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Abstract—Spectral clustering methods are elegant and effec-
tive graph-based node clustering methods, but they do not allow
mixed membership clustering. We describe an approach that
first transforms the data from a node-centric representation to
an edge-centric one, and then use this representation to define
a scalable and competitive mixed membership alternative to
spectral clustering methods. Experimental results show the pro-
posed approach improves substantially in mixed membership
clustering tasks over node clustering methods.
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I. INTRODUCTION

Spectral clustering [1] is a data clustering paradigm where
the bottom eigenvectors of a specific Laplacian (e.g., the
Normalized Cuts Laplacian [2] or the symmetric normalized
Laplacian [3]) of the affinity matrix of the data points are
used to construct a low-dimensional embedding in which
clusters are clearly separated in a metric space. Spectral
clustering is popular due to its simplicity, effectiveness, and
its ability to deal with non-linearly separable clusters.

There are two major drawbacks to spectral clustering
methods. The first drawback is that they are computationally
expensive because of the eigenvector computation, which is
non-trivial even with faster sparse and approximate tech-
niques [4]. The second drawback is that, as a type of
graph partition method, unlike probabilistic topic models [5]
or probabilistic network models [6], [7], spectral methods
do not allow mixed membership clustering (overlapping
clusters).

To address these problems, first we describe a method for
converting a node clustering (graph partition) method into
a mixed membership clustering approach by transforming a
node-centric to a scalable edge-centric representation. Then
we describe how this transformation can be used with power
iteration clustering [8], a node clustering method based on
spectral properties of the data (like spectral methods) that is
experimentally competitive with spectral methods but more
scalable. We show a substantial improvement in performance
in mixed membership clustering tasks using the proposed
approach.

II. EDGES, RELATIONSHIPS, AND FEATURES

Instead of clustering the data instances, or the nodes in
the graph, we want to cluster every feature occurrence, or
edge, in the graph.

A central assumption we make in this work is that, while
nodes in a graph can belong to more than one cluster, an
edge between two nodes, indicating an affinity relationship,
belongs only to one cluster. If we can determine the mem-
bership of these edges correctly, then we can assign multiple
labels to the nodes based on the membership of the incident
edges. In the context of a social network, edge clustering can
be interpreted as relationship clustering—instead of forcing
every person to belong to only one social community, each
of the relationships will be assigned to a social community.
For example, person a’s relationships with a’s parents,
siblings, and cousins belong to the community of a’s family
and relatives, and a’s relationships with his co-workers
belong to the community of the company a works for. One-
community-per-relationship is a much better assumption
than one-community-per-person because it better fits our
understanding of a social network structure and allows
multiple community labels per person—in fact, person a can
have as many labels as the number of relationships a has.

If we are to apply graph partition methods to edges of
the graph, first we need to transform the graph so to an
“edge-centric” representation. In this work, we will construct
what we call a bipartite feature graph (BFG). A BFG B(G)
on a graph G is a bipartite graph satisfying the following
conditions:
• B(G) = (VV , VE , E) where VV and VE are disjoint

sets of nodes and E is the set of edges.
• Each node in VV corresponds to a node in G and each

node in VE corresponds to an edge in G.
• An edge e ∈ E exists between nodes a ∈ VV and
b ∈ VE if and only if node a is incident to edge b in
G.

In other words, for each edge ei(u, v) in G, we add a new
node ei to the node set of B(G), and connect ei to the nodes
u and v in B(G).

We compare BFG to line graphs, a more common edge-
centric representation. A line graph L(G) on a undirected,
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Figure 1: An example graph G and its corresponding bipartite feature graph B(G) and line graph L(G). In (b) and (c), the
blue nodes represent the edges in G; e.g., edge ab represents the edge connecting a and b in (a).

unweighted graph G is a graph where (1) each node of L(G)
represents an edge of G, and (2) an edge exists between two
nodes of L(G) if and only if their corresponding edges in
G have an incident node in common; In other words, for
each edge ei(u, v) in G, we create a node ei in B(G), and
connect ei to ej if u or v is also an end point of ej .

There are several advantages to BFG as an edge-centric
representation over line graphs; (a) unlike a line graph, the
original graph G can always be constructed from a BFG
B(G), (b) B(G) has the same space complexity as that of
G, and (c) it is trivial to modify the BFG to correspond to
a directed, weighted graph. The biggest drawback with line
graphs is that they not scalable. For example, a set of nodes
and edges in G that form a “star” pattern—one node in
the middle connected to n nodes via n edges—translates
to n nodes and n2 edges in L(G). This is especially a
problem in most large, social networks that display a power-
law distribution in the number of incident edges per node
[9], [10].

