
Learning to Navigate Web Forms

Anthony Tomasic, William Cohen, Susan Fussell, John Zimmerman,
Marina Kobayashi, Einat Minkov, Nathan Halstead, Ravi Mosur, Jason Hum

Carnegie Mellon University – tomasic@cs.cmu.edu

ABSTRACT
Given a particular update request to a WWW system, users are
faced with the navigation problem of finding the correct form to
accomplish the update request. In a large system, such as SAP
with about 10,000 relations for the standard installation, users are
faced with a sea of thousands of forms to navigate. For familiar
tasks, users have various aids, such as personal tool bars, but for
more complex tasks, users are forced to search or navigate for the
correct form, or forward the update request to a specialist with the
expertise to handle the request. In this later case, the execution of
the request may be delayed since the specialist may be
unavailable, or have other priorities. Also, typically the user and
specialist engaged in a time consuming clarification dialog to
extract additional information required to complete the request. In
this paper we study the problem of building an assistant for the
navigation problem for web forms. This assistant can be deployed
either directly to a user, or to specialist that receives a stream of
requests from users. In the former case the assistant helps the user
navigate to the right form. In the latter case, the assistant cuts
ambiguous communication between the user and specialist. We
present experimental results from behavioral experiments and
machine learning that demonstrate the usefulness of our assistant.

1. INTRODUCTION
Our general strategy is to construct an assistant that understand
request for changes of information in a WWW based system. The
assistant receives a request. This step may happen in several
ways. A user may send the request directly to the assistant, or an
e-mail monitor might notice that a particular email message to a
specialist is a request to update the site. However the request is
received, the assistant next analyzes the request to determine its
type and what its parameters are. The type of the request is one of
the possible forms the WWW based system provides. Finally, the
system generates an executable version of the proposed change,
represented as a pre-filled instance of a particular form. The
specialist (or user) can then efficiently determine that the analysis
step was correctly accomplished and efficiently effect the change
to the web site. The specialist (or user) can override results of the
assistant’s analysis by changing values in the form.

Note that we can not handle any type of request, only requests
that can be verified as correctly translated by inspecting the pre-
filled instance of a particular form.

Given any particular WWW system, augmenting the forms it
provides with natural language requests is a straight forward
engineering exercise. Our goal is to build a system that learns its
schema dependent information and learns to translate request into
forms. The resulting system can be built once, instead of requiring
an engineering effort for every particular domain.

In our prototype environment, we have constructed a learning
assistant that understand requests to change the information on a
web site. Suppose a WWW based system is out of date because a
person has changed offices. In typical office environments, the
user that notices the out of date information sends a request to
update the site to a webmaster (the specialist). Because of the
time involved in making changes, the web master “batches”
multiple changes, thus delaying the time taken to effect an
individual change. Eventually the webmaster will process the
unambiguous requests by navigating to the right form for the
particular change requested, and then using cut & paste to fill out
the fields of the form.

In this paper we study the specific problem of monitoring e-mail
exchanges between users and the webmaster of a database-backed
web site. In this setting the monitoring system must analyze and
semi-automatically process e-mail requests. We restrict ourselves
to a limited class of tasks—a request that corresponds to a single
web page form—and assume that each email contains exactly one
such request. Users quickly adapt to these restrictions.

To address the question of development and maintenance cost of
the assistant, we describe a scheme for decomposing the analysis
tasks into a series of subtasks, most of which can be learned (as
opposed to being explicitly programmed) by known techniques.
This dramatically reduces the cost of constructing such a system
and adapting it to a particular setting.

To answer the question how well the assistant can analyze
requests, we presented the same set of predetermined tasks to an
ad hoc collection of engineers, office assistants and students. We
recorded the results of these tasks and labeled them. We then built
ad-hoc information extractors that extract specific values that
appear in requests (names, phone numbers, e-mail addresses,
etc.). Using the categories of information extracted from a request
(not the request string itself), we trained a collection of classifiers
to detect the task involved. We then measured the effectiveness of
the classifiers using classical cross-validation methodology.

