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Abstract

Large-scale systems for information extraction include
many different classifiers and extractors. Experience in
building such systems shows that finding an appropriate
architecture is both difficult and important: in partic-
ular, in systems containing many learned components,
it is important to cleanly share information between
the components, and to flexibly sequence the actions
of the components. In this paper, an architecture for
large-scale information extraction systems is described,
based a light-weight blackboard system for communi-
cation between components, and a declarative control
system for automatically sequencing component-level
tasks like classification, extraction, and feature compu-
tation.

Introduction
In this paper, I will describe what I believe to be a cru-
cial piece of infrastructure for complex, real-world infor-
mation extraction systems. Specifically, I will describe a
light-weight, flexible blackboard systemfor communicating
between extraction and classification components, and show
how this information-sharing scheme can be closely inte-
grated with adeclarative control systemthat automatically
sequences lower-level components, which perform tasks like
classification, extraction, and feature computation.

The claim that such a system is “crucial” is to some degree
at odds with the academic literature on learning and informa-
tion extraction. Most published papers in these areas address
a small set of well-defined tasks, such as text classification,
named entity extraction, entity-name matching (eg., (Cohen
1998; McCallum, Nigam, & Ungar 2000)) and entity associ-
ation (e.g., (Jensen & Cohen 2001; Ray & Craven 2001)). In
almost all published papers, performance on these problems
is considered in isolation, independent of the larger context
in which the subtask is performed, and independent of the
architecture used to coordinate these subtasks.

However, realistic complete systems for information ex-
traction and question-answering (e.g., (Knoblocket al.
1998; Cravenet al. 2000; Murphy, Velliste, & Porreca 2001;
Buckley et al. 1999; Cohenet al. 1998)) typically include
many components, often including many types of classifiers
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and extractors. In many cases, good overall system perfor-
mance requires these components to interact closely. My ex-
perience in building such systems, in industry (Cohen, Mc-
Callum, & Quass 2000) and elsewhere (Cohen 1999), has
been that architecting large-scale information extraction sys-
tems of this sort is quite difficult.

In particular, experience has shown that in systems con-
taining many learned components, it can be surprisingly dif-
ficult to cleanly share information between the components,
and to properly sequence the actions of the components.
There are a number of reasons why this is true.

• Multiple representations.Large-scale extraction systems
often use a diverse, heterogeneous set of techniques for
classification and extraction. For instance, to extract in-
formation about university professors, it might be appro-
priate to use an character trigram model to determine if a
page is in English; to use a hidden Markov model to ex-
tract personal names; to use hand-coded regular expres-
sions to extract phone numbers and email addresses; to
use an XPath (Clark & DeRose 1999) query to extract
PDF and postscript papers; and to use a rote list to ex-
tract university names. In many cases, this means that
the system will requiremultiple representationsof what is
conceptually thesame object—for instance, a single web
page might have a character-string representation, a token
sequence representation, and a DOM representation.

• Expanding sets of objects.Information is shared between
components about many different things. While some of
these things are known to exist at the start of the com-
putation (e.g., the page at “http://wcohen.com”) it is very
common for new things to be “discovered”, or at least hy-
pothesized to exist, during the course of a computation
(e.g., “the common referent of the strings ‘William W.
Cohen’, and ‘Dr. Cohen”’). Allowing a decentralized,
heterogeneous set of components to create things makes
sharing information more difficult—for instance, it is not
enough to simply add labels to some fixed set of objects.

• Relationships between objects.In addition to stating
properties about things (e.g., “pageP is in the category
‘home page”’, or “entity nameN is a ‘person name”’)
it is also necessary for components to exchange informa-
tion about the relationships between things (e.g. “entity
namesU andP appear in the same paragraph”, “univer-



Figure 1: Sample scale-finding problems for SLIF (Murphy, Velliste, & Porreca 2001). Left: a group of panels, each with its
own scale bar. Right: Panels A-F share one scale bar, and panels G-H share a second.

sity nameU is an affiliation for person nameP ”, or “the
protein namedP is dyed green in imageI”). Some of
these relationships are ones of interest to the end user of
the extracted information. Many more relations are used
by the system itself to make classification and/or extrac-
tion decisions, and in general to describe the intermediate
states of the extraction process.

