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Abstract

In this paper we explore the usefulness of various types
of publication-related metadata, such as citation net-
works and curated databases, for the task of identify-
ing genes in academic biomedical publications. Specif-
ically, we examine whether knowing something about
which genes an author has previously written about,
combined with information about previous coauthors
and citations, can help us predict which new genes the
author is likely to write about in the future. Framed in
this way, the problem becomes one of predicting links
between authors and genes in the publication network.
‘We show that this solely social-network based link pre-
diction technique outperforms various baselines, in-
cluding those relying only on non-social biological in-
formation.

Introduction & related work

Social networks, in the form of bibliographies and citations,
have long been an integral part of the scientific process.
In this paper we examine how to leverage the information
contained within these publication networks, along with in-
formation concerning the individual publications themselves
and a user’s history, to help predict which entities the user
might be most interested in and thus intelligently guide his
search.

Specifically, our application domain is the task of predict-
ing which genes and proteins a biologist is likely to write
about in the future (for the rest of the paper we will use the
term ’gene’ to refer both to the gene and gene product, or
protein). We define a citation network as a graph in which
publications and authors are represented as nodes, with bi-
directional authorship edges linking authors and papers, and
uni-directional citation edges linking papers to other papers
(the direction of the edge denoting which paper is doing the
citing and which is being cited). We can construct such
a network from a given corpus of publications along with
their lists of cited works. There exist many so called cu-
rated literature databases for biology in which publications
are tagged, or manually labeled, with the genes with which
they are concerned. We can use this metadata to introduce
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gene nodes to our enhanced citation network, which are bi-
directionally linked to the papers in which they are tagged.
Finally, we exploit a third source of data, namely biological
domain expertise in the form of ontologies and databases of
facts concerning these genes, to create association edges be-
tween genes which have been shown to relate to each other
in various ways. We call the entire structure an annotated
citation network.

While there has been extensive work on analyzing and
exploiting the structure of networks such as the web and ci-
tation networks (Kleinberg 1999), most of the techniques
used for identifying and extracting biological entities di-
rectly from publication text (Feldman et al. 2003; Murphy
et al. 2004; Franzén et al. 2002; Bunescu et al. 2004,
Shi and Campagne 2005) rely on performing named entity
recognition on the text itself and ignore the underlying net-
work structure entirely.

Data
We are lucky to have access to many sources of good data':
e PubMed Central (PMC) contains full-text copies of over
one million biological papers for which open-access has
been granted.
e The Saccharomyces Genome Database(SGD) contains

various types of information concerning the yeast organ-
ism Saccharomyces cerevisiae.

e The Gene Ontology (GO) describes the relationships be-
tween biological entities across numerous organisms.

From these we are able to extract the nodes and edges
that make up our annotated citation network?:

| Type | Name [ Description [ Number |
Node Paper 44,012
Node Author 66,977
Node Gene 5,816
Edge | Authorship | Author < Paper | 178,233
Edge Mention Paper < Gene 160,621
Edge Citation Paper < Paper 42,958
Edge | RelatesTo Gene < Gene 1,604

! pubmedcentral.nih.gov, yeastgenome.org, geneontology.org
2An on-line demo, including the network used for the experi-
ments, can be found at http://yeast.ml.cmu.edu/nies/.



Methods

Given our graph representation, the first step is to pick a
set of query nodes to which our predicted links will con-
nect. We then perform a random walk out from the query
node, simultaneously following each edge to the adjacent
nodes with a probability proportional to the inverse of the
total number of adjacent nodes (Cohen and Minkov 2006).
We repeat this process a number of times, each time spread-
ing our probability of being on any particular node, given
we began on the query node. After each step in our walk
we have a probability distribution over all the nodes of the
graph, representing the likelihood of a walker, beginning at
the query node(s) and randomly following outbound edges
in the way described, of being on that particular node. We
can then use this distribution to rank all the nodes, predicting
that the nodes most likely to appear in the walk are also the
nodes to which the query node(s) should most likely con-
nect. In order to evaluate our predicted edges, we can hide
certain instances of edges, perform a walk, and compare the
predicted edges to the actual withheld ones.

Experiment

To evaluate our network model, we first divide our data into
two sets:

e Train containing only authors, papers, genes and their
respective relations published before 2008
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e Validation containing new relationships

genes) first published in 2008.
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From this Train data we create a series of subgraphs
(summarized in Figure 1), each emphasizing a different set
of relationships between the nodes. By selectively removing
edges of a certain type from the F'U LL graph we were able
to isolate the effects of these relations on the random walk
and, ultimately, the predicted links. Specifically, we classify
each graph into one of four groups and later use this catego-
rization to asses the relative contribution of each edge type
to the overall link prediction performance.

Baseline UNIFORM is simply the chance of predict-
ing a novel gene correctly given that you select a predicted
gene uniformly at random from the universe of genes. Re-
latedly, ALL_PAPFERS takes into account the distribution
of genes across papers in the training graph. Thus its pre-
dictions are weighted by the number of times a gene was
written about in the past. This model provides a more rea-
sonable baseline. AUT HORS considers the distribution of
genes over all papers previously published by the author.

Social The social graphs are constructed of edges that con-
vey information about the social interactions of authors, pa-
pers and genes. These include facts about which authors
have written together, which papers have cited each other,
and which genes have been mentioned in which papers.

3We restrict our evaluation to genes about which the author has
never previously published .