Figure 1. Prototype Architecture

While we consider our work preliminary in several respects, we
have been able to draw some conclusions. First, our studies
provide promising evidence that the overall approach of building
an assistant for navigation to web forms is possible. Second,
monitoring e-mail communications and proposing actions can be
effectively deployed in many real world systems. Third, the
performance of classifiers in our system, even given the
extremely limited training data, is surprisingly good. Our studies
are the first concrete evidence of this conclusion reported in the
literature. We describe in detail our intuition for this good
performance and compare it to related results in the literature. We
also compare the performance to a collection of ad-hoc extractors
we developed for our prototype.

The remainder of the paper is described as follows. The next
section describes the architecture of the prototype system and the
functionality it makes available. The following section describes
the experimental design of the behavior and learning experiments.
We then describe the results of those experiments. We conclude
the paper with related work, a summary of our conclusions and a
description of future work.

2. PROTOTYPE ARCHITECTURE
Figure 1 shows a diagram of the functional architecture of the
prototype. The architecture consists of a database-driven web site
(indicated by an L-shaped dashed box), an interaction manager
that monitors e-mail and coordinates interactions with the rest of
the system, and a learning system (indicated by a rectangular
dashed box). The database-driven web site operates in a classical
fashion. Client HTML browser requests are satisfied by reading
an HTML template from the file system and instantiating the

template with data from a database. HTML forms modify the data
in the database by issuing transactions against the database. The
interaction manager fetches e-mail requests for the webmaster
from the server and runs an analysis of the request. The results of
analysis are stored in the database. The manager then delivers a
reply to the e-mail message. The reply contains a link to an
HTML form that is instantiated with the extracted information in
the request. The webmaster then views the form, makes any
additional changes necessary, and submits the form to complete
the request.
The learning system consists of a training client that provides a
user interface for the labeling of training instances. Labeling
consists of associating the correct answer of each training
instance to the instance itself. Once labeling is completed, the
user runs the learning system to generate classification engines.
These engines are used, in addition to ad-hoc extraction code, by
the analysis module. Thus, we have an “off-line” machine
learning system.
The prototype system itself is implemented using an XML
database [20], however we will use relational terminology in this
paper.

3. Experimental Design
This paper reports the results of two experiments. Both
experiments rely on presenting experimental subjects with a set
of tasks. We first describe the tasks and then report on the results
of our experiments.

3.1 Task Descriptions
Our experiments are driven by tasks that are typical changes to
web sites [9,18]. We constructed a set of tasks that typically
change a single attribute value (such as the office of a person) or
add or delete an instance (such as the addition of all the data
associated with a person – name, title, office location, e-mail,
phone number).
Each task was described as hand written markup on a screen shot
of the web site. For example, to delete an event, the description of
the event is circled and a line is draw through the event.
Experimental participants were presented with the tasks (on-line)
and asked to compose an e-mail to a webmaster to effect the
change described. The description of the task is relatively
language neutral since few words are used describe the change
requested. This language neutrality is important since it would
bias the e-mail description of the task generated by the
participant. Complete details on the experimental design and
analysis of the results will be described in a separate publication.
We note here that the actual task descriptions for experimental
subjects are critical to the results we report in the experimental
results section, since we are measuring the performance of
learning algorithms on human-generated input. For example, we
do not require a participant to use only one of three verbs “add”,
“delete”, “replace”, or impose other such restrictions.

