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Abstract 
 

Set expansion refers to expanding a given partial 
set of objects into a more complete set. A well-known 
example system that does set expansion using the web 
is Google Sets. In this paper, we propose a novel 
method for expanding sets of named entities. The 
approach can be applied to semi-structured documents 
written in any markup language and in any human 
language. We present experimental results on 36 
benchmark sets in three languages, showing that our 
system is superior to Google Sets in terms of mean 
average precision. 
 
 
1. Introduction 
 

Have you ever wanted to know all the 
constellations, or US presidents, but were only able to 
remember the names of a few of them? In this paper 
we consider the problem of set expansion using the 
web as a resource. In set expansion, the user issues a 
query consisting of a small number of seeds x1, x2, …, 
xk (e.g., “ursa major”, “orion”) where each xi is a 
member of some target set St. The answer to the query 
is a listing of other probable elements of St (e.g., “ursa 
minor”, “cancer”, “canis major”, etc). 

Google Sets™ is a well-known example of a web-
based set expansion system1. Google Sets has been 
used for a number of purposes in the research 
community, including deriving features for named-
entity recognition [1], and evaluation of question 
answering systems [2]; unfortunately, however, 
Google Sets is a proprietary method that may be 
changed at any time, so research results based on 
Google Sets cannot be reliably replicated. Set 
expansion using the web is also closely related to the 
problem of unsupervised relation learning from the 

                                                           
1 http://labs.google.com/sets 

web [3, 4], and set-expansion-like techniques have 
been used to derive features for concept-learning [5], 
to construct “pseudo-users” for collaborative filtering 
[6], and to compute similarity between attribute values 
in autonomous databases [7]. 

 Here we describe a set-expansion system called the 
Set Expander for Any Language (SEAL). As we will 
detail below, SEAL works by automatically finding 
semi-structured web pages that contain “lists” of items, 
and then aggregating these “lists” so that the “most 
promising” items are ranked higher. Unlike earlier 
systems, the SEAL method is simple enough to be 
easily described and replicated, and is independent of 
the human language from which the seeds are taken. 
SEAL is also independent of the markup language 
used to annotate the semi-structured documents. 
Extensive experiments have been conducted with 
SEAL, based on 36 benchmark problems from three 
languages, each of which consists of a moderate-sized 
set of entities that is semantically well-defined (e.g., 
the constellations, or the major-league baseball teams). 
With randomly constructed three-seed queries from 
these domains, SEAL obtains a mean average 
precision (MAP) of more than 94% for English-
language queries, more than 93% for Japanese queries, 
and nearly 95% for Chinese queries. MAP 
performance on the English-language queries is more 
than double that of Google Sets™.  (Google Sets 
cannot be used for non-English queries). 

In more detail, SEAL is based on two separate 
research contributions. To find “lists” of items on 
semi-structured pages, SEAL uses a novel technique to 
automatically construct wrappers (i.e., page-specific 
extraction rules) for each page that contains the seeds.  
Every wrapper is defined by two character strings, 
which specify the left-context and right-context 
necessary for an entity to be extracted from a page. 
These strings are chosen to be maximally-long 
contexts that bracket at least one occurrence of every 
seed string on a page. The use of character-level 
wrapper definitions means that SEAL is completely 



language-independent: it is not even necessary to be 
able to tokenize the target language. 

Most of the wrappers that SEAL discovers will be 
“noisy” – i.e., they will extract some entities not in the 
user’s target set St. Thus, it is important to rank 
entities, so that the entities most likely to be in the 
target set are ranked higher. To rank entities, SEAL 
uses another novel approach: a graph is built 
containing all seeds, all constructed wrappers, and all 
extracted candidate entities. Candidates are then 
ranked by “similarity” to the seed entities, according to 
a certain measure of similarity in the graph. The 
similarity metric is defined by aggregating the results 
of many randomly-selected walks through the graph, 
where each walk is defined by a particular random 
process. 

 The paper is organized as follows. Section 2 
illustrates the architecture of SEAL system. Section 3 
describes how wrappers are constructed. Section 4 
explains our ranking scheme based on graph walk. 
Section 5 presents our evaluation dataset. Section 6 
illustrates our experimental results. The last section 
summarizes this paper and describes our future work. 
 