A graph G can be represented as a square matrix A where
the rows and columns correspond to nodes and a non-zero
element A(i, j) corresponds to an edge between nodes i and
j; similarly, a BFG B(G) = (VV , VE , E) can be represented
as a rectangular matrix F where the rows correspond to VE

and the columns correspond to VV , and a non-zero element
F (i, j) correspond to an edge between i and j, which in
turn represents an incidence between edge i and node j in
G. An immediate corollary is that F will always be sparse,
since every row in F will always have only two non-zero
elements, and the number of non-zero elements in F is 2m
where m is the number of edges in G. Thus, while a BFG
transformation does not increase the space complexity of the
original input, methods that work with the BFG need to be
sparse matrix-friendly in order to scale to large datasets.

An important observation we want to make here is that a
B(G) is a valid edge-centric representation of G regardless

of G’s structure, even if, let’s say, G is itself a bipartite
graph. This observation generalizes BFG to represent not
just graphs, but any data represented by weighted feature
vectors. Actually, a bipartite graph has been often used
to represent large feature vector-based datasets such as
noun phrases found on the web [11], [12], large document
collections [13], [12], and social network communities [14],
[15] for scalable semi-supervised learning and clustering
analysis.

A bipartite graph can be constructed from a dataset of
feature vectors X as follows. Let xi ∈ X be the i-th instance
of X , and let xi(j) be the weight of xi’s j-th feature. Then
create a bipartite graph G = (VI , VF , E) where the i-th
node in VI correspond to the xi and the j-th node in VF

correspond to the j-th feature, and an edge e(i, j) ∈ E is
weighted by xi(j). The BFG can be applied as above and
therefore we can transform any graph or dataset of feature
vectors into an edge-centric representation.

An intuitive interpretation of edge clustering on the bi-
partite instance feature graph is that, instead of clustering
instances, where each instance can belong to multiple clus-
ters, we want to cluster each feature occurrence. For exam-
ple, a text document on the subject of sports management
may belong to both “sports” and “business administration”
categories. However, we can assign each word occurrence
to a specific category (e.g., the word “football” to the sports
category and the word “budget” to the business category),
and then assign the document multiple labels depending on
the labels of its word features.

III. EDGE CLUSTERING

After transforming a graph into a BFG, edge clustering
can be done with any graph-based clustering method, like
spectral clustering methods such as Normalized Cuts [2] and
the Ng-Jordan-Weiss method [3]. Then the cluster labels
assigned to the edge nodes VE in the BFG can be used
to determine mixed membership labels for the nodes in the



original graph. Algorithm 1 outlines the steps for the general
procedure, where A is the matrix representation of the input
graph, k is the number of desired clusters, and Cluster and
Labeler are the specified clustering method and the node
label assignment strategy, respectively.

Algorithm 1 Proposed general mixed membership clustering
method via edge clustering

1: procedure MMCLUSTER(A, k,Cluster,Labeler)
2: Transform A into a BFG and get B(A)
3: Run Cluster(B(A), k) and get edge clusters E1, E2, ..., Ek.
4: Run Labeler(E1, E2, ..., Ek) and get mixed membership

node clusters C1, C2, ..., Ck

5: return C1, C2, ..., Ck

6: end procedure

An issue to consider when choosing the graph clustering
method is its scalability. If the original graph G = (V,E)
is represented by a |V | × |V | matrix, then its BFG matrix
is (|E|+ |V |)× (|E|+ |V |), a much larger matrix for most
types of data. In order for this approach to scale to large
datasets, the graph-based method must be able to take full
advantage of the sparsity of BFG.

A. Power Iteration Clustering

For the graph-based clustering method we use power
iteration clustering (PIC) [8]. In essence, PIC finds a very
low-dimensional data embedding using truncated power it-
eration on a normalized pair-wise similarity matrix of the
data points, and this embedding turns out to be an effective
cluster indicator.

PIC is related to a family of clustering methods called
spectral clustering. PIC and spectral clustering are similar
in that both embed data points in a low-dimensional sub-
space derived from the affinity matrix, and this embedding
provides clustering results directly or through a k-means
algorithm. They are different in what this embedding is and
how it is derived. In spectral clustering the embedding is
formed by the bottom eigenvectors of the Laplacian of an
affinity matrix. In PIC the embedding is an approximation
to a eigenvalue-weighted linear combination of all the
eigenvectors of the row-normalized affinity matrix. This
embedding turns out to be very effective for clustering, and
in comparison to spectral clustering, the cost (in space and
time) of explicitly calculating eigenvectors is replaced by
that of a small number of matrix-vector multiplications. Here
we reproduce the original PIC algorithm as Algorithm 2.

