
Language-Independent Set Expansion of Named Entities using the Web

Richard C. Wang and William W. Cohen
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA 15213 USA

{rcwang, wcohen}@cs.cmu.edu

Abstract

Set expansion refers to expanding a given partial
set of objects into a more complete set. A well-known
example system that does set expansion using the web
is Google Sets. In this paper, we propose a novel
method for expanding sets of named entities. The
approach can be applied to semi-structured documents
written in any markup language and in any human
language. We present experimental results on 36
benchmark sets in three languages, showing that our
system is superior to Google Sets in terms of mean
average precision.

1. Introduction

Have you ever wanted to know all the
constellations, or US presidents, but were only able to
remember the names of a few of them? In this paper
we consider the problem of set expansion using the
web as a resource. In set expansion, the user issues a
query consisting of a small number of seeds x1, x2, …,
xk (e.g., “ursa major”, “orion”) where each xi is a
member of some target set St. The answer to the query
is a listing of other probable elements of St (e.g., “ursa
minor”, “cancer”, “canis major”, etc).

Google Sets™ is a well-known example of a web-
based set expansion system1. Google Sets has been
used for a number of purposes in the research
community, including deriving features for named-
entity recognition [1], and evaluation of question
answering systems [2]; unfortunately, however,
Google Sets is a proprietary method that may be
changed at any time, so research results based on
Google Sets cannot be reliably replicated. Set
expansion using the web is also closely related to the
problem of unsupervised relation learning from the

1 http://labs.google.com/sets

web [3, 4], and set-expansion-like techniques have
been used to derive features for concept-learning [5],
to construct “pseudo-users” for collaborative filtering
[6], and to compute similarity between attribute values
in autonomous databases [7].

 Here we describe a set-expansion system called the
Set Expander for Any Language (SEAL). As we will
detail below, SEAL works by automatically finding
semi-structured web pages that contain “lists” of items,
and then aggregating these “lists” so that the “most
promising” items are ranked higher. Unlike earlier
systems, the SEAL method is simple enough to be
easily described and replicated, and is independent of
the human language from which the seeds are taken.
SEAL is also independent of the markup language
used to annotate the semi-structured documents.
Extensive experiments have been conducted with
SEAL, based on 36 benchmark problems from three
languages, each of which consists of a moderate-sized
set of entities that is semantically well-defined (e.g.,
the constellations, or the major-league baseball teams).
With randomly constructed three-seed queries from
these domains, SEAL obtains a mean average
precision (MAP) of more than 94% for English-
language queries, more than 93% for Japanese queries,
and nearly 95% for Chinese queries. MAP
performance on the English-language queries is more
than double that of Google Sets™. (Google Sets
cannot be used for non-English queries).

In more detail, SEAL is based on two separate
research contributions. To find “lists” of items on
semi-structured pages, SEAL uses a novel technique to
automatically construct wrappers (i.e., page-specific
extraction rules) for each page that contains the seeds.
Every wrapper is defined by two character strings,
which specify the left-context and right-context
necessary for an entity to be extracted from a page.
These strings are chosen to be maximally-long
contexts that bracket at least one occurrence of every
seed string on a page. The use of character-level
wrapper definitions means that SEAL is completely

language-independent: it is not even necessary to be
able to tokenize the target language.

Most of the wrappers that SEAL discovers will be
“noisy” – i.e., they will extract some entities not in the
user’s target set St. Thus, it is important to rank
entities, so that the entities most likely to be in the
target set are ranked higher. To rank entities, SEAL
uses another novel approach: a graph is built
containing all seeds, all constructed wrappers, and all
extracted candidate entities. Candidates are then
ranked by “similarity” to the seed entities, according to
a certain measure of similarity in the graph. The
similarity metric is defined by aggregating the results
of many randomly-selected walks through the graph,
where each walk is defined by a particular random
process.

 The paper is organized as follows. Section 2
illustrates the architecture of SEAL system. Section 3
describes how wrappers are constructed. Section 4
explains our ranking scheme based on graph walk.
Section 5 presents our evaluation dataset. Section 6
illustrates our experimental results. The last section
summarizes this paper and describes our future work.