3.2 Communicating Tasks
We presented the tasks to a collection of experimental participants
under two conditions. In one condition the user communicated the
task request to a human webmaster. The human webmaster
performed the change on a draft web page and sent a proposed
change URL to the user. The user reviewed the change and sent a

E-Mail
Client

HTML
Client

E-Mail
Server

HTML
Server

XML
Database

Analysis

HTML
Forms

HTML
Templates

Training
Client

Learning
Engine

Manager

Learning
System

Database Backed Web Site

confirmation. In another condition the user communicated with
our assistant. The assistant replied with a pre-filled out form. The
user could modify the form or switch to any of the other forms in
the experiment. We timed both conditions. The first condition
took 1.5 times longer to perform 9 tasks on average. In particular,
we counted e-mail messages between users and webmasters in the
first condition. Optimally, only 3 e-mails are required per task
(the request, the proposed change, and the approval). However, in
the first condition, 25% more e-mails on average were required.
(In one case, 11 e-mails were required for a single task, due to a
mix-up between the user and webmaster on overlapping task
requests!) In the second condition, the user receives a reply e-mail
from the assistant with a link to the pre-filled form, so only two e-
mail messages are used for every task.

3.3 Learning to Analyze Requests
The current analysis system only considers requests to update as a
single web form. The business logic backing the form implements
the transaction associated with the task, for example, the removal
of a tuple “Remove John Doe from the leadership team”) or the
addition, deletion, or modification of a single value of a particular
attribute (e.g., “Change John Doe’s phone number to 555-1234”).
These types of transactions naturally fall into the single web page
category.
Given these restrictions, the analysis process can be broken into a
sequence of simpler decisions to make about a request. In
particular, the analysis consists of information extraction, lookup
and form selection steps. Information extraction is used to extract
data values in the request. While there has been some previous
work on the problem of learning to extract text [10], this problem
is less well-understood than the relatively mature area of
classification learning. Section 3.4 gives some preliminary results
on the extraction problem. We plan to address it more thoroughly
in later research.
The lookup step attempts to match extraction results with existing
database values. Matching a value is a powerful indication of the
nature of the request. We currently use “hard” matching but in the
future plan to use soft matching techniques (similar to those used
in data integration [2,10,11,16]). A soft match allows us to clean
up the results of data integration. This strategy leaves open the
problem of cleanly identifying new data values in a “change” or
“add” request.
If the target of extraction is the selection of a value from a fixed
list, then lookup can be avoided by using a classifier instead. For
example, detecting that a particular building is referenced can be
accomplished by building classifiers for token sequences that
reference buildings (“Wean Hall, “WeH”, “WH”) instead of
extracting a particular string “wean” and then soft matching with
the formal name of the building.
The form selection step uses decision trees to learn the
appropriate form for a request. We initially applied decision trees
directly to the requests, but found that the decision tree
incorrectly learns specific words as evidence instead of abstract
concepts. Thus, a series of modification requests to “John Doe”
would train the decision tree to use “John Doe” as evidence of a
modification request. Instead of applying decision trees directly to
the request, we applied them to the abstract categories of
information extraction and lookup (described below).

Notice that some of these steps are domain-independent (e.g.,
determining the request type) and some are not (e.g., determining
the form to being selected.) However, the learning mechanisms
used to construct the classifiers are all domain-independent.

3.4 Experimental Results for Learning
3.4.1 Experimental methodology
The data used in our experiments was collected as follows. We
presented the 12 tasks to a collection of test participants and
recorded the 283 e-mails generated by these subjects. In each
case, the email described the change implied in the task as a
request to a web master. Every message was then labeled with
true or false for every binary category listed in Table 1, producing
a dataset.

We then ran a series of experiments with this dataset. To motivate
the experiments, observe that there are likely to be many
correlations in this sort of data. There are likely to be many
correlations between requests made by any single subject; for
instance one subject might consistently use the word “delete” for
a delete request, whereas others might use words like “remove” or
“erase”. Similarly, there are many correlations between requests
from different users associated with a single task. Again, consider
the following example input generated by a training subject:

Please add Dakota Jones to the list. His email is
djones@ardra.com and his room is 241. His number is 3624.

It is likely that most users would include substrings like “3624”,
“241”, and “djones” in their requests. A learning algorithm
might well decide that “djones” is a good indicator of an “add”
request – that is, the learning algorithm overfits.

