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ABSTRACT 
Given a particular update request to a WWW system, users are 
faced with the navigation problem of finding the correct form to 
accomplish the update request. In a large system, such as SAP 
with about 10,000 relations for the standard installation, users are 
faced with a sea of thousands of forms to navigate. For familiar 
tasks, users have various aids, such as personal tool bars, but for 
more complex tasks, users are forced to search or navigate for the 
correct form, or forward the update request to a specialist with the 
expertise to handle the request. In this later case, the execution of 
the request may be delayed since the specialist may be 
unavailable, or have other priorities. Also, typically the user and 
specialist engaged in a time consuming clarification dialog to 
extract additional information required to complete the request. In 
this paper we study the problem of building an assistant for the 
navigation problem for web forms. This assistant can be deployed 
either directly to a user, or to specialist that receives a stream of 
requests from users. In the former case the assistant helps the user 
navigate to the right form. In the latter case, the assistant cuts 
ambiguous communication between the user and specialist. We 
present experimental results from behavioral experiments and 
machine learning that demonstrate the usefulness of our assistant. 

1. INTRODUCTION 
Our general strategy is to construct an assistant that understand 
request for changes of information in a WWW based system. The 
assistant receives a request. This step may happen in several 
ways. A user may send the request directly to the assistant, or an 
e-mail monitor might notice that a particular email message to a 
specialist is a request to update the site.  However the request is 
received, the assistant next analyzes the request to determine its 
type and what its parameters are. The type of the request is one of 
the possible forms the WWW based system provides. Finally, the 
system generates an executable version of the proposed change, 
represented as a pre-filled instance of a particular form. The 
specialist (or user) can then efficiently determine that the analysis 
step was correctly accomplished and efficiently effect the change 
to the web site. The specialist (or user) can override results of the 
assistant’s analysis by changing values in the form. 

Note that we can not handle any type of request, only requests 
that can be verified as correctly translated by inspecting the pre-
filled instance of a particular form. 

Given any particular WWW system, augmenting the forms it 
provides with natural language requests is a straight forward 
engineering exercise. Our goal is to build a system that learns its 
schema dependent information and learns to translate request into 
forms. The resulting system can be built once, instead of requiring 
an engineering effort for every particular domain. 

In our prototype environment, we have constructed a learning 
assistant that understand requests to change the information on a 
web site. Suppose a WWW based system is out of date because a 
person has changed offices. In typical office environments, the 
user that notices the out of date information sends a request to 
update the site to a webmaster (the specialist). Because of the 
time involved in making changes, the web master “batches” 
multiple changes, thus delaying the time taken to effect an 
individual change. Eventually the webmaster will process the 
unambiguous requests by navigating to the right form for the 
particular change requested, and then using cut & paste to fill out 
the fields of the form. 

In this paper we study the specific problem of monitoring e-mail 
exchanges between users and the webmaster of a database-backed 
web site. In this setting the monitoring system must analyze and 
semi-automatically process e-mail requests.  We restrict ourselves 
to a limited class of tasks—a request that corresponds to a single 
web page form—and assume that each email contains exactly one 
such request. Users quickly adapt to these restrictions. 

To address the question of development and maintenance cost of 
the assistant, we describe a scheme for decomposing the analysis 
tasks into a series of subtasks, most of which can be learned (as 
opposed to being explicitly programmed) by known techniques.   
This dramatically reduces the cost of constructing such a system 
and adapting it to a particular setting. 

To answer the question how well the assistant can analyze 
requests, we presented the same set of predetermined tasks to an 
ad hoc collection of engineers, office assistants and students. We 
recorded the results of these tasks and labeled them. We then built 
ad-hoc information extractors that extract specific values that 
appear in requests (names, phone numbers, e-mail addresses, 
etc.). Using the categories of information extracted from a request 
(not the request string itself), we trained a collection of classifiers 
to detect the task involved. We then measured the effectiveness of 
the classifiers using classical cross-validation methodology.  