2. System Architecture

SEAL is comprised of three major components: the
Fetcher, the Extractor, and the Ranker. The Fetcher
focuses on fetching web pages from the World Wide
Web. The URLs of the web pages come from top
results provided by Google, and the query is simply the
concatenation of all seeds (each seed is quoted, to
require that it occur as an exact phrase). The Extractor
then learns one or more wrappers for each page, and
then executes the wrappers, to extract additional
candidate entities (see Section 3). Finally, the Ranker
builds a graph, and then ranks the extracted mentions
globally based on the weights computed in the graph
walk (see Section 4).

3. The Extractor

The extractor must learn wrappers instantly and
automatically from only a few training examples (the
seeds). In this section, we explain the semi-structured
characteristics of web documents that SEAL requires,
and describe an unsupervised approach for automatic
construction of wrappers. The wrappers that are
constructed are page-dependent – i.e., they are
intended to be applied only to a single web page.
However, the approach that we use to learn wrappers
is both domain- and language- independent.

3.1. Semi-Structured Documents

The information in semi-structured web documents
will be formatted quite differently on different pages,
but fairly consistently within a single page. For
example, each movie name in a list of classic Disney
movies might be be embedded with “<tr><td>” (to
the left) and “</td></tr>” (to the right) in one page,
and “Disney: ” and “” in another. This
observation suggests that entities belonging to the
same class (i.e. movies) will be linked by appearing in
similar contexts (formatting structures) on the same
page.

This characteristic of semi-structured web
documents can be exploited for expanding some set of
given seeds. Suppose initially, a couple of seeds are
provided from a reliable source (i.e. a human), and
web documents that contain all of these seeds are
retrieved. Then it is very likely that each of these
documents will contain other entities that are
embedded in the same contexts as the seeds, and also
belong to the same semantic class as the seeds. The
next section explains in detail the algorithm for
constructing wrappers utilizing the semi-structured
characteristics of web documents.

Fetcher Extractor Ranker

Web

Top
URLs

Google
API

Crawler Web
Pages

Wrapper
Learner

Extracted
Mentions

Graph
Builder

Graph

Graph
Walker

Ranked
Mentions

WrappersWrappersWrappers
WrappersWrappersWrappers

Seeds
Relations

Figure 1. Flow chart of the SEAL system

3.2. Algorithm

First, the top n URLs returned by Google, using the
seeds as the query, are downloaded from the web. All
instances of seeds are identified from web documents
D by simple string matching. For each document d∈D,
let si,j be the jth occurrence of ith seed. Let the left
context li,j∈L be the part of d preceding si,j and the
right context ri,j∈R be the part of d following si,j. For
each d∈D, all possible suffixes of some left context
from L and all prefixes of some right context from R
that embed at least one instance of every seed are
(conceptually) extracted; these are referred to as full
suffixes and full prefixes respectively. Within these full
suffixes, ones that are suffixes of other full suffixes are
removed, keeping only the longest full suffixes. To
find the longest full suffixes, we build a trie of all the
suffixes, and each node is marked with the number of
unique seeds that the suffix precedes. For each of those
longest suffixes, it is easy to find its corresponding
longest right context (and vice versa). An extraction

pattern, or wrapper, is then constructed for each of
those pairs. When extracting candidate entities using
left and right contexts L and R, we consider only
substrings between L and R which do not contain both
L and R.

Since web documents are usually structured
consistently within the same page but not across
multiple pages, the wrappers derived from a particular
document d are used to extract from d only. We will
call each such extracted string a (candidate) entity
mention. The complete pseudo-code for building these
wrappers is described in Figure 2.

Note that our approach is completely character-
based and does not assume any language or domain.
Also, unlike prior approaches [4, 8], we do not impose
any limit on the length of the contextual strings in L
and R nor do we require any parser (i.e. HTML). This
also implies that our algorithm will apply not only on
HTML pages, but also on other documents semi-
structured by any kind of mark-up language (i.e. XML,
SGML, TeX, Wiki Markup Language, etc.).