To avoid this problem we trained the classifiers on the categories
of information extraction instead of the actual data values. In each
case the feature space adopted for messages was the abstract
categories resulting from extraction. For example, the request
“Change John Doe’s phone number to 555-1234” generates a
collection of attribute/value pairs from extraction: (action, insert),
(name, “John Doe”), (attribute, phone), (phone, 555-1234).
Lookup then generates the attribute value pair (existingname,
“John Doe”). We then train on (action, insert, name, attribute,
phone, existingname). This step prevents the learning algorithm
from using specific data values as evidence for it classification of
an example. However, the learning algorithm now depends on the
quality of extraction.

We split the dataset into training and test sets using a standard
cross-validation 10-fold split (also called jack-knifing). That is,
we trained 10 classifiers, where the i-th classifier was trained on
training-set messages from all groups except the i-th group, and
evaluated on test-set messages only from the i-th group. This
ensures that a classifier is tested only on messages not seen during
training.

The results we report are all averaged across the 10 folds. Error
rate (the number of misclassifications divided by the number of
examples) is a good performance metric only in cases in which
the prior probability of a “positive” (minority-class) instance is
reasonably high: if positive examples are rare, low error rates can
be obtained by simply guessing all examples as negative. A
widely-used alternative metric is the F-measure users the
precision p (ratio of true positive predictions to all positive

predictions) and recall r (ratio of true positive predictions to the
number of positive instances in the dataset): i.e., F-measure is
defined as 2pr/(p+r). F-measure was first defined in the
information retrieval community as a means for evaluating
rankings [19], and is well-suited for modern learning algorithms,
which typically produce some measure of confidence that can be
used to rank decisions. However, learned classifiers chosen to
optimize error rate often pick ranking thresholds which lead to
unnecessarily low F values. To address this issue, we report the
maximum F value obtained by any thresholding of the classifier,
again averaged over each of the 10 folds.

3.4.2 Learning Algorithms and Feature Construction
After preliminary experimentation (using cross-validation and the
training set) we selected a small number of learning algorithms
for further experimentation. One was multinomial naïve Bayes,
following the implementation described by Mitchell [13]. The
other algorithm was boosted decision trees. Boosting [7] is a
method by which the performance of a base learner is improved
by calling the base learner again and again on different variants of
a dataset, in which examples are assigned different weights in
each variant dataset: each new dataset is formed by weighting an
example e more heavily if e was given an incorrect label in
previous iterations.

In our experiments we used the “confidence-rated” variant of
AdaBoost [17] and a simple decision tree learner that does no
pruning, but is limited to binary trees of depth at most five. The
decision tree learner uses as a splitting metric the formula
suggested by Schapire and Singer as an optimization criteria for
weak learners: i.e., we split on a predicate P(x) which maximizes
the function

−+WW , where W+ (respectively W-) is the fraction
of examples x for which the predicate P(x) is true (respectively
false). For comparison purposes we also used decision trees
without boosting.

3.4.3 Results
The results are shown in Table 1. Each row in the table lists the
F1 result for the three different learning algorithms applied to
detecting the particular request.

 Naïve
Bayes

Decision
Tree

Adaboost

Add_person 0.51 1.00 1.00
Add_person_title 0.55 0.10 0.82
Add_event 0.58 0.58 0.82
Add_person_phone 0.81 0.67 0.81
Del_person 0.89 0.32 0.84
Del_person_phone 0.56 na 0.87
Del_event 0.63 0.67 0.85
Del_sponsor 0.74 0.88 0.82
Mod_person_name 0.84 0.11 0.83
Mod_event_location 0.73 0.82 0.89
Mod_page_email 1.00 na 1.00
Mod_sponsor 0.70 0.92 1.00