2. System Architecture 
 

SEAL is comprised of three major components: the 
Fetcher, the Extractor, and the Ranker. The Fetcher 
focuses on fetching web pages from the World Wide 
Web. The URLs of the web pages come from top 
results provided by Google, and the query is simply the 
concatenation of all seeds (each seed is quoted, to 
require that it occur as an exact phrase). The Extractor 
then learns one or more wrappers for each page, and 
then executes the wrappers, to extract additional 
candidate entities (see Section 3). Finally, the Ranker 
builds a graph, and then ranks the extracted mentions 
globally based on the weights computed in the graph 
walk (see Section 4). 

3. The Extractor 
 

The extractor must learn wrappers instantly and 
automatically from only a few training examples (the 
seeds). In this section, we explain the semi-structured 
characteristics of web documents that SEAL requires, 
and describe an unsupervised approach for automatic 
construction of wrappers. The wrappers that are 
constructed are page-dependent – i.e., they are 
intended to be applied only to a single web page.  
However, the approach that we use to learn wrappers 
is both domain- and language- independent. 
 
3.1. Semi-Structured Documents 
 

The information in semi-structured web documents 
will be formatted quite differently on different pages, 
but fairly consistently within a single page. For 
example, each movie name in a list of classic Disney 
movies might be be embedded with “<tr><td>” (to 
the left) and “</td></tr>” (to the right) in one page, 
and “<ul>Disney: ” and “</ul>” in another. This 
observation suggests that entities belonging to the 
same class (i.e. movies) will be linked by appearing in 
similar contexts (formatting structures) on the same 
page. 

This characteristic of semi-structured web 
documents can be exploited for expanding some set of 
given seeds. Suppose initially, a couple of seeds are 
provided from a reliable source (i.e. a human), and 
web documents that contain all of these seeds are 
retrieved. Then it is very likely that each of these 
documents will contain other entities that are 
embedded in the same contexts as the seeds, and also 
belong to the same semantic class as the seeds. The 
next section explains in detail the algorithm for 
constructing wrappers utilizing the semi-structured 
characteristics of web documents. 
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Figure 1. Flow chart of the SEAL system 

 



3.2. Algorithm 
 

First, the top n URLs returned by Google, using the 
seeds as the query, are downloaded from the web. All 
instances of seeds are identified from web documents 
D by simple string matching. For each document d∈D, 
let si,j be the jth occurrence of ith seed. Let the left 
context li,j∈L be the part of d preceding si,j and the 
right context ri,j∈R be the part of d following si,j. For 
each d∈D, all possible suffixes of some left context 
from L and all prefixes of some right context from R 
that embed at least one instance of every seed are 
(conceptually) extracted; these are referred to as full 
suffixes and full prefixes respectively. Within these full 
suffixes, ones that are suffixes of other full suffixes are 
removed, keeping only the longest full suffixes. To 
find the longest full suffixes, we build a trie of all the 
suffixes, and each node is marked with the number of 
unique seeds that the suffix precedes. For each of those 
longest suffixes, it is easy to find its corresponding 
longest right context (and vice versa). An extraction 

pattern, or wrapper, is then constructed for each of 
those pairs. When extracting candidate entities using 
left and right contexts L and R, we consider only 
substrings between L and R which do not contain both 
L and R. 

Since web documents are usually structured 
consistently within the same page but not across 
multiple pages, the wrappers derived from a particular 
document d are used to extract from d only. We will 
call each such extracted string a (candidate) entity 
mention. The complete pseudo-code for building these 
wrappers is described in Figure 2. 

Note that our approach is completely character-
based and does not assume any language or domain. 
Also, unlike prior approaches [4, 8], we do not impose 
any limit on the length of the contextual strings in L 
and R nor do we require any parser (i.e. HTML). This 
also implies that our algorithm will apply not only on 
HTML pages, but also on other documents semi-
structured by any kind of mark-up language (i.e. XML, 
SGML, TeX, Wiki Markup Language, etc.). 