Definition:
1. si,j = jth occurrence of ith seed, },,{ 1 ki sss K∈ , in a document Dd ∈
2. jil , and jir , (left and right context respectively) so jijiji rsld ,,, ⋅⋅=
3. },,{ ,1, iniii llL K= and },,{ ,1, iniii rrR K=
4. } some ofsuffix a is :{),,(FullSuffix ,1 ijik LlxixLL ∈∀=K
5. =),,lSuffix(LongestFul 1 kLL K } ofsuffix a is :),,(FullSuffix),,(FullSuffix:{ 11 yyLLyLLyy kk ′∈′¬∃∧∈ KK

6.),,Prefix(lLongestFul 1 kRR K is analogous to 5 above

Pseudo code:
),,lSuffix(LongestFulLet 1 kLLX K=

Xx∈∀
ki ,,1: K∀

} somefor :{Let zrsxzdRrR iii ′⋅⋅⋅=∈′=′)by preceded with ofsubset a is (i.e. xsRR iii′

),,(lPrefixLongestFul~Let 1 kx RRR ′′= K

=⋅∗⋅∈∀ ""pattern create ~ yxRy x } of substring anot are , of substring a is :{ ayxdyaxa ∧⋅⋅
),,(PrefixlLongestFulLet 1 kRRY K=

Yy∈∀
ki ,,1: K∀

} somefor :{Let zzysldLlL iii ⋅⋅⋅′=∈′=′)by followed with ofsubset a is (i.e. ysLL iii′

),,(lSuffixLongestFul~Let 1 ky LLL ′′= K

=⋅∗⋅∈∀ ""pattern create ~ yxLx y } of substring anot are , of substring a is :{ ayxdyaxa ∧⋅⋅
Figure 2. Pseudo-code for automatic construction of wrappers.

3.3. Examples

Suppose car makers “Ford”, “Nissan”, and
“Toyota” were provided as seeds, wrappers can be
automatically constructed for each document by using
the proposed wrapper construction algorithm. Figure 3
shows an example source page (of ‘curryauto.com’)
and Table 1 shows the contexts that the algorithm
selected for constructing wrappers from
‘curryauto.com’, with the symbol “[…]” representing
the placeholder for an extracted entity. The entities
extracted by the wrappers are also shown in Table 1.
Here the boldfaced mentions are the seeds themselves.

4. The Ranker

The entity mentions extracted by wrappers may
contain noisy entities, or entities that are rarely
associated with the seeds by popular consensus on the
web. For example, “honda atlanta” and “honda
yorktown” extracted by Wrapper #3 in Table 1 are
such entities; these are unlikely to be members of the
user’s target set. Since it is extremely difficult for
machines to perfectly understand the information
needs of users, we choose to rank the extracted entity
mentions in the set presented to the users. In this
section, we first analyze the problem of finding
similarity between seeds and extracted mentions. We
then propose a graph walk for ranking extracted
mentions.

...<li class="ford">

 <li class="last">
 Curry Ford...

<li class="honda">

 Curry Honda Atlanta...

 Curry Honda...
 <li class="last">
 Curry Honda Yorktown...

<li class="acura">

 <li class="last">
 Curry Acura...

<li class="nissan">

 <li class="last">
 Curry Nissan...

<li class="toyota">

 <li class="last">
 Curry Toyota...
...

Figure 3. HTML source text from ‘curryauto.com’ (“…” is omitted text).

Table 1. Wrappers induced from ‘curryauto.com’ and their extracted entity mentions.
Wrapper #1: \n<li class="[...]"><a href="http://www.

Extractions: ford, honda, acura, kia, toyota, scion, nissan, buick, pontiac
Wrapper #2: /">\n<img src="/common/logos/[...]/logo-horiz-rgb-lg-dkbg.gif" alt="

Extractions: chevrolet, ford, kia, toyota, scion, nissan, pontiac, cadillac, hyundai
Wrapper #3: Curry [...]