 

Figure 1. Prototype Architecture 
 
While we consider our work preliminary in several respects, we 
have been able to draw some conclusions. First, our studies 
provide promising evidence that the overall approach of building 
an assistant for navigation to web forms is possible. Second, 
monitoring e-mail communications and proposing actions can be 
effectively deployed in many real world systems. Third, the 
performance of classifiers in our system, even given the 
extremely limited training data, is surprisingly good. Our studies 
are the first concrete evidence of this conclusion reported in the 
literature. We describe in detail our intuition for this good 
performance and compare it to related results in the literature. We 
also compare the performance to a collection of ad-hoc extractors 
we developed for our prototype. 

The remainder of the paper is described as follows. The next 
section describes the architecture of the prototype system and the 
functionality it makes available. The following section describes 
the experimental design of the behavior and learning experiments. 
We then describe the results of those experiments. We conclude 
the paper with related work, a summary of our conclusions and a 
description of future work. 

2. PROTOTYPE ARCHITECTURE 
Figure 1 shows a diagram of the functional architecture of the 
prototype. The architecture consists of a database-driven web site 
(indicated by an L-shaped dashed box), an interaction manager 
that monitors e-mail and coordinates interactions with the rest of 
the system, and a learning system (indicated by a rectangular 
dashed box). The database-driven web site operates in a classical 
fashion. Client HTML browser requests are satisfied by reading 
an HTML template from the file system and instantiating the 

template with data from a database. HTML forms modify the data 
in the database by issuing transactions against the database. The 
interaction manager fetches e-mail requests for the webmaster 
from the server and runs an analysis of the request. The results of 
analysis are stored in the database. The manager then delivers a 
reply to the e-mail message. The reply contains a link to an 
HTML form that is instantiated with the extracted information in 
the request. The webmaster then views the form, makes any 
additional changes necessary, and submits the form to complete 
the request. 
The learning system consists of a training client that provides a 
user interface for the labeling of training instances. Labeling 
consists of associating the correct answer of each training 
instance to the instance itself. Once labeling is completed, the 
user runs the learning system to generate classification engines. 
These engines are used, in addition to ad-hoc extraction code, by 
the analysis module. Thus, we have an “off-line” machine 
learning system. 
The prototype system itself is implemented using an XML 
database [20], however we will use relational terminology in this 
paper. 

3. Experimental Design 
This paper reports the results of two experiments. Both 
experiments rely on presenting experimental subjects with a set 
of tasks. We first describe the tasks and then report on the results 
of our experiments. 

3.1 Task Descriptions 
Our experiments are driven by tasks that are typical changes to 
web sites [9,18]. We constructed a set of tasks that typically 
change a single attribute value (such as the office of a person) or 
add or delete an instance (such as the addition of all the data 
associated with a person – name, title, office location, e-mail, 
phone number).   
Each task was described as hand written markup on a screen shot 
of the web site. For example, to delete an event, the description of 
the event is circled and a line is draw through the event. 
Experimental participants were presented with the tasks (on-line) 
and asked to compose an e-mail to a webmaster to effect the 
change described. The description of the task is relatively 
language neutral since few words are used describe the change 
requested. This language neutrality is important since it would 
bias the e-mail description of the task generated by the 
participant. Complete details on the experimental design and 
analysis of the results will be described in a separate publication. 
We note here that the actual task descriptions for experimental 
subjects are critical to the results we report in the experimental 
results section, since we are measuring the performance of 
learning algorithms on human-generated input. For example, we 
do not require a participant to use only one of three verbs “add”, 
“delete”, “replace”, or  impose other such restrictions. 

3.2 Communicating Tasks 
We presented the tasks to a collection of experimental participants 
under two conditions. In one condition the user communicated the 
task request to a human webmaster. The human webmaster 
performed the change on a draft web page and sent a proposed 
change URL to the user. The user reviewed the change and sent a 
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confirmation. In another condition the user communicated with 
our assistant. The assistant replied with a pre-filled out form. The 
user could modify the form or switch to any of the other forms in 
the experiment. We timed both conditions. The first condition 
took 1.5 times longer to perform 9 tasks on average. In particular, 
we counted e-mail messages between users and webmasters in the 
first condition. Optimally, only 3 e-mails are required per task 
(the request, the proposed change, and the approval). However, in 
the first condition, 25% more e-mails on average were required. 
(In one case, 11 e-mails were required for a single task, due to a 
mix-up between the user and webmaster on overlapping task 
requests!) In the second condition, the user receives a reply e-mail 
from the assistant with a link to the pre-filled form, so only two e-
mail messages are used for every task. 

