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Abstract

Set expansion refers to expanding a partial set of “seed”
objects into a more complete set. One system that does set
expansion is SEAL (Set Expander for Any Language), which
expands entities automatically by utilizing resources from
the Web in a language independent fashion. In a previous
study, SEAL showed good set expansion performance us-
ing three seed entities; however, when given a larger set of
seeds (e.g., ten), SEAL’s expansion method performs poorly.
In this paper, we present Iterative SEAL (iSEAL), which al-
lows a user to provide many seeds. Briefly, iSEAL makes
several calls to SEAL, each call using a small number of
seeds. We also show that iSEAL can be used in a “boot-
strapping” manner, where each call to SEAL uses a mixture
of user-provided and self-generated seeds. We show that
the bootstrapping version of iSEAL obtains better results
than SEAL using fewer user-provided seeds. In addition,
we compare the performance of various ranking algorithms
used in iSEAL, and show that the choice of ranking method
has a small effect on performance when all seeds are user-
provided, but a large effect when iSEAL is bootstrapped.
In particular, we show that Random Walk with Restart is
nearly as good as Bayesian Sets with user-provided seeds,
and performs best with bootstrapped seeds.

1. Introduction

Have you ever wanted to find out the names of reality
TV shows similar to the ones you regularly watch? A set
expansion system takes as inputs a few example seeds (e.g.,
Survivor) of a user-desired class (e.g., reality TV shows)
and outputs more examples of that class (e.g., The Appren-
tice). More specifically, a user issues a query consisting of
a small number of seeds 1, xs, ..., x; Where each x; is a
member of some target set S;. The answer to the query is a
listing of other probable entities of .S;.
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Figure 1: Real examples of SEAL’s input and output. English
items are reality TV shows, Chinese are popular Taiwanese food,
and Japanese are famous cartoon characters.

A well-known example of a web-based set expansion
system is Google Sets'. It has been used for numerous pur-
poses, including deriving features for named entity recogni-
tion [6] and evaluation of question answering systems [5].
However, it is a proprietary method that may be changed at
any time, so research results based on Google Sets cannot
be reliably replicated.

Another web-based set expansion system is Set Ex-
pander for Any Language” (SEAL) [9]. As its name im-
plies, SEAL is independent of document languages: both
the written language (e.g., English) and the markup lan-
guage (e.g., HTML). SEAL is a research system that has
shown good performance in previously published results.
By using only three seeds and the top one hundred docu-
ments returned by Google, SEAL achieved 93% in mean
average precision (MAP), averaged over 36 datasets from
three languages: English, Chinese, and Japanese. Unlike
other published research work [1], SEAL focuses on find-
ing small closed sets of entities (e.g., Disney movies) rather
than large and more open sets (e.g., scientists). Figure 1
shows examples of SEAL’s input and output. In more de-
tail, SEAL contains three major components: Fetcher, Ex-
tractor, and Ranker. The Fetcher fetches one hundred web
pages, each containing all seeds, by querying Google. The
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Ranker \ # Seeds | 2 3 4 5 6
Random Walk | 77.1 839 845 83.7 789
Page Rank | 74.1 82.6 834 830 785
Bayesian Sets | 77.0 84.1 84.8 84.0 793
Wrapper Length | 77.5 83.2 833 822 78.0

Average | 76.4 83.5 84.0 832 787

Table 1: MAP of set expansion using various rankers and various
number of seeds. Note that four seeds maximize the performance.

Extractor constructs extraction rules or wrappers for each
web page. The Ranker builds a graph that models all re-
lations between pages, wrappers, and extracted mentions.
Nodes in the graph are then given weights, using one of
several ranking methods, which we will discuss later.

Although SEAL works well given three or four seeds,
it has a limitation on the number of seeds it can handle.
Table 1 shows the performance of SEAL (as the MAP
score averaged across 36 datasets) for four different ranking
methods when provided with two to six supervised seeds
(i.e., correct seeds randomly selected from our develop-
ment set, as a proxy for user-provided seeds). When SEAL
is given more than five supervised seeds, its performance
drops substantially. SEAL’s first step is to retrieve web
pages containing all seeds, but few web pages contain more
than five seeds. To overcome this limitation, we will pro-
pose the iISEAL method, which is an (supervised) iterative
process that performs supervised expansion multiple times.
In each iteration, iSEAL invokes the SEAL method on a
few supervised seeds, and statistics are accumulated from
iteration to iteration to obtain a final ranking.