Extractions: chevrolet, ford, honda atlanta, honda, honda yorktown, acura, subaru
chicopee, subaru, kia, toyota, scion, nissan, buick, pontiac, cadillac

4.1. Problem Analysis

In order to determine the similarity between
extracted mentions and seeds (or the likelihood that
they all belong to the same class based on contextual
information), we need to first understand how they are
related globally. We know that seeds were used as a
query to find documents online. We also know that the
same wrapper may be derived from more than one
document, and the same entity can be extracted by
more than one wrapper. Also, we have observed that
noisy entities are usually extracted less frequently than
non-noisy entities. Intuitively, the more non-noisy
entities extracted by a wrapper, the better quality the
wrapper (and vise versa), and the more high-quality
wrappers derived from a document, the better quality
the document (and vise versa).

In order to model these complex relations, we will
use a graph which contains all the objects of interest –
seeds, web pages, wrappers, and extracted entity
mentions. Similarity in the graph will then be used to
rank entity mentions.

4.2. Building a Graph

A graph G consists of a set of nodes, and a set of
labeled directed edges. We will use letters such as x, y,
and z to denote nodes, and we will denote an edge
from x to y with labeled relation r as yx r⎯→⎯ . Every
node x has a type and we will assume that there is a
fixed set of possible node types. We will also assume,
for convenience, that there are no edges from a node to
itself; however, this assumption can be easily relaxed.

Each node represents an object, and each edge
yx r⎯→⎯ asserts that that a binary relation r(x, y)

holds. The graph edges are directed. We also create an
inverse relation r-1(x, y) for each edge; thus the graph
will certainly be cyclic. The first column of Table 2
shows all possible source entity types, and the middle

column shows each of their possible relations with
some target entity types in the last column.

4.3. Graph Walk

We define the similarity between two nodes by a
lazy walk process, similar to PageRank with decay. To
walk away from a source node x, one first picks an
edge relation r; then given r, one picks a target node y
such that yx r⎯→⎯ . We assume that, given a source
node x, the probability of picking an edge relation r is
uniformly distributed among the set of all r, where
there exist a target node y such that yx r⎯→⎯ . More
specifically,

yxyr
xrP

r⎯→⎯∃
=

 :
1)|(

(1)

We also assume that once an edge relation r is picked,
a target node y is chosen uniformly from the set of all y
such that yx r⎯→⎯ . That is,

yxy
xryP

r⎯→⎯
=

:
1),|(

(2)

At each step in a lazy graph walk, there is also some
probability λ of staying at x. Putting everything
together, the probability of reaching any node z from x
is computed recursively as follows:

∑ ∑ ⎥
⎦

⎤
⎢
⎣

⎡
−

+=Ι⋅=

r y

yzPxryPxrP

zxxzP

)|(),|()|()1(

)()|(

λ

λ
 (3)

where I(x = z) is a binary function that returns 1 if
node x and node z are the same, and 0 otherwise.

In our experiments, we use a constant λ of 0.5, and
we sample the graph by taking 10000 walks randomly,

Table 2. Node and relation types
Source Type Edge Relation Target Type

seeds find document

document derive
find-1

wrapper
seeds

wrapper extract
derive-1

mention
document

mention extract-1 wrapper

“ford”, “nissan”, “toyota”

curryauto.com

Wrapper #3

Wrapper #2

Wrapper #1

Wrapper #4

“honda”
26.1%

“acura”
34.6%

“chevrolet”
22.5%

“bmw pittsburgh”
8.4%

“volvo chicago”
8.4%

find

derive
extract northpointcars.com

Figure 4. Example of a constructed graph

each walk consists of up to 10 steps starting from the
node with type ‘seeds’. At the end of the graph walk,
each node will have a probability, or weight, assigned,
and we rank all nodes of type ‘mention’ by their
assigned weights.

4.4. Example

An example of such a graph is illustrated in Figure
4. A graph walk has been performed on this graph
where each node is assigned a weight due to the walk.
As expected, a walk on the graph in Figure 4 would
weigh “bmw pittsburgh” and “volvo chicago” the least
among the extracted mentions because these nodes
have fewer incoming edges; thus they are harder to
reach. The weights assigned to these mentions are
shown on the example graph as well.