Table 1. Learning Results
To summarize, even under the stringent test conditions above, and
even given a relatively small training corpus of less than 300

examples, usefully accurate classifiers can be learned for most of
the binary labels we considered. In a separate experiment we
learned two sets of classifiers. One set was for action: for add (F1
.91), delete (F1 .92) and modify (F1 .88). The second set was for
an entity: person (F1 .89), event (F1 .89), person_phone (F1 .98),
etc. The lower score in Table 1 reflects the fact that both
classifications must be performed to select the template.
Combining the two decisions in the separate experiment would
produce approximately the same F1 score as the combined
decision tree of Table 1.
Why does it work? The task description focuses the request in
three ways. (a) A single task is described. That is, participants do
not attempt to request multiple changes in a single e-mail. (b)
The request is phrased as an action to accomplish on the web site.
That is, an explicit verb such as “insert” or “add” appears in the
request. Participants do not phrase requests indirectly, e.g. “The
speaker is sick so the meeting will not occur.” (However,
participants do use the passive voice: “John’s telephone number
should be changed to 1234.”) (c) Participants phrase requests as a
semantic description of the change in the data and not as a change
in the presentation. For example, participants do not request that
“the 28th through 35th characters on the fourth line of the page title
events should be removed”. In this way, the experimental
framework restricts the requests from a completely free form
input to a more manageable form.

Why does it fail? The dataset shows that the ad-hoc nature of the
request leads to a crude set of selection of evidence. A second
significant factor is that the examples are not independently
identically distributed. They are biased because the same
participant generated multiple examples and because the
similarity of classes of tasks affects the distribution. While the
classifiers capture some of this effect, a more careful investigation
could reveal better results.

3.5 Extraction Results
In a separate experiment, we examined the training set data and
wrote heuristic-based ad-hoc extractors in a regular expression
style scripting language to extract the pertinent data values that
appear in a subset of the tasks. Our subset resulted in 81 training
examples. We then measured the performance of the extractors
against the training experiment.
Table 2 shows an analysis of the results. For the extractor that
extracts the action (insert, delete, replace) (listed under “Actions”)
of the request, the correct action was extracted about 90% of the
time. In five cases we judged that the extractor could be easily
extended to extract the correct action. These cases involved uses a
synonym such as “add” for insertion. In two cases the verb used,
“update” was ambiguous, so we classify these as errors. Finally,
in one case, the user used the wrong verb for a request. For the
extractor that extracts the attribute for an update (for example,
that a phone number is modified) the results are listed under
“Attribute”. The correct attribute was extracted 65% of the time.
With some additional scripting effort, we judged an additional 16
examples, or about 20% could be correctly extracted. In 4 of these
16, the extension involves a dictionary extension similar to the
action extractor. In the other 12 cases, the correct attribute was
not explicitly mentioned, (typical for modifications to people’s
names) but the attribute could be derived from the name extractor.
In about 15% of the cases the wrong attribute was extracted. The

named entity extractor correctly extracted the named entity about
83% of the time and extracted a partially correct entity 6% of the
time. The correct name entity plus additional characters (noise)
were extracted the remaining 11% of the time. Additional work
could strip the noise from the extracted value. For room number
and e-mail address extraction, the extractor always correctly
extracted the value when present or extracted nothing when no
value was present in an example, giving a 100% correctness
score. Of course, the heuristics used are never perfect – for
example, a company named “a@b” would be extracted as an e-
mail address. Finally phone extensions were correctly extracted
almost 98% percent of the time with 1 partial extraction and 1
failure to extract a value. In this last extraction task however, our
task description introduced a bias into the description of the task –
phone number extensions were noted on the after page as “x3624”
and several training subjects used this notation in the email
description of the task, instead of using some other notation such
as “ext”. We conclude that this particular extractor’s performance
was enhanced by a biased introduced in the task description. If the
task was described in a non-textual way, for example verbally, a
test subject might not use the same notational convenience.

Table 2. Experiment 2 Results
Extractor # %

Actions

Correct 73 90.12%

Potentially Correct 5 6.17%

Ambiguous 2 2.47%

User Error 1 1.23%

Attributes

Correct 53 65.43%

Potentially Correct 16 19.75%

Not Extracted / Wrong 12 14.81%

Named Entities (name, etc.)