3.3 Learning to Analyze Requests 
The current analysis system only considers requests to update as a 
single web form. The business logic backing the form implements 
the transaction associated with the task, for example, the removal 
of a tuple “Remove John Doe from the leadership team”) or the 
addition, deletion, or modification of a single value of a particular 
attribute (e.g., “Change John Doe’s phone number to 555-1234”).  
These types of transactions naturally fall into the single web page 
category. 
Given these restrictions, the analysis process can be broken into a 
sequence of simpler decisions to make about a request. In 
particular, the analysis consists of information extraction, lookup 
and form selection steps. Information extraction is used to extract 
data values in the request.  While there has been some previous 
work on the problem of learning to extract text [10], this problem 
is less well-understood than the relatively mature area of 
classification learning. Section 3.4 gives some preliminary results 
on the extraction problem. We plan to address it more thoroughly 
in later research.  
The lookup step attempts to match extraction results with existing 
database values. Matching a value is a powerful indication of the 
nature of the request. We currently use “hard” matching but in the 
future plan to use soft matching techniques (similar to those used 
in data integration [2,10,11,16]). A soft match allows us to clean 
up the results of data integration. This strategy leaves open the 
problem of cleanly identifying new data values in a “change” or 
“add” request.   
If the target of extraction is the selection of a value from a fixed 
list, then lookup can be avoided by using a classifier instead. For 
example, detecting that a particular building is referenced can be 
accomplished by building classifiers for token sequences that 
reference buildings (“Wean Hall, “WeH”, “WH”) instead of 
extracting a particular string “wean” and then soft matching with 
the formal name of the building. 
The form selection step uses decision trees to learn the 
appropriate form for a request. We initially applied decision trees 
directly to the requests, but found that the decision tree 
incorrectly learns specific words as evidence instead of abstract 
concepts. Thus, a series of modification requests to “John Doe” 
would train the decision tree to use “John Doe” as evidence of a 
modification request. Instead of applying decision trees directly to 
the request, we applied them to the abstract categories of 
information extraction and lookup (described below). 

Notice that some of these steps are domain-independent (e.g., 
determining the request type) and some are not (e.g., determining 
the form to being selected.)  However, the learning mechanisms 
used to construct the classifiers are all domain-independent. 

3.4 Experimental Results for Learning 
3.4.1 Experimental methodology 
The data used in our experiments was collected as follows.  We 
presented the 12 tasks to a collection of test participants and 
recorded the 283 e-mails generated by these subjects. In each 
case, the email described the change implied in the task as a 
request to a web master.  Every message was then labeled with 
true or false for every binary category listed in Table 1, producing 
a dataset.   

We then ran a series of experiments with this dataset. To motivate 
the experiments, observe that there are likely to be many 
correlations in this sort of data. There are likely to be many 
correlations between requests made by any single subject; for 
instance one subject might consistently use the word “delete” for 
a delete request, whereas others might use words like “remove” or 
“erase”.  Similarly, there are many correlations between requests 
from different users associated with a single task.  Again, consider 
the following example input generated by a training subject: 

Please add Dakota Jones to the list. His email is 
djones@ardra.com and his room is 241. His number is 3624. 

It is likely that most users would include substrings like “3624”, 
“241”, and “djones” in their requests.   A learning algorithm 
might well decide that “djones” is a good indicator of an “add” 
request – that is, the learning algorithm overfits. 