5. Datasets

There are a total of 36 evaluation datasets,
constructed evenly over three languages: English,
Chinese, and Japanese; thus there are 12 datasets per
language. The datasets consist of 18 classes, where
half were constructed in all three languages and the
other half in one language only, as illustrated in Table

3. The intention is to diversify the datasets such that
some are culture-specific while some are not. Each
dataset is a plain text file that represents a particular
class C, and each entity e∈C is represented by a list of
true mentions, or synonyms, of that particular e. The
statistics of classes, entities, and entity mentions for
each language are shown in Table 4.

6. Experiments

In this section, we describe our baseline system,
alternative methods we attempted to use, evaluation
metric and procedure, experimental results, and finally,
comparisons of our results with those published by
other researchers.

6.1. Baseline System

We choose Google Sets as our baseline system,
mainly because it is well-known and publicly
available. However, since Google Sets does not handle
languages other than English, it is only directly
comparable to SEAL on the English evaluation dataset.
To our knowledge there is no set expansion system
that can handle Chinese and/or Japanese, with which
we could compare our evaluation results.

Table 3. Explanation for each dataset (* are incomplete sets).
 Dataset Eng Chi Jap Class Description

1 classic-disney Classic Disney movie names
2 constellations Constellation names
3 countries Country names
4 mlb-teams Major League Baseball team names
5 nba-teams National Basketball Association team names
6 nfl-teams National Football League team names
7 popular-car-makers *Popular car manufacturer names
8 us-presidents United States president names
9 us-states United States state names

10 cmu-buildings Carnegie Mellon’s building names
11 common-diseases *Common disease names
12 periodic-comets Periodic comet names
13 china-dynasties Chinese dynasty names
14 china-provinces Chinese province names
15 taiwan-cities Taiwanese city names
16 japan-emperors Japanese emperor names
17 japan-priministers Japanese priminister names
18 japan-provinces Japanese province names

Table 4. Statistics of datasets for English, Chinese, and Japanese.
Language # Class (C) # Entity (E) # Mention (M) Avg. E/C Avg. M/E

English 12 1017 1461 85 1.4
Chinese 12 694 1677 58 2.4
Japanese 12 804 1174 67 1.5

6.2. Alternative Methods

We conducted ablation studies using alternative
methods for set expansion. The extraction approach
described in section 3.2 was simplified. In the
definition of full suffix of the wrapper construction
algorithm, instead of finding all possible common
suffixes of left context L and prefixes of right context
R that embed at least one instance of every seed, it
finds common suffixes of L and prefixes of R that
embed all seed instances. More specifically, we let:

} all ofsuffix a is :{),,(FullSuffix ,1 ijik LlxixLL ∈∀=K

This simple extractor, referred to as E1, is compared to
the proposed extractor, referred to as E2, in the
experimental results section.

The ranking approach described in section 4.2 was
also simplified: instead of a graph walk, it ranks entity
mentions by their frequency counts of being extracted
by any wrapper from any document. This simple
ranking scheme is referred to as EF (extracted
frequency) and the proposed method is referred to as
GW (graph walk) in the experimental results section.

6.3. Evaluation

Since the output of SEAL is a ranked list of
extracted mentions, we choose mean average precision
(MAP) as the evaluation metric. MAP has been
commonly used for evaluating ranked lists in the field
of Information Retrieval. It contains both recall and
precision-oriented aspects, and it is sensitive to the
entire ranking. For evaluating a system that produces
multiple ranked lists, MAP is simply the mean value of
average precisions computed for each ranked list
separately. Average precision of a single ranked list is
defined as:

Entities True #

)NewEntity()Prec(
)AvgPrec(1
∑
=

×
=

L

r
rr

L (4)

where L is a ranked list of extracted mentions, r is the
rank, Prec(r) is the precision at rank r. NewEntity(r) is
a binary function, which returns 1 if a) the extracted
mention at r matches any true mention, and b) there
exist no other extracted mention at rank less than r that
is of the same entity as the one at r. It returns 0
otherwise.

The procedure for evaluating SEAL is that, for each
dataset:

1. Randomly select three true entities and use their
first listed mentions as seeds.

2. Expand the three seeds obtained from step 1.
3. Repeat steps 1 and 2 five times.
4. Compute MAP for the five resulting ranked lists.