The diagonal degree matrix D is defined as D(i, i) =∑
j A(i, j). Typically, the indicator v0 is first assigned

uniformly random values, as in the power method for
determining the principle component of a square matrix. The
normalization in Step 5 can be used to keep the numerical
values in v from overflow or underflow, and can also used
to keep v a probability distribution (e.g., vt+1 ← vt+1

||vt+1||1 ).

Algorithm 2 The original PIC algorithm
1: procedure PIC(A, k)
2: Initialize v0 and t← 0
3: repeat
4: vt+1 ← D−1Avt

5: Normalize vt+1

6: δt+1 ← |vt+1 − vt| and t← t+ 1
7: until |δt − δt−1| ' 0
8: Use k-means on vt to get clusters C1, C2, ..., Ck.
9: return C1, C2, ..., Ck

10: end procedure

B. Edge Clustering with PIC

The input to PIC is A, a non-negative square affinity
matrix where A(i, j) represents the similarity between in-
stances i and j (or, in the context of a graph, the weight
of the edge between node i and j). If we want to cluster
the nodes of a graph G (assuming homophily), then we
can simply use G for A. However, here we want to cluster
the edges of G. As mentioned in Section II, the most
direct edge-centric representation of G is the line graph
L(G), but the problem with L(G) is that not only is it
potentially a very dense graph, it will most likely be dense
for many types of data such as social networks and document
collections. The bipartite feature graph B(G) is a more
scalable representation, but it introduces another problem.
A BFG, which is a bipartite graph, is always periodic, and
therefore iterative algorithms such as the power iteration and
PageRank [16] do not converge. Likewise, PIC, which is
based on the power iteration, cannot be used on B(G).

Here we propose to turn B(G) into a unipartite graph as
follows. Let cn(i, j) ⊆ VV be the set of common incident
nodes of edge i and j in G, and let F be the matrix
representation of B(G) (as in Section II), and we define
a similarity function s(i, j) where i, j ∈ VE as follows:

s(i, j) =
∑
h

1∑
j F (j, h)

F (i, h) · F (j, h) (1)

In other words, the similarity between edge i and j in G is
the number of common incident nodes they have (at most 2),
weighted proportionally to the product of the edge weights
but inversely proportional to the number of edges each
node is incident to. This is an intuitive similarity function
between two edges that incorporates the number of common
incident nodes, their weights, and the inverse frequency of
the incident nodes1. Then we can define a square matrix
S where S(i, j) = s(i, j), and use S in place of A in
Algorithm 2.

One final difficulty remains: S could still be dense. As

1The assumption is that a node should not be considered important for
determining similarity if it is incident to many edges; e.g., two links both
pointing to the popular search engine Google.com is hardly a evidence of
their similarity. This is similar to the tf-idf term weighting commonly used
for comparing document similarity in information retrieval methods [17]



Equation 1 implies, s(i, j) is non-zero as long as i and j
have one incident node in common—which brings us back
to the problem with line graphs mentioned in Section II.
However, a simple and efficient “trick” can be applied to
obtain a solution with time and space complexity linear to
the size of the input, based on a couple of observations:

1) The (likely) dense similarity matrix S can be decom-
posed as S = FNFT , a product of sparse matrices,
where the diagonal matrix N defined as N(j, j) =∑

i F (i, j).
2) A is only used in Step 4 of Algorithm 2 for a matrix-

vector multiplication.
The above observation allows us to replace Step 4 of
Algorithm 2 with the following:

vt+1 ← D−1(F (N(FTvt))) (2)

and produce the exact same result as using S directly.
Note that the parentheses specifying the order of operations
is important to keep all computations sparse matrix-vector
multiplications linear to the input size. One more thing; since
S is never explicitly constructed, D also cannot be computed
directly. However, one can verify that we can compute it
efficiently by computing a vector d = FNFT1 (where 1 is
a vector of 1’s) and let D(i, i) = d(i).

C. Assigning Node Labels

After obtaining a cluster label for every edge, we can
proceed to assign labels for every node based on the labels
for its incident edges. Let L(i, j) be the number of node
i’s incident edges assigned the j-th label. We propose three
simple variations:

Max The label assigned to node i is argmaxjL(i, j).
This will assign only one label to a node as
in typical node-based clustering methods, and is
useful for comparing against them in a single-
membership setting.