To avoid this problem we trained the classifiers on the categories 
of information extraction instead of the actual data values. In each 
case the feature space adopted for messages was the abstract 
categories resulting from extraction. For example, the request 
“Change John Doe’s phone number to 555-1234” generates a 
collection of attribute/value pairs from extraction: (action, insert), 
(name, “John Doe”), (attribute, phone), (phone, 555-1234). 
Lookup then generates the attribute value pair (existingname, 
“John Doe”). We then train on (action, insert, name, attribute, 
phone, existingname). This step prevents the learning algorithm 
from using specific data values as evidence for it classification of 
an example. However, the learning algorithm now depends on the 
quality of extraction. 

We split the dataset into training and test sets using a standard 
cross-validation 10-fold split (also called jack-knifing). That is, 
we trained 10 classifiers, where the i-th classifier was trained on 
training-set messages from all groups except the i-th group, and 
evaluated on test-set messages only from the i-th group.  This 
ensures that a classifier is tested only on messages not seen during 
training.  

The results we report are all averaged across the 10 folds.  Error 
rate (the number of misclassifications divided by the number of 
examples) is a good performance metric only in cases in which 
the prior probability of a “positive” (minority-class) instance is 
reasonably high:  if positive examples are rare, low error rates can 
be obtained by simply guessing all examples as negative.  A 
widely-used alternative metric is the F-measure users the 
precision p (ratio of true positive predictions to all positive 



predictions) and recall r (ratio of true positive predictions to the 
number of positive instances in the dataset): i.e., F-measure is 
defined as 2pr/(p+r). F-measure was first defined in the 
information retrieval community as a means for evaluating 
rankings [19], and is well-suited for modern learning algorithms, 
which typically produce some measure of confidence that can be 
used to rank decisions.  However, learned classifiers chosen to 
optimize error rate often pick ranking thresholds which lead to 
unnecessarily low F values.  To address this issue, we report the 
maximum F value obtained by any thresholding of the classifier, 
again averaged over each of the 10 folds.  

3.4.2 Learning Algorithms and Feature Construction 
After preliminary experimentation (using cross-validation and the 
training set) we selected a small number of learning algorithms 
for further experimentation. One was multinomial naïve Bayes, 
following the implementation described by Mitchell [13]. The 
other algorithm was boosted decision trees. Boosting [7] is a 
method by which the performance of a base learner is improved 
by calling the base learner again and again on different variants of 
a dataset, in which examples are assigned different weights in 
each variant dataset: each new dataset is formed by weighting an 
example e more heavily if e was given an incorrect label in 
previous iterations. 

In our experiments we used the “confidence-rated” variant of 
AdaBoost [17] and a simple decision tree learner that does no 
pruning, but is limited to binary trees of depth at most five. The 
decision tree learner uses as a splitting metric the formula 
suggested by Schapire and Singer as an optimization criteria for 
weak learners: i.e., we split on a predicate P(x) which maximizes 
the function 

−+WW , where W+ (respectively W- ) is the fraction 
of examples x for which the predicate P(x) is true (respectively 
false).  For comparison purposes we also used decision trees 
without boosting. 

3.4.3 Results 
The results are shown in Table 1. Each row in the table lists the 
F1 result for the three different learning algorithms applied to 
detecting the particular request. 

 Naïve  
Bayes 

Decision  
Tree 

Adaboost 

Add_person  0.51 1.00 1.00 
Add_person_title 0.55 0.10 0.82 
Add_event 0.58 0.58 0.82 
Add_person_phone 0.81 0.67 0.81 
Del_person 0.89 0.32 0.84 
Del_person_phone 0.56 na 0.87 
Del_event 0.63 0.67 0.85 
Del_sponsor 0.74 0.88 0.82 
Mod_person_name 0.84 0.11 0.83 
Mod_event_location 0.73 0.82 0.89 
Mod_page_email 1.00 na 1.00 
Mod_sponsor 0.70 0.92 1.00 