6.4. Experimental Results

Table 5 shows our experimental results. The
baseline Google Sets (G.Sets) performed the worst.
Even our simplest approach, E1+EF, beats Google Sets
by a substantial amount. In our first set of experiments,
we requested only top 100 URLs per expansion from
Google. Our simplest approach, E1+EF, achieved an
overall average of around 82%. After improving E1 to
E2, we observed a 6.34% improvement on the overall
average. We then enhanced EF to GW, and observed a
6.30% improvement. We decided to increase our
corpus size to see if any improvements can still be
made. Rather than requesting only top 100 URLs, we
increase the number to 200 and 300, and we observed
a slight improvement of 0.97% and 0.16%
respectively.

6.5. Set Comparisons

We present side-by-side comparison of set
expansion results published by other researchers and
obtained by SEAL. Table 6 illustrates the top 42 set
expansion results on watch brand names using 17
seeds as presented in Talukdar et al [8]. As comparison,
we present our top 42 results in the right column using
only the first three of their 17 seeds (namely Corum,
Longines, and Lorus). SEAL achieved a precision of
100% on those results; whereas Talukdar’s system
returned noisy entities (boldfaced mentions) towards
the bottom of their list and achieved a precision of
85.7%. We also tried the three seeds on Google Sets
but obtained no results other than the seeds
themselves. Table 7 shows top 10 set expansion results
on children’s movies from Bayesian Sets, as presented
in Ghahramani et al [9]. We provide results from
Google Sets and SEAL as comparisons. Note that
Bayesian Sets used a movie-specific dataset:
EachMovie. As illustrated, both Bayesian Sets and
SEAL systems perform well on finding children
movies. Similar to Table 7, Table 8 shows top 10
results on NIPS authors from Bayesian Sets as
presented in Ghahramani et al [9]. We provide results
from SEAL as comparisons but not from Google Sets
since it failed to return any result. Note that Bayesian
Sets, again, used a domain-specific dataset: the NIPS
dataset.

7. Related Work

Google Sets uses a proprietary method that has not
been published. The KnowItAll system [4] contains a
List Extractor (LE) component that is functionally
similar to Google Sets. It uses an HTML parser for
identifying sub-trees of a parsed web page. For each
selected sub-tree, it finds one contextual pattern that
maximally matches all of the seeds. However, SEAL
does not require any parsing, and it finds all contextual

patterns in the whole document that maximally match
at least one instance of every seed.

Etzioni et al [4] describe a number of possible
variants of the LE component, but it is not clear which
variant was used in their experiment. The KnowItAll
system achieved precisions of 23~79% on four sample
problems.

Several researchers have studied set expansion
using free text rather than semi-structured Web
documents; for instance, Talukdar et al [8] present a
method for automatically selecting trigger words to

Table 5. Experimental results
Max. 200 Max. 300

English G.Sets E1+EF E2+EF E2+GW E2+GW E2+GW
classic-disney 37.62% 79.36% 74.45% 84.42% 88.20% 89.39%
cmu-buildings 0.00% 87.85% 87.75% 87.83% 87.83% 87.83%

common-diseases 1.12% 17.94% 52.84% 57.46% 75.79% 76.87%
constellations 10.45% 89.61% 99.97% 100.00% 100.00% 100.00%

countries 14.24% 95.95% 97.86% 98.17% 98.67% 98.53%
mlb-teams 70.06% 98.61% 99.50% 99.80% 99.84% 99.81%
nba-teams 90.73% 100.00% 100.00% 100.00% 100.00% 100.00%

nfl-teams 94.26% 99.22% 99.98% 100.00% 100.00% 100.00%
periodic-comets 0.22% 69.24% 79.04% 84.78% 84.77% 84.77%

popular-car-makers 73.61% 79.18% 88.23% 95.16% 96.23% 96.95%
us-presidents 56.77% 91.64% 97.07% 99.99% 100.00% 100.00%

us-states 76.00% 99.96% 93.55% 100.00% 100.00% 100.00%
Average 43.76% 84.05% 89.19% 92.30% 94.28% 94.51%