Content In addition to social edges, some graphs also
encode information regarding the biological content of the
genes being published.

Protocol For our query nodes we select the subset of
authors who have publications in both the Train and
Validation set. We further create two other query au-
thor lists, FIRSTAUTHORS and LASTAUTHORS, restricted
to those authors who appear as the first or last author, re-
spectively, in their publications in the Validation set.
The purpose of these lists of queries is to determine whether
an author’s position in a paper’s list of authors has any im-
pact in our ability to predict the genes he or she might be
interested in.

Given these sets of graphs and query lists, we then query
each author in each of our three lists, independently, against
each subgraph in Figure 1. Each such (author, graph)
query yields a ranked list of genes predicted for that au-
thor given that network representation. By comparing this
list of predicted genes against the set of true genes from
Validation we are able to calculate the performance of
each (author, graph) pairing*. The resulting F1 metrics, bro-
ken down for each set of author positions, are summarized
in Figure 2.

Querying with extra information Finally, we were in-
terested in seeing what effect adding some limited infor-
mation about an author’s 2008 publications to our query
would have on the quality of our predictions. This might
occur, for instance, if we have the text of one of the au-
thor’s new papers available and are able to perform basic
information extraction to find at least one gene. We there-
fore also queried, together as a set, each author and the one
new gene about which he published most in 2008 (see graph
FULL(AUTHOR+1_GENE) in Figurel). These results
are summarized, along with the others, in Figure 2, again
broken down by author position.

Results

It is apparent from the results that, in almost all settings,
querying based on the first author of a paper generates the
best results, with querying by last author performing the
worst. Tellingly, the only case in which the last author is
most significant is in the CITATIONS_CITED model.
We notice that those models relying solely on the biolog-
ical GO information relating genes to one another (Content
graphs from Figure 1) perform significantly worse than
any other model, and are in fact in the same range as the
UNIFORM model. Indeed, the FFULL model benefits
from having the relations removed, as it is outperformed by
the FULL_ MINUS_RELATED_GEN ES model.
Some possible explanations for this are that scientists
might not be driven to study genes which have already been
demonstrated to be biologically related to one another. It is
also possible that our methods for parsing and interpreting
the GO information and extracting the relationships between

“Since the list of predicted genes can be quite long all evalua-
tions are calculated only considering the top 20 predictions made.
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Figure 1: Subgraphs queried in the experiment, grouped by type: B for baselines, S for social networks, C for networks convey-
ing biological content, and S+C for networks making use of both social and biological information. Shaded nodes represent the
node(s) used as a query. **For graph RELATED_GEN ES, which contains the two complimentary uni-directional Relation
edges, we also performed experiments on the two subgraphs RELATED _GEN E Sgejaresto and RELAT ED _GEN ESgeiatearo
which each contain only one direction of the relation edges. For graph CITATION S, we similarly constructed subgraphs
CITATIONSC[[&Y and CITATIONSC”ed.
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Figure 2: Mean percent F1 @20 of queries across graph types, broken down by author position, shown with error bars demark-
ing the 95% confidence interval. Baselines UNIFORM and ALL_PAPERS are also displayed.

genes may not be capturing the relevant information in the
same way a trained biologist might be able to. R

In contrast, the models exploiting the social re-
lationships in CITATIONS, COAUTHORS,
RELATED_AUTHORS and RELATED_PAPERS
all outperform the ALL_PAPFERS baseline. While each
of these social edge types is helpful on its own, their full
combination is, perhaps counter-intuitively, not the best
performing model. Indeed, while F'ULL outperforms its
constituent CITATIONS and COAUTHORS models,
it nevertheless benefits slightly from having the coauthor
edges removed (as in FULL_MINUS_COAUTHOR).
This may be due to competition among the edges for the
probability being distributed by our random walk.

The best performance of the single-author query models is
achieved by the relatively simple, pure collaborative filtering
RELATED_PAPFERS model. This makes sense since, if
other people are writing about the same genes as the author,
they are more likely to share other common interests and
thus would be the closest examples of what the author may
eventually become interested in in the future.

The results for the FULL(AUTHOR + 1.GENE)
model seem to indicate that adding a single known new
gene to our author query of the FULL model improves
our prediction performance by almost 50%, and signif-
icantly outperforms the best single-author query model,
RELATED_PAPERS. This is a promising result, as it
suggests that the information contained in our network rep-
resentation can be combined with other sources of data (e.g.
gleaned from performing information extraction on papers’
text) to achieve even better results than either method alone.

Conclusions & future work

In this paper we have introduced a new graph-based anno-
tated citation network model to represent various sources of
information regarding publications in the biological domain.
We have shown that this network representation alone, with-
out any features drawn from text, is able to outperform com-
petitive baselines. Using extensive ablation studies we have

investigated the relative impact of each of the different types
of information encoded in the network, showing that so-
cial knowledge often trumps biological content, and demon-
strated a powerful tool for both combining and isolating dis-
parate sources of information. We have further shown that,
in the domain of Saccharomyces research from which our
corpus was drawn, knowing who the first author of a paper
is tends to be more informative than knowing who the last
author is (contrary to some conventional wisdom). Finally,
we have shown that, despite performing well on its own, our
network representation can easily be further enhanced by in-
cluding in the query set other sources of knowledge about a
prediction subject gleaned from separate techniques, such as
information extraction and document classification.
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