Table 1. Learning Results 
To summarize, even under the stringent test conditions above, and 
even given a relatively small training corpus of less than 300 

examples, usefully accurate classifiers can be learned for most of 
the binary labels we considered.  In a separate experiment we 
learned two sets of classifiers. One set was for action: for add (F1 
.91), delete (F1 .92) and modify (F1 .88). The second set was for 
an entity: person (F1 .89), event (F1 .89), person_phone (F1 .98), 
etc. The lower score in Table 1 reflects the fact that both 
classifications must be performed to select the template. 
Combining the two decisions in the separate experiment would 
produce approximately the same F1 score as the combined 
decision tree of Table 1. 
Why does it work? The task description focuses the request in 
three ways.  (a) A single task is described. That is, participants do 
not attempt to request multiple changes in a single e-mail.  (b) 
The request is phrased as an action to accomplish on the web site. 
That is, an explicit verb such as “insert” or “add” appears in the 
request. Participants do not phrase requests indirectly, e.g. “The 
speaker is sick so the meeting will not occur.” (However, 
participants do use the passive voice: “John’s telephone number 
should be changed to 1234.”) (c) Participants phrase requests as a 
semantic description of the change in the data and not as a change 
in the presentation. For example, participants do not request that 
“the 28th through 35th characters on the fourth line of the page title 
events should be removed”. In this way, the experimental 
framework restricts the requests from a completely free form 
input to a more manageable form.  

Why does it fail? The dataset shows that the ad-hoc nature of the 
request leads to a crude set of selection of evidence. A second 
significant factor is that the examples are not independently 
identically distributed. They are biased because the same 
participant generated multiple examples and because the 
similarity of classes of tasks affects the distribution. While the 
classifiers capture some of this effect, a more careful investigation 
could reveal better results. 

3.5 Extraction Results 
In a separate experiment, we examined the training set data and 
wrote heuristic-based ad-hoc extractors in a regular expression 
style scripting language to extract the pertinent data values that 
appear in a subset of the tasks. Our subset resulted in 81 training 
examples. We then measured the performance of the extractors 
against the training experiment.  
Table 2 shows an analysis of the results. For the extractor that 
extracts the action (insert, delete, replace) (listed under “Actions”) 
of the request, the correct action was extracted about 90% of the 
time. In five cases we judged that the extractor could be easily 
extended to extract the correct action. These cases involved uses a 
synonym such as “add” for insertion. In two cases the verb used, 
“update” was ambiguous, so we classify these as errors. Finally, 
in one case, the user used the wrong verb for a request. For the 
extractor that extracts the attribute for an update (for example, 
that a phone number is modified) the results are listed under 
“Attribute”. The correct attribute was extracted 65% of the time. 
With some additional scripting effort, we judged an additional 16 
examples, or about 20% could be correctly extracted. In 4 of these 
16, the extension involves a dictionary extension similar to the 
action extractor. In the other 12 cases, the correct attribute was 
not explicitly mentioned, (typical for modifications to people’s 
names) but the attribute could be derived from the name extractor. 
In about 15% of the cases the wrong attribute was extracted. The 



named entity extractor correctly extracted the named entity about 
83% of the time and extracted a partially correct entity 6% of the 
time. The correct name entity plus additional characters (noise) 
were extracted the remaining 11% of the time. Additional work 
could strip the noise from the extracted value. For room number 
and e-mail address extraction, the extractor always correctly 
extracted the value when present or extracted nothing when no 
value was present in an example, giving a 100% correctness 
score. Of course, the heuristics used are never perfect – for 
example, a company named “a@b” would be extracted as an e-
mail address. Finally phone extensions were correctly extracted 
almost 98% percent of the time with 1 partial extraction and 1 
failure to extract a value. In this last extraction task however, our 
task description introduced a bias into the description of the task – 
phone number extensions were noted on the after page as “x3624” 
and several training subjects used this notation in the email 
description of the task, instead of using some other notation such 
as “ext”. We conclude that this particular extractor’s performance 
was enhanced by a biased introduced in the task description. If the 
task was described in a non-textual way, for example verbally, a 
test subject might not use the same notational convenience.  