Definition: 
1. si,j = jth occurrence of ith seed, },,{ 1 ki sss K∈ , in a document Dd ∈  
2. jil , and jir , (left and right context respectively) so jijiji rsld ,,, ⋅⋅=  
3. },,{ ,1, iniii llL K= and },,{ ,1, iniii rrR K=  
4. } some ofsuffix  a is  :{),,(FullSuffix ,1 ijik LlxixLL ∈∀=K  
5. =),,lSuffix(LongestFul 1 kLL K } ofsuffix  a is :),,(FullSuffix),,(FullSuffix:{ 11 yyLLyLLyy kk ′∈′¬∃∧∈ KK

6. ),,Prefix(lLongestFul 1 kRR K is analogous to 5 above  
 

Pseudo code: 
),,lSuffix(LongestFulLet 1 kLLX K=  

Xx∈∀  
ki ,,1: K∀  

} somefor  :{Let zrsxzdRrR iii ′⋅⋅⋅=∈′=′  )by  preceded  with  ofsubset  a is  (i.e. xsRR iii′  

),,(lPrefixLongestFul~Let 1 kx RRR ′′= K  

=⋅∗⋅∈∀ ""pattern  create ~ yxRy x } of substring anot  are  ,   of substring a is :{ ayxdyaxa ∧⋅⋅  
),,(PrefixlLongestFulLet 1 kRRY K=  

Yy∈∀  
ki ,,1: K∀  

} somefor  :{Let zzysldLlL iii ⋅⋅⋅′=∈′=′  )by  followed  with  ofsubset  a is  (i.e. ysLL iii′  

),,(lSuffixLongestFul~Let 1 ky LLL ′′= K  

=⋅∗⋅∈∀ ""pattern  create ~ yxLx y  } of substring anot  are ,   of substring a is :{ ayxdyaxa ∧⋅⋅  
Figure 2. Pseudo-code for automatic construction of wrappers. 



3.3. Examples 
 

Suppose car makers “Ford”, “Nissan”, and 
“Toyota” were provided as seeds, wrappers can be 
automatically constructed for each document by using 
the proposed wrapper construction algorithm. Figure 3 
shows an example source page (of ‘curryauto.com’) 
and Table 1 shows the contexts that the algorithm 
selected for constructing wrappers from 
‘curryauto.com’, with the symbol “[…]” representing 
the placeholder for an extracted entity. The entities 
extracted by the wrappers are also shown in Table 1. 
Here the boldfaced mentions are the seeds themselves. 
 
 

4. The Ranker 
 

The entity mentions extracted by wrappers may 
contain noisy entities, or entities that are rarely 
associated with the seeds by popular consensus on the 
web. For example, “honda atlanta” and “honda 
yorktown” extracted by Wrapper #3 in Table 1 are 
such entities; these are unlikely to be members of the 
user’s target set. Since it is extremely difficult for 
machines to perfectly understand the information 
needs of users, we choose to rank the extracted entity 
mentions in the set presented to the users. In this 
section, we first analyze the problem of finding 
similarity between seeds and extracted mentions. We 
then propose a graph walk for ranking extracted 
mentions. 

...<li class="ford"><a href="http://www.curryford.com/"> 
<img src="/common/logos/ford/logo-horiz-rgb-lg-dkbg.gif" alt="3"></a> 
 <ul><li class="last"><a href="http://www.curryford.com/"> 
  <span class="dName">Curry Ford</span>...</li></ul> 
</li> 
<li class="honda"><a href="http://www.curryhonda.com"> 
<img src="/common/logos/honda/logo-horiz-rgb-lg-dkbg.gif" alt="4"></a> 
 <ul><li><a href="http://www.curryhonda-ga.com/"> 
  <span class="dName">Curry Honda Atlanta</span>...</li> 
  <li><a href="http://www.curryhondamass.com/"> 
   <span class="dName">Curry Honda</span>...</li> 
  <li class="last"><a href="http://www.curryhondany.com/"> 
   <span class="dName">Curry Honda Yorktown</span>...</li></ul> 
</li> 
<li class="acura"><a href="http://www.curryacura.com/"> 
<img src="/curryautogroup/images/logo-horiz-rgb-lg-dkbg.gif" alt="5"></a> 
 <ul><li class="last"><a href="http://www.curryacura.com/"> 
  <span class="dName">Curry Acura</span>...</li></ul> 
</li> 
<li class="nissan"><a href="http://www.geisauto.com/nissan/"> 
<img src="/common/logos/nissan/logo-horiz-rgb-lg-dkbg.gif" alt="6"></a> 
 <ul><li class="last"><a href="http://www.geisauto.com/nissan/"> 
  <span class="dName">Curry Nissan</span>...</li></ul> 
</li> 
<li class="toyota"><a href="http://www.geisauto.com/toyota/"> 
<img src="/common/logos/toyota/logo-horiz-rgb-lg-dkbg.gif" alt="7"></a> 
 <ul><li class="last"><a href="http://www.geisauto.com/toyota/"> 
  <span class="dName">Curry Toyota</span>...</li></ul> 
</li>... 