T@p Label j is assigned to node i if L(i,j)∑
j L(i,j) ≥

p
100 ;

i.e., T@20 means that node i will be assigned label
j if at least 20% of its incident edges are assigned
j. It falls back to Max if no labels meet the criteria.

All Label j is assigned to node i if L(i, j) ≥ 1; i.e.,
node i will be assigned all the labels of its incident
edges.

Putting together the various parts of the method, the
mixed membership clustering via edge-clustering using PIC,
which call PICE, is outlined in Algorithm 3. Note that
unlike Algorithm 1, PICE uses the compact representation
F instead of B(A).

IV. EXPERIMENTS

For experiments we compare the proposed method with
different node label assignment methods on a number of
datasets. In addition we will use the original node-centric

Algorithm 3 Mixed membership clustering using PIC
1: procedure PICE(A, k, p)
2: Transform A into a BFG as F
3: Run PIC(F, k), replacing Step 4 with Equation 2, and get

edge clusters E1, E2, ..., Ek.
4: Use T@p on E1, E2, ..., Ek to get node clusters

C1, C2, ..., Ck.
5: return C1, C2, ..., Ck

6: end procedure

PIC and the closely related normalized cuts method (NCut)
[2] as baselines. Instead of evaluating clustering methods
indirectly using a supervised learning task as done in some
previous work [14], [15], we want to compare output clusters
directly with human assigned categories. For the evaluation
metric we will report the macro-averaged F1 score2, often
used for multi-label categorization tasks [18], [17], after
aligning output clusters with ground-truth category labels
using the Hungarian algorithm [19]. We prefer this metric
over label accuracy because the latter tend to inflate predic-
tion performance when the cluster sizes are not balanced.

A. Modified Network Datasets

We gather a set of eight benchmark network datasets
with single-membership ground-truth labels for our first
set of experiments. For each dataset we synthesize mixed
membership instances by randomly drawing and merging
pairs of nodes. We prefer modifying a variety of existing
real datasets over purely synthetic ones such as the planted
partition model [20] as they may be a better predictor on
how well these methods would perform on these types of
real mixed membership datasets. Our primary goals for these
experiments are:
• To verify that edge clustering works as well as node

clustering on single-membership data.
• To vary the degree of “mixed membership-ness” and

see how well each method does.
The merging process is follows. (1) Split nodes of graph

G = (V,E) into two sets S and T such that S ∪ T = V

and S ∩ T = ∅, such that |S|·100|V | ≈ m. (2) For each node
s ∈ S, randomly select a node in t ∈ T , and add all labels
and edges of s to t (i.e., add a new edge (t, c) if (s, c) ∈ E).
(3) Remove all nodes in S and their incident edges.

The parameter m controls the degree of mixed
membership-ness and goes from 0 to 100, where 0 would
result in the original single membership graph and 100
would result in a graph with a single node with all possible
membership labels. In between, m guarantees that at least
m% of the nodes in original single membership graph G is
merged in the mixed membership graph G′.

For the experiments this process is repeated 50 times per
dataset and the reported evaluations are averaged over these

2The harmonic mean of precision and recall
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Figure 2: Mixed membership parameter m (x-axis) versus macro-averaged F1 score (y-axis) on the modified network datasets.

50 runs.

Here we briefly describe the eight datasets. The Karate
dataset [21] form a two-community social network among
28 members a karate club; the nodes are people and the
edges are friendships. The Dolphin dataset [22] is a two-
community social network of associations between dolphins
in a pod in New Zealand. The UMBCBlog [23] and AGBlog
[24], datasets are networks of 404 and 1222 political blogs,
respectively. The nodes are blogs and edges are hyperlinks
between them, and each blog belong either to the liberal or

conservative community. The Senate dataset contains nodes
corresponding to 98 US senators and edges are agreement
on congressional votes; labels correspond to affiliations with
either a liberal or a conservative political party; unlike other
datasets, this dataset is a complete graph. The nodes in the
Football dataset [25] are 115 US Division IA colleges, each
belonging to one of 10 conferences, and the edges represent
games in the 2000 regular season. The Cora and CiteSeer
datasets [26] are 2485 and 2114 scientific papers belonging
to 7 and 6 related scientific fields, respectively; edges are



citations. All of these datasets have weighted, undirected
edges.