The ability to use many seeds enables bootstrapping - an
(unsupervised) iterative process in which a system continu-
ously consumes its own outputs to improve its own perfor-
mance [1, 3]. We propose a bootstrapping technique that
requires only two supervised seeds, which are used to trig-
ger the first expansion of the iterative process above. In each
iteration after the first, iSEAL expands a few unsupervised
seeds (i.e., highly ranked items obtained in the previous it-
eration of iSEAL), and again statistics are accumulated.

Bootstrapping introduces a potential problem, as the
self-provided seeds used in bootstrapping may be incorrect,
and prior results do not indicate how SEAL performs with
“noisy” seeds. We show that iSEAL, when used in boot-
strap mode, is indeed much more sensitive to the choice of
ranking method and number of seeds. We compare several
ranking methods, including Random Walk with Restart [7],
which is similar to that used in the previously published ver-
sion of SEAL; PageRank [4], which was designed to rank
hyperlinked documents; Bayesian Sets [2], which formu-
lates the set expansion problem as a Bayesian inference
problem; and a fast but ad hoc ranking heuristic we call
Wrapper Length.

Below, Section 2 presents Iterative SEAL. Section 3
presents the ranking methods. Section 4 describes the ex-
perimental design, and Section 5 presents the experimental
results. The paper concludes in Section 6.

2. Iterative SEAL

In this section, we present the Iterative SEAL (iSEAL)
system and consider two different iterative processes: su-
pervised expansion and bootstrapping. In our experiments,
both processes start their first iteration with two supervised
seeds, which is the smallest number of seeds required by the
wrapper induction technique used in SEAL. In every suc-
cessive iteration, there are several ways to select seeds. For
each process, we propose two seeding (i.e., seed selection)
strategies: Fixed Seed Size (FSS) and Increasing Seed Size
(ISS).

2.1 Iterative Supervised Expansion

The iterative supervised expansion improves SEAL’s
performance by allowing it to handle unlimited number of
supervised seeds. In each iteration, it expands a couple of
randomly selected seeds while accumulating statistics from
one iteration to another. This allows the expansion of seeds
in the current iteration to have access to all statistics com-
puted in the past iterations.

We present two seeding strategies for this process below.
The strategy Fixed Seed Size (FSS) requires two seeds in
every iteration. Below is the pseudo-code for this strategy:

stats < ¢

fori=1toMdo

seeds «— selects(E)

stats — expandsiqrs(seeds)

ranked_list — rank,(stats)
end for

where M is the total number of iterations (inclusively),
select,(E) randomly selects n different seeds from
the set E, E is a set containing supervised seeds,
expandgiqis(seeds) expands the selected seeds using
stats and outputs accumulated statistics, and rank, (stats)
applies the ranker r on the accumulated stats to produce a
ranked_list of entities.

Increasing Seed Size (ISS) is a strategy that starts the it-
erative process with two supervised seeds, then increments
the number of seeds by one for every successive expansion,
until a maximum size of n is reached. After then, it contin-
ues to expand using n seeds. We set n to be four based on
results in Table 1, which shows that four seeds maximize
the performance. This number has also been reported by
Etzioni et al. [1] and Nadeau et al. [3]. The pseudo-code
for this strategy is presented in the following page:



stats «— @, used «— @
fori=1toMdo

if i = 1 then
seeds «— selects(E)
else

m = min(3, lused|)
seeds — select,,(used) U selecty (E)
end if
used «— used U seeds
stats «— expandgiqis(seeds)
ranked_list — rank, (stats)
end for

where used is a set that contains previously expanded seeds
and min(z, y) returns the minimum of z and y. This strat-
egy starts by expanding two supervised seeds. For the sec-
ond iteration, it expands three seeds: two used plus one new
supervised seed. For every successive iteration, it expands
four seeds: three randomly selected used seeds plus one
new supervised seed.