Figure 3. HTML source text from ‘curryauto.com’ (“…” is omitted text). 
 
 

Table 1. Wrappers induced from ‘curryauto.com’ and their extracted entity mentions. 
Wrapper #1: \n<li class="[...]"><a href="http://www. 

Extractions: ford, honda, acura, kia, toyota, scion, nissan, buick, pontiac 
Wrapper #2: /">\n<img src="/common/logos/[...]/logo-horiz-rgb-lg-dkbg.gif" alt=" 

Extractions: chevrolet, ford, kia, toyota, scion, nissan, pontiac, cadillac, hyundai 
Wrapper #3: <span class="dName">Curry [...]</span> 

Extractions: chevrolet, ford, honda atlanta, honda, honda yorktown, acura, subaru 
chicopee, subaru, kia, toyota, scion, nissan, buick, pontiac, cadillac 



4.1. Problem Analysis 
 

In order to determine the similarity between 
extracted mentions and seeds (or the likelihood that 
they all belong to the same class based on contextual 
information), we need to first understand how they are 
related globally. We know that seeds were used as a 
query to find documents online. We also know that the 
same wrapper may be derived from more than one 
document, and the same entity can be extracted by 
more than one wrapper. Also, we have observed that 
noisy entities are usually extracted less frequently than 
non-noisy entities. Intuitively, the more non-noisy 
entities extracted by a wrapper, the better quality the 
wrapper (and vise versa), and the more high-quality 
wrappers derived from a document, the better quality 
the document (and vise versa).  

In order to model these complex relations, we will 
use a graph which contains all the objects of interest – 
seeds, web pages, wrappers, and extracted entity 
mentions.  Similarity in the graph will then be used to 
rank entity mentions. 
 
4.2. Building a Graph 
 

A graph G consists of a set of nodes, and a set of 
labeled directed edges. We will use letters such as x, y, 
and z to denote nodes, and we will denote an edge 
from x to y with labeled relation r as yx r⎯→⎯ . Every 
node x has a type and we will assume that there is a 
fixed set of possible node types. We will also assume, 
for convenience, that there are no edges from a node to 
itself; however, this assumption can be easily relaxed. 

Each node represents an object, and each edge 
yx r⎯→⎯  asserts that that a binary relation r(x, y) 

holds. The graph edges are directed. We also create an 
inverse relation r-1(x, y) for each edge; thus the graph 
will certainly be cyclic. The first column of Table 2 
shows all possible source entity types, and the middle 

column shows each of their possible relations with 
some target entity types in the last column. 
 
4.3. Graph Walk 
 

We define the similarity between two nodes by a 
lazy walk process, similar to PageRank with decay. To 
walk away from a source node x, one first picks an 
edge relation r; then given r, one picks a target node y 
such that yx r⎯→⎯ . We assume that, given a source 
node x, the probability of picking an edge relation r is 
uniformly distributed among the set of all r, where 
there exist a target node y such that yx r⎯→⎯ . More 
specifically, 

yxyr
xrP

r⎯→⎯∃
=

 :
1)|(  

(1) 

 
We also assume that once an edge relation r is picked, 
a target node y is chosen uniformly from the set of all y 
such that yx r⎯→⎯ . That is, 
 

yxy
xryP

r⎯→⎯
=

:
1),|(  

(2) 

 
At each step in a lazy graph walk, there is also some 
probability λ of staying at x. Putting everything 
together, the probability of reaching any node z from x 
is computed recursively as follows: 
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where I(x = z) is a binary function that returns 1 if 
node x and node z are the same, and 0 otherwise. 