Correct 67 82.72%

Partially Correct 5 6.17%

Correct + noise 9 11.11%

Room number

Correct 81 100.00%

Email

Correct 81 100.00%

Phone ext.

Correct 79 97.53%

Partial 1 1.23%

Not Extracted 1 1.23%

Comparing the classifier results to extraction, we see that for
comparable tasks (such as identification of the action) machine
learning as similar performance to ad hoc extraction. Our results
also show that extraction of values is a significant source of errors
in our prototype and this area needs further work. For example,
the extraction scripts do not use the database as a source of
information. Our prototype constructs sample queries to lookup
possible extracted values to improve the performance of
extraction. For example, candidate named entities are queried in

the database and a matched instance is considered definite
evidence that the particular entity was mentioned in the request.

4. Related Work
The construction of web portals has a wide range of industrial
systems ranging from enterprise application integration
infrastructure (.NET and J2EE) to content management systems.
All these systems take a programming language & tool based
approach and do not use machine learning to simplify the task of
system construction.
Lockerd, et. al. [12] describe a user study of e-mail based requests
to a web master for changes to a web site. We borrowed (and
modified) the before image / after image technique from this
paper. The paper reports that detecting delete and update requests
exhibited a “semantic pattern” 85% of the time. The data from the
reported experiment was used to implement a hand-built parser
that understood requests fully 65% of the time. No other details
are provided.
Natural language understanding of database queries has a long
tradition and recently has shifted to machine learning based
approaches. Zelle and Mooney [21] describe CHILL that learns to
parse natural language requests using a corpus of training data
consisting of sentences and associated queries. However, query
systems generally focus on generating the correct combination of
predicates and quantifiers to express a correct query and do not
address the issue of extraction of information from requests, nor
does it focus on the use of existing data to interpret a request.
The Mangrove project [5,8] has surprisingly similar objectives to
our project. Both projects are interested in management of
unstructured data in a (semi) structured fashion and both are
interested in extraction of data from WWW pages, calendars, etc.
In Mangrove, the update of a web site is accomplished by a user
creating a document (either an e-mail or a personal web site page)
and labeling the document with additional data (using a direct
manipulation editor) according to an RDF schema. The document
is then examined by an external system and the gathered
information is then integrated into another web site. Our project
emphasizes the construction of assistants that learn where as
Mangrove emphasizes large scale data integration of web sites
and the interpretation of semantic e-mail interactions.

5. Conclusions
Navigation to the correct form in a large web site is frustrating
and time consuming. Much of the work is repetitive and amenable
to machine learning techniques. Replacing navigation with natural
language interaction is a natural solution. In this paper we
examined the application of machine learning to understanding
natural language requests as a replacement of navigation. Our
problem domain is the interpretation of e-mail requests to change
a web site.
We considered two problems – a systematic procedure for
understanding requests, and the performance of learning
techniques on the analysis of e-mails vs. ad-hoc scripts generated
by developers.
Our learning experiments show that machine learning classifiers
perform as well as developers programming ad-hoc analysis
scripts. Classifiers have the additional benefit of automatic
improvement given more training data. In addition, they are

schema independent. In summary, our given a natural language
request, our assistant can navigate to the correct form and “pre-
fill” the form with the correct information with high accuracy.

5.1 Future Work
In the short term, our focus is on the integration of our learning
results with the prototype system. In particular, this will allow us
to “close the loop” between the results of the classifier on any
particular request and corrective feedback from the user.
Corrective feedback is implicitly provided by modifications users
make to the form presented. Thus, our prototype will change from
an off-line learning system to an on-line learning system.

6. ACKNOWLEDGMENTS
This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) under Contract
No. NBCHC030029.

7. REFERENCES
[1] L. Brieman, J. H. Friedman, R.A. Olshen and C. J. Stone,

Classification and Regression Trees, Wadsworth:Belmont,
CA, 1984.

[2] William W. Cohen, Data Integration using Similarity Joins
and a Word-based Information Representation Language,
ACM Transactions on Information Systems (18)3:288—
321, 2000.