2.2 Bootstrapping

Bootstrapping refers to iterative unsupervised set expan-
sion. This process requires minimal supervision, but is very
sensitive to the system’s performance because errors can
easily propagate from one iteration to another. Carefully
designed seeding strategies can minimize the propagated
errors. We present the two seeding strategies in the unsu-
pervised mode.

As mentioned earlier, FSS is a strategy that requires two
seeds in every iteration. Unlike supervised expansion, boot-
strapping expands (unsupervised) seeds that are the most
confident new pair of entities (i.e., an entity pair that has
never been used as seeds) extracted from the last iteration.
The pseudo-code is presented below:

stats «— @
for i =1to M do
if i = 1 then
seeds «— selecta(E)
else
seeds « top_pair(ranked_list)
end if
stats «— expandgiqis(seeds)
ranked_list — rank, (stats)
end for

where top_pair(ranked_list) returns a new pair of entities
which has the highest joint probabilistic weights according
to their confidence scores in ranked_list. More specifi-
cally, for every successive i iteration after the first expan-
sion, this strategy selects from the results of (i — 1)!" iter-
ation a new pair of entities to be used as seeds for the i'"
iteration. Regardless of the number of iterations, the super-
vised seeds required are only those two initial seeds.

Figure 2: Example graph constructed by Random Walk. Every
edge from node x to y has an inverse relation edge from node y to
z that is not shown here (i.e. m; is extracted by w;).

In the unsupervised mode of ISS, the strategy is exactly
the same as in the supervised mode, except that after the first
iteration, the new seed (i.e., the entity never used as seed)
at every i'" iteration is the highest-ranked new entity in
(i — 1)*" iteration. More precisely, the pseudo-code of this
strategy is that of supervised ISS with the underlined part
replaced with top_one(ranked_list), which returns a new
entity that has the highest weight in ranked_list. Again,
the two initial seeds are the only supervised seeds required.

3. Ranking Methods

In the last section, we presented two iterative processes
where each has two seeding strategies. In all four pseudo-
codes presented above, there is a rank, (stats) that ranks
entities based on the accumulated stats using ranker r. In
this section, we present the rankers used in our experiments.

3.1. Random Walk with Restart

Wang and Cohen [9] presented a graph-walk based
model that is effective for solving the set expansion prob-
lem. This model encapsulates the relations between doc-
uments, wrappers, and extracted mentions. Similarly, our
graph also consists of a set of nodes and a set of labeled di-
rected edges. Figure 2 shows an example graph where each
node d; represents a document, w; a wrapper, and m; an
extracted entity mention. A directed edge connects a node
d; to a w; if d; contains w;, a w; to a m; if w; extracts m;,
and a d; to a my; if d; contains m;. Every edge in the graph
also has an inverse relation edge (i.e. m; is contained by d;)
to ensure that the graph is cyclic.

We will use letters such as z, y, and z to denote nodes,
and z —— y to denote an edge from z to y with labeled rela-
tion . Each node represents an object (document, wrapper,
or mention), and each edge - —— v asserts that a binary re-
lation r(x, y) holds. We want to find entity mention nodes
that are similar to the seed nodes. We define the similar-



ity between two nodes by random walk with restart [7]. In
this algorithm, to walk away from a source node z, one first
chooses an edge relation r; then given r, one picks a target
node y such that z — y. When given a source node x,
we assume that the probability of picking an edge relation r
is uniformly distributed among the set of all r, where there
exist a target node y such that z — y. More specifically,

1

r: 3y — vyl

P(rlz) =

We also assume that once an edge relation r is chosen, a
target node y is picked uniformly from the set of all y such
that # —— y. More specifically,

1

P(y|r,z) = iz ol

In order to perform random walk, we will build a tran-
sition matrix M where each entry at (z,y) represents the
probability of traveling one step from a source node z to a
target node y, or more specifically,

We will also define a state vector v; which represents the
probability at each node after iterating through the entire
graph ¢ times, where one iteration means to walk one step
away from every node. The state vector at ¢ 4 1 iteration is
defined as:

'l_)'t+1 = A’l_])() —+ (]. - )\)MUt

Since we want to start our walk from the seeds, we ini-
tialize vy to have probabilities uniformly distributed over
the seed nodes. In each step of our walk, there is a small
probability A of teleporting back to the seed nodes, which
prevents us from walking too far away from the seeds. We
iterate our graph until the state vector converges, and rank
the extracted mentions by their probabilities in the final state
vector. We use a constant A of 0.01 that shows good perfor-
mance in our development set. New statistics can be accu-
mulated easily by adding additional nodes and edges to the
existing graph.