In our experiments, we use a constant λ of 0.5, and 
we sample the graph by taking 10000 walks randomly, 

Table 2. Node and relation types 
Source Type Edge Relation Target Type 

seeds find document 

document derive 
find-1 

wrapper 
seeds 

wrapper extract 
derive-1 

mention 
document 

mention extract-1 wrapper  

“ford”, “nissan”, “toyota”

curryauto.com

Wrapper #3

Wrapper #2

Wrapper #1

Wrapper #4

“honda”
26.1%

“acura”
34.6%

“chevrolet”
22.5%

“bmw pittsburgh”
8.4%

“volvo chicago”
8.4%

find

derive
extract northpointcars.com

Figure 4. Example of a constructed graph 
 



each walk consists of up to 10 steps starting from the 
node with type ‘seeds’. At the end of the graph walk, 
each node will have a probability, or weight, assigned, 
and we rank all nodes of type ‘mention’ by their 
assigned weights. 
 
4.4. Example 
 

An example of such a graph is illustrated in Figure 
4. A graph walk has been performed on this graph 
where each node is assigned a weight due to the walk. 
As expected, a walk on the graph in Figure 4 would 
weigh “bmw pittsburgh” and “volvo chicago” the least 
among the extracted mentions because these nodes 
have fewer incoming edges; thus they are harder to 
reach. The weights assigned to these mentions are 
shown on the example graph as well. 
 
5. Datasets 
 

There are a total of 36 evaluation datasets, 
constructed evenly over three languages: English, 
Chinese, and Japanese; thus there are 12 datasets per 
language. The datasets consist of 18 classes, where 
half were constructed in all three languages and the 
other half in one language only, as illustrated in Table 

3. The intention is to diversify the datasets such that 
some are culture-specific while some are not. Each 
dataset is a plain text file that represents a particular 
class C, and each entity e∈C is represented by a list of 
true mentions, or synonyms, of that particular e. The 
statistics of classes, entities, and entity mentions for 
each language are shown in Table 4. 
 
6. Experiments 
 

In this section, we describe our baseline system, 
alternative methods we attempted to use, evaluation 
metric and procedure, experimental results, and finally, 
comparisons of our results with those published by 
other researchers. 
 
6.1. Baseline System 
 

We choose Google Sets as our baseline system, 
mainly because it is well-known and publicly 
available. However, since Google Sets does not handle 
languages other than English, it is only directly 
comparable to SEAL on the English evaluation dataset. 
To our knowledge there is no set expansion system 
that can handle Chinese and/or Japanese, with which 
we could compare our evaluation results. 

Table 3. Explanation for each dataset ( * are incomplete sets). 
 Dataset Eng Chi Jap Class Description 

1 classic-disney    Classic Disney movie names 
2 constellations    Constellation names 
3 countries    Country names 
4 mlb-teams    Major League Baseball team names 
5 nba-teams    National Basketball Association team names 
6 nfl-teams    National Football League team names 
7 popular-car-makers    *Popular car manufacturer names 
8 us-presidents    United States president names 
9 us-states    United States state names 

10 cmu-buildings    Carnegie Mellon’s building names 
11 common-diseases    *Common disease names 
12 periodic-comets    Periodic comet names 
13 china-dynasties    Chinese dynasty names 
14 china-provinces    Chinese province names 
15 taiwan-cities    Taiwanese city names 
16 japan-emperors    Japanese emperor names 
17 japan-priministers    Japanese priminister names 
18 japan-provinces    Japanese province names 

 
 

Table 4. Statistics of datasets for English, Chinese, and Japanese. 
Language # Class (C) # Entity (E) # Mention (M) Avg. E/C Avg. M/E 

English 12 1017 1461 85 1.4 
Chinese 12 694 1677 58 2.4 
Japanese 12 804 1174 67 1.5  

 



6.2. Alternative Methods 
 

We conducted ablation studies using alternative 
methods for set expansion. The extraction approach 
described in section 3.2 was simplified. In the 
definition of full suffix of the wrapper construction 
algorithm, instead of finding all possible common 
suffixes of left context L and prefixes of right context 
R that embed at least one instance of every seed, it 
finds common suffixes of L and prefixes of R that 
embed all seed instances. More specifically, we let: 
 

}  all ofsuffix  a is  :{),,(FullSuffix ,1 ijik LlxixLL ∈∀=K  

 
This simple extractor, referred to as E1, is compared to 
the proposed extractor, referred to as E2, in the 
experimental results section. 