The experiment results on the network datasets are shown
in Figure 2, where Node refers to the original PIC algorithm
using Node-based clustering. Results for NCut is nearly the
same as that of Node and is not shown in the figure for sake
of clarity. Here we make a few observations: (a) Except for
Senate, on most datasets, edge clustering methods do just
as well as Node for m = 0 (single membership). (b) As
m increases, All and methods with a low p perform better
as expected. (c) The performance of Max is very similar to
that of Node—it does well at low m’s but not at higher
m’s, whereas All usually is the worst (not by much) at
low m’s and best at high m’s. (d) The poor performance
of edge clustering methods on Senate suggests that they
may not be well-suited for certain dense network datasets.
(e) The threshold parameter p should be tuned for an optimal
result—Max and All do not do well at particular extremes of
m, while T@20 consistently outperform Node at almost any
m, except on the Senate dataset. The results verify that edge
clustering will generally work well on single-membership
datasets as well as mixed membership ones. Note that at
the very high end of p edge clustering methods, especially
All, would do well simply because most instances will have
membership in most classes.

B. BlogCatalog Datasets

BlogCat1 and BlogCat2 [14], [15] are two blog datasets
crawled from BlogCatalog.com, during two different time
periods. BlogCat1 contains 10,312 blogs/users, links be-
tween these blogs, and each of the blog is manually assigned
one or more labels from a set of 39 category labels. BlogCat2
is a similar dataset with 88,784 blogs and 60 category
labels, and additionally each blog may be associated with a
subset of 5,413 tags. For our experiments we will consider
links between blogs and associated tags as input, and use
the manually assigned category labels as gold-standard for
evaluation.

Instead of evaluating a clustering method indirectly using
a supervised learning task as done previously on these blog
datasets [14], [15], we want to directly compare output
clusters directly with human assigned categories. However,
on a large, noisy dataset with many possible multi-category
assignments, it may not be fruitful to compare all clustering
and category assignments at once—many of the possibili-
ties can be considered correct and the manually assigned
categories may be deficient. Here we will tease out some of
these kinds of noise by evaluating a clustering method on
one pair of categories at a time, instead of the entire dataset.

We want to focus on cases where there are actual mixed
membership instances, so we select category pairs where
when instances belonging to them are pooled together, 2%
to 70% of them are mixed membership (belong to both
categories). The 70% cap is so there is enough signal there
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Figure 3: Summary statistics for the BlogCatalog datasets.
Each dot on the chart is a category-pair dataset. The x-axes
correspond to the size ratio between the two categories, and
the y-axes correspond to the ratio of instances that belong
to both categories.

from either category to “guide” the clustering method in
separating the data according to the selected categories. We
also filter category pairs based on the size ratio between the
two categories so that the number of instances in the larger
of the pair is at most twice that of the smaller one. We end
up with 86 category-pair datasets for BlogCat1 and 158 for
BlogCat2. Figure 3 plots the pair size ratio against the ratio
of mixed membership instances for these datasets. Note that
most category pairs have only a small percentage of mixed
membership instances. For each category-pair dataset, the
same method is run 10 times (since all methods involve some
random initialization) and the average F1 score of runs are
reported.

For BlogCat1, we simply use the blog network as input.
The overall F1 scores averaged over 86 datasets are shown
in Figure 4a. An interesting observation here is that not
only does edge clustering in general do better than node
clustering, even Max is able to outperform both NCut and
Node, which suggests that edge clustering may be better
than node clustering even on single membership clustering
tasks.

Figures 4b–4d are detailed comparison between two spec-
ified methods that require some explanation. Each marker
on the plot correspond to one category-pair dataset, and the
color and shape of the marker shows which method outper-
forms the other method, according to the legend in the upper
right corner. The legend additionally shows the number of
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Figure 4: BlogCat1 dataset results. (a) is the overall F1 score averaged over all category pairs, and (b)–(d) are detailed
per-category pair charts for detailed comparison of two specific methods.

times the method outperforms the other in parentheses. The
x-axes correspond to the ratio of instances in the category
pair that have membership to both categories, and the y-
axes correspond to the margin by which the winning method
outperforms the other on the category pair. For example, in
Figure 4b, we can see that although Node outperforms Max
on more category pairs (53), when Max outperforms Node it
is often by a large margin, versus where the winning margins
of Node are quite low, indicating that there is very little
utility in choosing Node over Max. A general observation
of Figures 4b–4d is that PICE with an appropriate labeling
threshold is almost always better than single membership
methods not just in terms of overall performance, but even
on a per-dataset scale, and especially for datasets with a
higher mixed membership ratio.