• Changing dependencies among components.In complex
domains, there are many interdependencies among the
things involved in an extraction. Thus, in designing new
and better classifiers and extractors, it is often useful to
use as features the output of other classifiers, candidates
proposed by other extractors, or various aggregations and
counts based on other extractors and other classifiers.
For instance, in deciding what university-affiliated per-
sonP is associated with a particular home page, it might
be useful to compute which nameP is associated with
the largest number of citations made in technical papers
found near that home page. Note that computing this fea-
ture requires finding technical papers, and extracting and
segmenting citations from them, so it imposes an ordering
on how the classifiers must be run.
Our experience is that ordering constraints of this sort
change substantially over the course of a project, as fea-
tures are created, evaluated, and (occasionally) discarded,
and as new ways of decomposing a problem are explored.

An extended example
Of course, none of the difficulties discussed above are insur-
mountable, if encountered on a small scale—the actions of a
small and relatively static collection of extractors and clas-
sifiers can be combined with (for instance) a set of simple
shell scripts. As systems become more complex and fluid,
however, control and communication between components
becomes more important.

To illustrate this, I will present a concrete real-world ex-
ample of a subtask of a real-world information extraction

system. In current work, I and colleagues are extending a
system called SLIF which extracts biologically important
properties from certain images in biomedical publications
(Murphy, Velliste, & Porreca 2001; Cohen, Wang, & Mur-
phy 2003). Specifically, SLIF analyzes fluorescence micro-
scope images of cells, and extracts features relating to the
subcellular localization of proteins depicted in these micro-
scope images. The extended system associates theselocal-
ization featureswith cell names and protein names from the
caption accompanying the image.

To compute biologically meaningful localization features,
SLIF needs to know the scale of an image. Usually the scale
is indicated by a bar in the image, and a comment in the cap-
tion (like “scale bar, 10mm”). One can thus find the scale
of an image by locating thescale bar graphicin the im-
age and separately finding thescale bar measurement(e.g.,
“10mm”) in the caption. Since knowing the scale is a pre-
requisite of the later, more complex image processing, this
scale-finding task must be performedbeforethe localization
features are computed.

So far, the control issues can be easily addressed, but com-
plexities arise when we consider other cases. A single figure
can contain multiple subimages. These subimages may each
have their own scale bar, as on the left of Figure 1; or, scale
bars can be shared, as on the right of Figure 1. In this case,
we need to split the full image intopanels(subimages con-
taining a single microscope image); findall scale bar graph-
ics in the figure; and determine how scale bar graphics are
shared, based on some understanding of the relative position
of the panels. All this processing must again occur before
localization features are computed.

It is also possible that there are different scale bar mea-
surements associated with different scale bars in the same
figure. For instance, the caption for the right-hand image of
Figure 1 might read “Bars, A-F, 10 mm; G and H, 5 mm”.
To handle this case, we need not only to split the full image
into “panels”, but also associated each panel with itspanel
label (here “A”, “B’, . . . , “H”); further, we must associate



the different scale bar measurements from the caption with
the appropriate panel labels. This requires using OCR on
the individual panels to find their labels, as well as perform-
ing some non-trivial text-processing on the captions (Cohen,
Wang, & Murphy 2003). Again, this must occur before lo-
calization features are computed.

As it turns out, performing OCR to find panel labels is
relatively slow. To reduce processing time, one might elect
not to run the scale-finding process unless some panel of
the figure actually contains an image for which localization
features can be computed. It turns out that the first step of
finding localization features for a panel is to run apanel
classifierthat determines if a panel is a fluorescence micro-
scope image. This classifier is relatively fast, so one can
improve run-time performance if one imposes a new control
constraint—that thepanel classifierbe run on each panelaf-
ter partitioning the figure, butbeforerunning OCR.

On the other hand, it might be that having a scale-bar (or
a scale in a certain range) is a good indicator of whether or
not an image is a fluorescence microscope image. In that
case, one might want to perform some of the less expen-
sive steps of scale-finding (e.g., finding scale bar measure-
ments in the caption) in the process of computing features
for the panel classifier. This imposes an additional con-
straint, which now forces the conceptually separate steps
of scale-finding and localization-feature computation to be
closely intermixed. Some scale-finding must happen rela-
tively early (before classifying panels); and some of must
happen late (after performing OCR and parsing captions.)