The ranking approach described in section 4.2 was 
also simplified: instead of a graph walk, it ranks entity 
mentions by their frequency counts of being extracted 
by any wrapper from any document. This simple 
ranking scheme is referred to as EF (extracted 
frequency) and the proposed method is referred to as 
GW (graph walk) in the experimental results section. 
 
6.3. Evaluation 
 

Since the output of SEAL is a ranked list of 
extracted mentions, we choose mean average precision 
(MAP) as the evaluation metric. MAP has been 
commonly used for evaluating ranked lists in the field 
of Information Retrieval. It contains both recall and 
precision-oriented aspects, and it is sensitive to the 
entire ranking. For evaluating a system that produces 
multiple ranked lists, MAP is simply the mean value of 
average precisions computed for each ranked list 
separately. Average precision of a single ranked list is 
defined as: 
 

Entities True #

)NewEntity()Prec(
)AvgPrec( 1
∑
=

×
=

L

r
rr

L  (4) 

 
where L is a ranked list of extracted mentions, r is the 
rank, Prec(r) is the precision at rank r. NewEntity(r) is 
a binary function, which returns 1 if a) the extracted 
mention at r matches any true mention, and b) there 
exist no other extracted mention at rank less than r that 
is of the same entity as the one at r. It returns 0 
otherwise. 

The procedure for evaluating SEAL is that, for each 
dataset: 

1. Randomly select three true entities and use their 
first listed mentions as seeds. 

2. Expand the three seeds obtained from step 1. 
3. Repeat steps 1 and 2 five times. 
4. Compute MAP for the five resulting ranked lists. 

 
6.4. Experimental Results 
 

Table 5 shows our experimental results. The 
baseline Google Sets (G.Sets) performed the worst. 
Even our simplest approach, E1+EF, beats Google Sets 
by a substantial amount. In our first set of experiments, 
we requested only top 100 URLs per expansion from 
Google. Our simplest approach, E1+EF, achieved an 
overall average of around 82%. After improving E1 to 
E2, we observed a 6.34% improvement on the overall 
average. We then enhanced EF to GW, and observed a 
6.30% improvement. We decided to increase our 
corpus size to see if any improvements can still be 
made. Rather than requesting only top 100 URLs, we 
increase the number to 200 and 300, and we observed 
a slight improvement of 0.97% and 0.16% 
respectively. 
 
6.5. Set Comparisons 
 

We present side-by-side comparison of set 
expansion results published by other researchers and 
obtained by SEAL. Table 6 illustrates the top 42 set 
expansion results on watch brand names using 17 
seeds as presented in Talukdar et al [8]. As comparison, 
we present our top 42 results in the right column using 
only the first three of their 17 seeds (namely Corum, 
Longines, and Lorus). SEAL achieved a precision of 
100% on those results; whereas Talukdar’s system 
returned noisy entities (boldfaced mentions) towards 
the bottom of their list and achieved a precision of 
85.7%. We also tried the three seeds on Google Sets 
but obtained no results other than the seeds 
themselves. Table 7 shows top 10 set expansion results 
on children’s movies from Bayesian Sets, as presented 
in Ghahramani et al [9]. We provide results from 
Google Sets and SEAL as comparisons. Note that 
Bayesian Sets used a movie-specific dataset: 
EachMovie. As illustrated, both Bayesian Sets and 
SEAL systems perform well on finding children 
movies. Similar to Table 7, Table 8 shows top 10 
results on NIPS authors from Bayesian Sets as 
presented in Ghahramani et al [9]. We provide results 
from SEAL as comparisons but not from Google Sets 
since it failed to return any result. Note that Bayesian 
Sets, again, used a domain-specific dataset: the NIPS 
dataset. 