[3] Michael Collins and Yoram Singer, Unsupervised Models
for Named Entity Classification, Proceedings of the Joint
SIGDAT Conference on Empirical Methods in Natural
Language Processing and Very Large Corpora
(EMNLP99), College Park, MD, 1999.

[4] C. Elkan, Boosting and Naive Bayesian learning, Technical
report, Department of Computer Science and Engineering,
University of California, San Diego, 1997.

[5] Oren Etzioni, Alon Halevy, Henry Levy, and Luke
McDowell. Semantic Email: Adding Lightweight Data
Manipulation Capabilities to the Email Habitat.
International Workshop on the Web and Databases
(WebDB), June 12-13, 2003, San Diego, California.

[6] D. Freitag and N. Kushmeric, Boosted wrapper induction,
Proceedings of the Seventeenth National Conference on
Artificial Intelligence (AAAI-2000), Austin, TX, 2000.

[7] Yoav Freund and Robert E. Schapire Experiments with a
New Boosting Algorithm, International Conference on
Machine Learning, pp 148-156, 1996.

[8] Alon Halevy, Oren Etzioni, AhHai Doan, Zachary Ives,
Jayant Madhavan, Luke McDowell, Igor Tatarinov, Cross
the Structure Chasm. Conference on Innovative Directions
in Research (CIDR 2003)

[9] Nathan Halstead. Personal Communication, 2003.
[10] Subbarao Kambhampati and Craig A. Knoblock, editors,

Proceedings of the 2003 Workshop on Information
Integration on the Web (IIWeb-03), Acapulco, Mexico,
August, 2003. http://www.isi.edu/info-
agents/workshops/ijcai03/proceedings.htm

[11] John Lafferty, Andrew McCallum and Fernando Pereira,
Conditional Random Fields: Probabilistic Models for
Segmenting and Labeling Sequence Data, Proceedings of
the International Conference on Machine Learning (ICML-
2001, Williams, MA, 2001.

[12] Andrea Lockerd, Huy Pham, Taly Sharon, Ted Selker, Mr.
Web: An Automated Interactive Webmaster. CHI 2003, Ft.
Lauderdale, Florida.

[13] Tom Mitchell. Machine Learning. McGraw Hill, 1997.
[14] J. Ross Quinlan, C4.5: Programs for Machine Learning,

Morgan Kaufman, 1994.
[15] G. Ridgeway, D. Madigan, T. Richardson, and J. O'Kane,

Interpretable Boosted Naive Bayes Classification,
Proceedings of the Fourth International Conference on
Knowledge Discovery and Data Mining, pp 101-104, 1998.

[16] E. Riloff and R. Jones, Learning Dictionaries for
Information Extraction by Multi-Level Bootstrapping,
Proceedings of the Sixteenth National Conference on
Artificial Intelligence, 1999.

[17] Robert E. Schapire and Yoram Singer, Improved boosting
algorithms using confidence-rated predictions. Machine
Learning, 37(3):297-336, 1999.

[18] Aaron Spaulding. Personal Communication, 2003.
[19] C. J. Van Rijsbergen. Information Retrieval. Butterworth,

London, 1979.
[20] Xindice http://xml.apache.org
[21] John M. Zelle and Raymond J. Mooney, Learning to Parse

Database Queries using Inductive Logic Programming.
AAAI, pp. 1050-1055, Portland, OR, August, 1996.

http://www.isi.edu/info-agents/workshops/ijcai03/proceedings.htm
http://www.isi.edu/info-agents/workshops/ijcai03/proceedings.htm
http://xml.apache.org/

	INTRODUCTION
	PROTOTYPE ARCHITECTURE
	Experimental Design
	Task Descriptions
	Communicating Tasks
	Learning to Analyze Requests
	Experimental Results for Learning
	Experimental methodology
	Learning Algorithms and Feature Construction
	Results

	Extraction Results

	Related Work
	Conclusions
	Future Work

	ACKNOWLEDGMENTS
	REFERENCES