3.2. PageRank

Page et al. [4] proposed the PageRank algorithm that
is being used extensively at Google to score web pages.
Although it was designed to rank hyperlinked set of doc-
uments (i.e., web pages), it can also be used to rank other
elements [§8, 10]. The graph that we use for PageRank is
identical to the one shown in Figure 2, except that edges
are undirected and they do not have relations. New statis-
tics can be easily accumulated by attaching new nodes and

edges to the graph. Page et al. [4] uses a teleporting proba-
bility A of 0.15, which we also use in our experiments. We
iterate the graph until all node weights converge, and rank
the extracted mentions based on their final node weights.

3.3. Bayesian Sets

Ghahramani and Heller [2] proposed the Bayesian Sets
algorithm that formulates the set expansion problem as a
Bayesian inference problem. It uses a model-based concept
of a class and ranks items using a score which evaluates the
marginal probability that each item belongs to the class con-
taining the seed items. We implemented Bayesian Sets, by
constructing one large two-dimensional feature table where
each column represents a feature, each row an extracted
item, and each entry (7, k) indicates item x4 ’s possession of
the feature f;. We incorporate two features: document con-
tainment and wrapper extraction. For example, if an item is
contained by a document d; or was extracted by a wrapper
wj, then entry (j, k) would be 1, otherwise 0. We tried us-
ing either one of the features alone on our development set
but the results are worse. New statistics can be accumulated
by appending new rows and columns to the feature table.

3.4. Wrapper Length

SEAL defines a wrapper as a pair of maximally-long
strings (I, r) that bracket at least one occurrence of every
seed on a web page. We have observed that longer strings
are generally better. Therefore, we propose a simple, fast
but ad hoc ranking algorithm called Wrapper Length as de-
tailed below:

log score(x) = Z log(length(w;))

J extracts x

where w; is the 4t wrapper composed of a pair of left
and right contextual strings, and the function length returns
the sum of the character lengths of those pair of strings in
w;. This heuristic is based on the assumption that an item
should have a high score if it is extracted by many long
Wrappers.

4. Experimental Setting

We evaluate the iterative processes using the datasets®
presented in Wang and Cohen [9], which consists of 36
manually constructed lists across three different languages:
English, Chinese, and Japanese (12 lists per language). In
the lists, each entity is represented by a set of synonyms or
“mentions” (e.g., USA, America). There are a total of 2515

3 Available at http: //rcwang.com/papers/dataset/
seal-data.zip
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Figure 3: MAP of using various iterative methods and rankers: Random Walk (RW), PageRank (PR), Bayesian Sets (BS), Wrapper Length

(WL), and Wrapper Frequency (WF).

entities and 4312 mentions in this dataset, with an average
of 70 entities per list and 1.7 mentions per entity.

Since the output of iSEAL is a ranked list of extracted
mentions, we choose mean average precision (MAP) as the
evaluation metric because it is sensitive to the entire ranking
and it contains both recall and precision-oriented aspects.
The MAP for multiple ranked lists is the mean value of av-
erage precisions calculated separately for each ranked list.
We define the average precision of a single ranked list as:

Z Prec(r) x FirstSeenEntity(r)
r=1

AvgPrec(L) = —
g (L) Total # of Correct Entities

where L is a ranked list of extracted mentions, r is the rank
ranging from 1 to |L|, Prec(r) is the precision at rank 7,
or the percentage of correct mentions above rank r (inclu-

sively). FirstSeenEntity(r) is a binary function for ensuring
that, if a list contains multiple mentions of the same entity
type, we do not evaluate that entity more than once. More
specifically, the function returns 1 if a) the mention at r is
correct, and b) it is the highest-ranked mention of its entity
type in the list; it returns O otherwise.