7. Related Work 
 

Google Sets uses a proprietary method that has not 
been published. The KnowItAll system [4] contains a 
List Extractor (LE) component that is functionally 
similar to Google Sets. It uses an HTML parser for 
identifying sub-trees of a parsed web page. For each 
selected sub-tree, it finds one contextual pattern that 
maximally matches all of the seeds. However, SEAL 
does not require any parsing, and it finds all contextual 

patterns in the whole document that maximally match 
at least one instance of every seed. 

Etzioni et al [4] describe a number of possible 
variants of the LE component, but it is not clear which 
variant was used in their experiment. The KnowItAll 
system achieved precisions of 23~79% on four sample 
problems. 

Several researchers have studied set expansion 
using free text rather than semi-structured Web 
documents; for instance, Talukdar et al [8] present a 
method for automatically selecting trigger words to 

Table 5.  Experimental results 
Max. 200 Max. 300

English G.Sets E1+EF E2+EF E2+GW E2+GW E2+GW
classic-disney 37.62% 79.36% 74.45% 84.42% 88.20% 89.39%
cmu-buildings 0.00% 87.85% 87.75% 87.83% 87.83% 87.83%

common-diseases 1.12% 17.94% 52.84% 57.46% 75.79% 76.87%
constellations 10.45% 89.61% 99.97% 100.00% 100.00% 100.00%

countries 14.24% 95.95% 97.86% 98.17% 98.67% 98.53%
mlb-teams 70.06% 98.61% 99.50% 99.80% 99.84% 99.81%
nba-teams 90.73% 100.00% 100.00% 100.00% 100.00% 100.00%

nfl-teams 94.26% 99.22% 99.98% 100.00% 100.00% 100.00%
periodic-comets 0.22% 69.24% 79.04% 84.78% 84.77% 84.77%

popular-car-makers 73.61% 79.18% 88.23% 95.16% 96.23% 96.95%
us-presidents 56.77% 91.64% 97.07% 99.99% 100.00% 100.00%

us-states 76.00% 99.96% 93.55% 100.00% 100.00% 100.00%
Average 43.76% 84.05% 89.19% 92.30% 94.28% 94.51%

Trad. Chinese G.Sets E1+EF E2+EF E2+GW E2+GW E2+GW
china-dynasties - 25.45% 33.86% 65.20% 64.62% 65.22%
china-provinces - 94.97% 99.19% 99.21% 99.34% 99.35%

classic-disney - 80.73% 91.17% 91.68% 91.68% 91.68%
constellations - 92.00% 96.25% 99.99% 99.99% 99.99%

countries - 94.79% 95.39% 96.94% 97.76% 97.72%
mlb-teams - 94.42% 84.05% 99.98% 99.96% 99.96%
nba-teams - 90.29% 95.04% 99.90% 100.00% 100.00%

nfl-teams - 68.08% 88.43% 95.75% 95.75% 95.75%
popular-car-makers - 71.44% 83.29% 94.36% 94.47% 94.55%

taiwan-cities - 95.26% 98.04% 100.00% 100.00% 100.00%
us-presidents - 62.84% 82.61% 93.03% 94.24% 94.24%

us-states - 98.47% 97.08% 99.48% 99.48% 99.49%
Average - 80.73% 87.03% 94.63% 94.77% 94.83%

Japanese G.Sets E1+EF E2+EF E2+GW E2+GW E2+GW
classic-disney - 72.83% 75.00% 81.65% 83.00% 82.95%
constellations - 96.87% 95.18% 99.99% 100.00% 100.00%

countries - 97.33% 90.47% 98.69% 99.18% 99.16%
japan-emperors - 95.93% 99.10% 99.24% 99.24% 99.24%

japan-priministers - 71.25% 91.75% 93.12% 93.00% 93.03%
japan-provinces - 99.40% 100.00% 100.00% 100.00% 100.00%

mlb-teams - 80.00% 85.60% 98.89% 98.91% 98.91%
nba-teams - 95.28% 99.44% 99.96% 99.98% 99.98%

nfl-teams - 92.83% 93.86% 99.05% 99.05% 99.06%
popular-car-makers - 53.64% 76.13% 79.57% 84.81% 86.47%

us-presidents - 36.44% 34.61% 59.46% 59.46% 59.46%
us-states - 96.95% 98.02% 99.92% 99.94% 99.98%
Average - 82.40% 86.60% 92.46% 93.05% 93.19%