Table 2. Experiment 2 Results 
Extractor # % 

Actions     

Correct 73 90.12% 

Potentially Correct 5 6.17% 

Ambiguous 2 2.47% 

User Error 1 1.23% 

Attributes     

Correct 53 65.43% 

Potentially Correct 16 19.75% 

Not Extracted / Wrong 12 14.81% 

Named Entities (name, etc.)     

Correct 67 82.72% 

Partially Correct 5 6.17% 

Correct + noise 9 11.11% 

Room number     

Correct 81 100.00% 

Email     

Correct 81 100.00% 

Phone ext.     

Correct 79 97.53% 

Partial 1 1.23% 

Not Extracted 1 1.23% 

Comparing the classifier results to extraction, we see that for 
comparable tasks (such as identification of the action) machine 
learning as similar performance to ad hoc extraction. Our results 
also show that extraction of values is a significant source of errors 
in our prototype and this area needs further work. For example, 
the extraction scripts do not use the database as a source of 
information. Our prototype constructs sample queries to lookup 
possible extracted values to improve the performance of 
extraction. For example, candidate named entities are queried in 

the database and a matched instance is considered definite 
evidence that the particular entity was mentioned in the request. 

4. Related Work 
The construction of web portals has a wide range of industrial 
systems ranging from enterprise application integration 
infrastructure (.NET and J2EE) to content management systems. 
All these systems take a programming language & tool based 
approach and do not use machine learning to simplify the task of 
system construction.  
Lockerd, et. al. [12] describe a user study of e-mail based requests 
to a web master for changes to a web site. We borrowed (and 
modified) the before image / after image technique from this 
paper. The paper reports that detecting delete and update requests 
exhibited a “semantic pattern” 85% of the time. The data from the 
reported experiment was used to implement a hand-built parser 
that understood requests fully 65% of the time. No other details 
are provided. 
Natural language understanding of database queries has a long 
tradition and recently has shifted to machine learning based 
approaches. Zelle and Mooney [21] describe CHILL that learns to 
parse natural language requests using a corpus of training data 
consisting of sentences and associated queries. However, query 
systems generally focus on generating the correct combination of 
predicates and quantifiers to express a correct query and do not 
address the issue of extraction of information from requests, nor 
does it focus on the use of existing data to interpret a request. 
The Mangrove project [5,8] has surprisingly similar objectives to 
our project. Both projects are interested in management of 
unstructured data in a (semi) structured fashion and both are 
interested in extraction of data from WWW pages, calendars, etc. 
In Mangrove, the update of a web site is accomplished by a user 
creating a document (either an e-mail or a personal web site page) 
and labeling the document with additional data (using a direct 
manipulation editor) according to an RDF schema. The document 
is then examined by an external system and the gathered 
information is then integrated into another web site. Our project 
emphasizes the construction of assistants that learn where as 
Mangrove emphasizes large scale data integration of web sites 
and the interpretation of semantic e-mail interactions.  

5. Conclusions 
Navigation to the correct form in a large web site is frustrating 
and time consuming. Much of the work is repetitive and amenable 
to machine learning techniques. Replacing navigation with natural 
language interaction is a natural solution. In this paper we 
examined the application of machine learning to understanding 
natural language requests as a replacement of navigation. Our 
problem domain is the interpretation of e-mail requests to change 
a web site. 
We considered two problems – a systematic procedure for 
understanding requests, and the performance of learning 
techniques on the analysis of e-mails vs. ad-hoc scripts generated 
by developers. 
Our learning experiments show that machine learning classifiers 
perform as well as developers programming ad-hoc analysis 
scripts. Classifiers have the additional benefit of automatic 
improvement given more training data. In addition, they are 



schema independent. In summary, our given a natural language 
request, our assistant can navigate to the correct form and “pre-
fill” the form with the correct information with high accuracy. 

5.1 Future Work 
In the short term, our focus is on the integration of our learning 
results with the prototype system. In particular, this will allow us 
to “close the loop” between the results of the classifier on any 
particular request and corrective feedback from the user. 
Corrective feedback is implicitly provided by modifications users 
make to the form presented. Thus, our prototype will change from 
an off-line learning system to an on-line learning system.  
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