As a baseline, we introduce in the experimental results a
fifth ranker called Wrapper Frequency, which is simply the
number of wrappers that extract a particular entity. Each ex-
periment evaluates a particular combination of iterative pro-
cess, seeding strategy, and ranker; we evaluated all 20 possi-
ble combinations. For each combination, we performed ten
iterative expansions on each of the 36 evaluation datasets in-
dependently three times; thus, at each of the ten iterations,
there are 108 (3x36) ranked lists. We then report the MAP
of those ranked lists in the next section.



5. Experimental Results

We first examine the effect of supervised expansion.
Figure 3(a) and 3(b) illustrate the performance of various
rankers using supervised expansion with FSS and ISS re-
spectively. Although both strategies improve the perfor-
mance of the rankers, FSS improves faster than ISS. The
reason is that FSS requires two new supervised seeds at ev-
ery iteration whereas ISS requires only one. From the two
graphs, we observe that Bayesian Sets (BS) performs the
best, Random Walk with Restart (RW) is nearly as good as
Bayesian Sets, Wrapper Frequency (WF) is almost as good
as Wrapper Length (WL), and PageRank (PR) is the worst
among the five rankers.

We then examine the effect of bootstrapping. Figure 3(c)
and 3(d) illustrate the performance of various rankers in
bootstrap mode using FSS and ISS respectively. As il-
lustrated, ISS reliably improves with more seeds, but FSS
failed to improve any ranker other than Random Walk at
the 10*" iteration, and even this improvement was modest.
This result shows that bootstrapping set expansion is not a
trivial task. The ISS strategy was carefully designed to cir-
cumvent this performance problem. While ISS uses only
two supervised seeds, it is much more conservative about
using self-generated seeds: at every expansion, FSS boldly
introduces two new seeds taken from the results of the last
iteration, whereas ISS conservatively introduces only one.
Therefore, the chance of FSS selecting an incorrect entity as
seed is higher than that of ISS. Furthermore, in every itera-
tion, ISS has three prior seeds to support the newly chosen
one, which minimizes the chance of expanding seeds that
are all incorrect.

Figure 3(c) shows that Random Walk is the most robust
of the five rankers, followed by Bayesian Sets and Wrap-
per Length. While all rankers performed poorly with noisy
seeds, only Random Walk improved (slightly at the 10"
iteration). Figure 3(d) shows that the performance of Ran-
dom Walk increases monotonically when bootstrapping us-
ing ISS. It also shows that Random Walk has the best per-
formance, followed by Bayesian Sets and Wrapper Length.

The graphs show that Wrapper Length is also an effective
ranking algorithm. It is comparable to the baseline Wrap-
per Frequency in supervised mode and is always better in
the bootstrap mode. We want to emphasize that Wrapper
Length is a very simple and light-weight algorithm; the
memory space needed is proportional only to the number
of extracted items. Furthermore, the results suggest that if
many supervised seeds are available, then supervised ex-
pansion using FSS should be considered. If only a few are
available, then bootstrapping using ISS should be consid-
ered. In terms of rankers, both Bayesian Sets and Random
Walk are good choices for supervised expansion, and Ran-
dom Walk is the best choice for bootstrapping.

6. Conclusion

In this paper, we have presented a system called Itera-
tive SEAL (iSEAL) to examine various iterative processes
and seeding strategies using different rankers for the prob-
lem of set expansion. We have shown that the performance
of SEAL can improve monotonically if we bootstrap the
results using ISS and rank the results using Random Walk
with Restart. By using this method and only two seeds,
the final result (94%) is even better than that of using three
supervised seeds (with same amount of web pages) as pub-
lished in previous results of SEAL (93%). We have also
shown that in supervised mode, Random Walk is compa-
rable to the best ranker (Bayesian Sets), but in bootstrap
mode, Random Walk is the best due to its robustness to
noisy seeds. We have also presented a simple and light-
weight ranker, Wrapper Length, that shows good perfor-
mance in most experiments.
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