Trad. Chinese G.Sets E1+EF E2+EF E2+GW E2+GW E2+GW
china-dynasties - 25.45% 33.86% 65.20% 64.62% 65.22%
china-provinces - 94.97% 99.19% 99.21% 99.34% 99.35%

classic-disney - 80.73% 91.17% 91.68% 91.68% 91.68%
constellations - 92.00% 96.25% 99.99% 99.99% 99.99%

countries - 94.79% 95.39% 96.94% 97.76% 97.72%
mlb-teams - 94.42% 84.05% 99.98% 99.96% 99.96%
nba-teams - 90.29% 95.04% 99.90% 100.00% 100.00%

nfl-teams - 68.08% 88.43% 95.75% 95.75% 95.75%
popular-car-makers - 71.44% 83.29% 94.36% 94.47% 94.55%

taiwan-cities - 95.26% 98.04% 100.00% 100.00% 100.00%
us-presidents - 62.84% 82.61% 93.03% 94.24% 94.24%

us-states - 98.47% 97.08% 99.48% 99.48% 99.49%
Average - 80.73% 87.03% 94.63% 94.77% 94.83%

Japanese G.Sets E1+EF E2+EF E2+GW E2+GW E2+GW
classic-disney - 72.83% 75.00% 81.65% 83.00% 82.95%
constellations - 96.87% 95.18% 99.99% 100.00% 100.00%

countries - 97.33% 90.47% 98.69% 99.18% 99.16%
japan-emperors - 95.93% 99.10% 99.24% 99.24% 99.24%

japan-priministers - 71.25% 91.75% 93.12% 93.00% 93.03%
japan-provinces - 99.40% 100.00% 100.00% 100.00% 100.00%

mlb-teams - 80.00% 85.60% 98.89% 98.91% 98.91%
nba-teams - 95.28% 99.44% 99.96% 99.98% 99.98%

nfl-teams - 92.83% 93.86% 99.05% 99.05% 99.06%
popular-car-makers - 53.64% 76.13% 79.57% 84.81% 86.47%

us-presidents - 36.44% 34.61% 59.46% 59.46% 59.46%
us-states - 96.95% 98.02% 99.92% 99.94% 99.98%
Average - 82.40% 86.60% 92.46% 93.05% 93.19%

Overall Average 43.76% 82.39% 87.61% 93.13% 94.03% 94.18%

Max. 100 Results

Table 6. Comparison:
Watch Brands

Talukdar et al SEAL
Rolex
Fossil

Swatch
Cartier

Tag Heuer
Super Bowl

Swiss
Chanel
SPOT

Movado
Tiffany
Sekonda

Seiko
TechnoMarine

Rolexes
Gucci

Franck Muller
Harry Winston
Patek Philippe

Versace
Hampton Spirit

Piaget
Raymond Weil

Girard Perregaux
Omega
Guess

Frank Mueller
Citizen
Croton

David Yurman
Armani

Audemars Piguet
Chopard

DVD
DVDs

Chinese
Breitling

Montres Rolex
Armitron
Tourneau

CD
NFL

Omega
Cartier
Seiko

Tag Heuer
Ebel
Rado
Gucci
Bulova

Raymond Weil
Movado
Citizen

Breitling
Tissot
Pulsar
Fossil

Hamilton
Rolex
Casio

Swatch
Concord

Swiss Army
Wittnauer

Nike
Oris

Chopard
IWC

DKNY
Wenger
Piaget
Timex
ESQ

Guess
Patek Philippe

Croton
Tommy Hilfiger

Sector
Invicta
Oakley
Skagen

Anne Klein
Armitron
Zodiac

mark the beginning of a pattern, which is then used for
bootstrapping from free text.

Ghahramani et al [9] illustrates a Bayesian Sets
algorithm that solves a particular sub-problem of set
expansion, in which candidate sets are given, rather
than a corpus of web documents. We intend to
compare their ranking method with graph-walks in
future experiments.