Overall Average 43.76% 82.39% 87.61% 93.13% 94.03% 94.18%

Max. 100 Results

 

Table 6. Comparison:  
Watch Brands 

Talukdar et al SEAL 
Rolex 
Fossil 

Swatch 
Cartier 

Tag Heuer 
Super Bowl 

Swiss 
Chanel 
SPOT 

Movado 
Tiffany 
Sekonda 

Seiko 
TechnoMarine 

Rolexes 
Gucci 

Franck Muller 
Harry Winston 
Patek Philippe 

Versace 
Hampton Spirit 

Piaget 
Raymond Weil 

Girard Perregaux 
Omega 
Guess 

Frank Mueller 
Citizen 
Croton 

David Yurman 
Armani 

Audemars Piguet 
Chopard 

DVD 
DVDs 

Chinese 
Breitling 

Montres Rolex 
Armitron 
Tourneau 

CD 
NFL 

Omega 
Cartier 
Seiko 

Tag Heuer 
Ebel 
Rado 
Gucci 
Bulova 

Raymond Weil 
Movado 
Citizen 

Breitling 
Tissot 
Pulsar 
Fossil 

Hamilton 
Rolex 
Casio 

Swatch 
Concord 

Swiss Army 
Wittnauer 

Nike 
Oris 

Chopard 
IWC 

DKNY 
Wenger 
Piaget 
Timex 
ESQ 

Guess 
Patek Philippe 

Croton 
Tommy Hilfiger

Sector 
Invicta 
Oakley 
Skagen 

Anne Klein 
Armitron 
Zodiac  



mark the beginning of a pattern, which is then used for 
bootstrapping from free text.  

Ghahramani et al [9] illustrates a Bayesian Sets 
algorithm that solves a particular sub-problem of set 
expansion, in which candidate sets are given, rather 
than a corpus of web documents. We intend to 
compare their ranking method with graph-walks in 
future experiments. 
 
8. Conclusion and Future Work 
 

In this paper, we have presented a novel and 
effective approach for expanding sets of named entities 
in an unsupervised, domain and language independent 
fashion. We have shown that our system, SEAL, 
performs better than Google Sets in terms of mean 
average precision for the dataset tested. We have also 
shown that our system is capable of handling various 
languages such as English, Chinese, and Japanese 
which Google Sets does not. 

There are several future topics of research that we 
are currently considering. First, we will investigate 
bootstrapping of named entities by performing several 
rounds of expansions, where each round uses the top 
extracted mentions from the previous round as seeds. 
Second, we will explore re-ranking of web documents 
based on their contained set of mentions extracted 
from previous round of expansion. Third, we will look 
into automatic identification of possible class names 
for expanded sets. Lastly, we will study the possibility 
of hierarchical clustering on the expanded sets and 
graph learning for ranking candidate entities. 
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Table 7. Comparison: Children’s Movies 
Seeds: Mary Poppins, Toy Story 

Google Sets Bayesian Sets SEAL 
Toy Story 

Mary Poppins 
Mulan 

Toy Story 2 
Moulin Rouge 
Monsters Inc 

Man on the Moon 
Mummy The 
Matrix The 

Mod Squad The 

Mary Poppins 
Toy Story 

Winnie the Pooh 
Cinderella 

The Love Bug 
Bedknobs and Broomsticks

Davy Crockett 
The Parent Trap 

Dumbo 
The Sound of Music 

Mary Poppins 
Toy Story 
Cinderella 
Hercules 

The Lion King 
Pocahontas 
Pinocchio 

Beauty and the Beast 
The Jungle Book 
Song of the South  

Table 8. Comparison: NIPS Authors
Seeds: L. Saul, T. Jaakkola 

Bayesian Sets SEAL 
L. Saul 

T. Jaakkola 
M. Rahim 
M. Jordan 

N. Lawrence 
T. Jebara 

W. Wiegerinck 
M. Meila 
S. Ikeda 

D. Haussler 

T. Jaakkola 
L. Saul 
B. Frey 

P. Niyogi 
M. J. Wainwright 

C. Bishop 
M. I. Jordan 

Z. Ghahramani 
A. Smola 
Y. Weiss 
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