For BlogCat2, we want to take advantage of the additional
tag information. To test PICE’s performance on general
features (not just networks) and even a mixture of different
features, the BlogCat2 dataset input contains both links
between blogs and tags associated with each blog. Each
instance is a feature vector of both tags and links for each
blog, which can be interpreted as a bipartite graph and
transformed into a BFG as described in Section II. The
results for BlogCat2 are shown in Figure 5, using the same
types of plots as BlogCat1. Note that there are no NCut
results for BlogCat2 since NCut does not take general feature

vectors as input.
Unlike BlogCat1, where the overall edge clustering meth-

ods in Figure 4a are rather “flat” with respect to the
label assignment threshold parameter p (except for All), the
overall result in Figure 5a shows a trend for a specific node
label assignment parameter p. This trend can be further
examined in the detailed comparisons in Figures 5b–5f,
showing that for most category pairs (a) edge clustering
method outperform node clustering methods, (b) the meth-
ods with high “win” margins are edge clustering methods,
and (c) edge clustering methods do better on category pairs
with higher mixed membership ratios. In addition, BlogCat2
shows that for certain datasets tuning p is important for an
edge clustering approach to output cluster labels that match
the ground-truth categories.

V. RELATED WORK

Palla et al. [27] emphasized the importance of recognizing
overlapping communities in naturally occurring network
data instead of just disjoint communities, and proposed a
community discovery method that uses cliques in the graph
as the basic structure for inferring communities. The time
complexity of the method is exponential in the number of
edges in the graph; therefore, even with a small exponent,
it does not scale to large datasets.

Mixed membership stochastic blockmodels [6] are a prob-
abilistic method that models both the pairwise presence of
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Figure 5: BlogCat2 dataset results. (a) is the overall F1 score averaged over all category pairs, and (b)–(f) are detailed
per-category pair charts for detailed comparison of two specific methods.

links between objects in a network and a global “block”
structure that indicates the interaction between clusters. This
method provides a probabilistic framework and has the
ability to learn parameters (e.g., the interaction between
two clusters) and generate random networks based on these
parameters. However, since each of the n2 possible edges is
a random variable in these models, they are in general not
scalable to larger datasets.

EdgeCluster [14] is method for finding the social dimen-
sions of a social network graph. Similar to our proposed
method, it first constructs an edge-centric graph from the
social network, where edges become nodes and nodes be-
come edges. Then a modified version of k-means, which
is efficient for sparse graphs, is used to produce clusters
that corresponds to social dimensions. The nodes of the

original graph then are assigned weights along these social
dimensions based on its incident edges. Then analysis and
predictions can be done based on these social dimensions.
The goal of our work is different in that we want to
produce clusters that represent real communities, rather than
a transformed feature space (though we can also use it for
representing such social dimensions).

Correlational learning [15] aims to discover overlapping
social groups in social networks supplemented with tags (or
generally, labels specifying user interest) by first performing
a singular value decomposition on the user-tag matrix, and
the left and right singular vectors associated with the largest
singular values (except the principle singular vector) are used
as features in the latent space for users and tags, respectively.
Then the similarity between two user-tag edges are defined



as a linear combination of the similarity between the two
users and the two tags. Finally, the EdgeCluster k-means
algorithm [14] is used to discover the social groups given
the edge similarities. A drawback of this approach is that
SVD computation is in general O(mn2 +n3) where m and
n are the number the users and tags, whereas BFG integrated
with PIC is O(|E|) where |E| is the number of edges in the
input graph. In addition, the proposed approach is able to
cluster network data and data with arbitrary feature vectors.

“Path-folding” [13] is a technique similar to the matrix
composition trick described in Section III-B, and is used to
cluster large document collections. Here we use a different
composition for clustering edges of a graph.

VI. CONCLUSION AND FUTURE WORK

We proposed transforming a graph into a bipartite feature
graph (BFG) as a general approach to apply graph partition
methods such as spectral clustering to mixed membership
clustering tasks. We show that a well-suited method is power
iteration clustering (PIC), and when appropriately combined
with BFG, it is able to show substantial improvement
over single membership methods on even moderately mixed
membership datasets.

An improvement to the proposed approach is learning
the label assignment threshold parameter p based on some
statistics or prior knowledge of category distribution. We
can also extend this approach to apply BFG transformation
to hypergraphs by clustering hyperedges. Lastly, we want
to verify the generality of mixed membership clustering via
edge clustering on a number of other efficient graph partition
methods.
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