: Inferring via grounding network sampling over se-
lected instances. In CIKM, 2015.