8. Conclusion and Future Work

In this paper, we have presented a novel and
effective approach for expanding sets of named entities
in an unsupervised, domain and language independent
fashion. We have shown that our system, SEAL,
performs better than Google Sets in terms of mean
average precision for the dataset tested. We have also
shown that our system is capable of handling various
languages such as English, Chinese, and Japanese
which Google Sets does not.

There are several future topics of research that we
are currently considering. First, we will investigate
bootstrapping of named entities by performing several
rounds of expansions, where each round uses the top
extracted mentions from the previous round as seeds.
Second, we will explore re-ranking of web documents
based on their contained set of mentions extracted
from previous round of expansion. Third, we will look
into automatic identification of possible class names
for expanded sets. Lastly, we will study the possibility
of hierarchical clustering on the expanded sets and
graph learning for ranking candidate entities.

Acknowledgements

We want to thank Robert E. Frederking and Eric
Nyberg for proof-reading this paper. This material is

based upon work supported by the Defense Advanced
Research Projects Agency (DARPA) under Contract
No. NBCHD030010. Any opinions, findings and
conclusions or recommendations expressed in this
material are those of the author(s) and do not
necessarily reflect the views of the Defense Advanced
Research Projects Agency (DARPA).

References

[1] B. Settles, "Biomedical Named Entity Recognition

Using Conditional Random Fields and Rich Feature
Sets," in NLPBA/BioNLP, 2004.

[2] J. Prager, J. Chu-Carroll, and K. Czuba, "Question
Answering using Constraint Satisfaction: QA-by-
Dossier-with-Constraints," in ACL, 2004.

[3] M. J. Cafarella, D. Downey, S. Soderland, and O.
Etzioni, "KnowItNow: Fast, Scalable Information
Extraction from the Web," in EMNLP, 2005.

[4] O. Etzioni, M. Cafarella, D. Downey, A.-M. Popescu,
T. Shaked, S. Soderland, D. S. Weld, and A. Yates,
"Unsupervised Named-Entity Extraction from the Web:
An Experimental Study," Artificial Intelligence, vol.
165, pp. 91-134, 2005.

[5] W. W. Cohen, "Automatically Extracting Features for
Concept Learning from the Web," in ICML, 2000.

[6] W. W. Cohen and W. Fan, "Learning Page-Independent
Heuristics for Extracting Data from Web Pages," in
WWW, 1999.

[7] S. Kambhampati, G. Wolf, Y. Chen, H. Khatri, B.
Chokshi, J. Fan, and U. Nambiar, "QUIC: Handling
Query Imprecision & Data Incompleteness in
Autonomous Databases," in CIDR, 2007.

[8] P. P. Talukdar, T. Brants, M. Liberman, and F. Pereira,
"A Context Pattern Induction Method for Named Entity
Extraction," in Computational Natural Language
Learning (CoNLL-X), 2006.

[9] Z. Ghahramani and K. A. Heller, "Bayesian Sets," in
Advances in Neural Information Processing Systems,
2005.

Table 7. Comparison: Children’s Movies
Seeds: Mary Poppins, Toy Story

Google Sets Bayesian Sets SEAL
Toy Story

Mary Poppins
Mulan

Toy Story 2
Moulin Rouge
Monsters Inc

Man on the Moon
Mummy The
Matrix The

Mod Squad The

Mary Poppins
Toy Story

Winnie the Pooh
Cinderella

The Love Bug
Bedknobs and Broomsticks

Davy Crockett
The Parent Trap

Dumbo
The Sound of Music

Mary Poppins
Toy Story
Cinderella
Hercules

The Lion King
Pocahontas
Pinocchio

Beauty and the Beast
The Jungle Book
Song of the South

Table 8. Comparison: NIPS Authors
Seeds: L. Saul, T. Jaakkola

Bayesian Sets SEAL
L. Saul

T. Jaakkola
M. Rahim
M. Jordan

N. Lawrence
T. Jebara

W. Wiegerinck
M. Meila
S. Ikeda

D. Haussler

T. Jaakkola
L. Saul
B. Frey

P. Niyogi
M. J. Wainwright

C. Bishop
M. I. Jordan

Z. Ghahramani
A. Smola
Y. Weiss

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