For the example, it’s hard to say how many of the control
“constraints” discussed above need to be enforced. It might
be that some of the more complex scale-finding cases are
rare, and can be safely ignored; it might be that OCR is not
substantially more expensive than the running a panel clas-
sifier; or it might be that finding scale bar measurements
does not make the panel-classifier more accurate. Only
detailed experimentation and benchmarking can determine
which control strategies give the best tradeoff in terms of
speed and accuracy. However, it is clear from the discussion
that in a complex real-world extraction domain, it is impor-
tant for a system to allow designers toflexibly explorediffer-
ent ways of sequencing the various extraction, classification,
and feature-computation components.

Proposed Solution
Outline, requirements, and desiderata
In outline, the proposed solution to these difficulties con-
sists of two pieces. The first piece is ablackboard system
that can perform the key tasks ofcreating identifiersfor new
“things”, storing and retrievingalternative representations
of things, and storing and retrieving assertions about there-
lationships between thingsused by the extraction system.

The blackboard system is closely integrated with acon-
trol system. Thecontrol systemtakes as input adeclarative
descriptionof what inputs are needed and what outputs are
produced by each lower-level component, together with a
list of goal outputsthat must be produced by the system. The
control system then finds and executes a sequence of calls to

the lower-level components that produce the goal outputs.
Reflection suggests a number of important requirements.
The blackboard must be able to store arbitrarily complex

subsystem-specific representations of the objects being ma-
nipulated: for instance, one should be able to create and/or
store multiple representations of a web page easily, as well
as storing multiple representations of a web site (say, as a
graph of hyperlinks, or as a set of pages). The blackboard
must also have clear semantics, be easily implemented, and
be accessible from multiple host languages.

It is desirable for the blackboard system to use accepted
communication and representation standards, when they are
appropriate. Further, since being able to work with many
different types of components is important, it is desirable if
the blackboard is (at least in part)file-based—by which I
mean that files constructed by (or for) off-the-shelf software
components can be viewed as part of the blackboard itself.
In the event that a computation unexpectedly fails, it is also
desirable to be able for programmers to easily browse the
state of the blackboard. Finally, it is desirable for the black-
board system to be distributed. Information extraction is of-
ten computationally expensive, and it is advantageous to be
able to distribute a computation over different machines on
the same network.

The control system must be efficient, modular, and
restartable. Bymodular we mean that all control infor-
mation can be (easily!) segregated into a single subsys-
tem, where it can be monitored, debugged, and changed.
By restartablewe mean that a failed computation can be
restarted from the point at which it failed (up to the level of
granularity provided by the lower-level components). Even
more importantly, it must be possible to efficiently perform
any computation done by a single lower-level component, so
that each component can be effectively tuned and tested.

It is also desirable for the control system to be compre-
hensible to non-logicists, and for it to be feasible to merge
declarative and imperative control, for those cases in which
declarative control is not appropriate or convenient. For de-
bugging, it should also be possible to determine which com-
ponent is responsible for adding what blackboard data.

The underlying semantic model

The world modeled by the blackboard consists of three dif-
ferent varieties of entities:external entities, decompositions
of entities, andviews(or representations) of entities. These
entities can also be associated together byrelations.

An external entitycorresponds to something that has (or
is hypothesized to have) existence in the world being mod-
eled. In the extended version of SLIF, these are objects like
papers, captions, sentences, figures, and panels. External en-
tities are not directly represented by the blackboard system,
but namesor identifiers of external entities do exist, and as-
sertions about external entities can be stored.

Every external entity can be associated with any number
of viewsor representationsof itself. A view of an entity is
a computer-readable description of that entity, at some level
of abstraction. For instance, one might have both JPEG and
color-histogram views of the same image, or token-sequence
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Figure 2: Data from a simple ontology for papers and
figures. image and content are the view names, and
figures andpanels are decomposition names. All other
strings identify external or internal entities.

and parse-tree views of the same document. Every view has
a label, which consists of a name and an extension.

An external entity can also be associated with one or more
decompositionsof itself. A decompositiondescribes a par-
ticular way in which an external entity can be broken up into
parts, and also specifies the resulting parts (which are exter-
nal entities). The parts need not be an exhaustive partition
of the original entity, but they should be of the same type.
In figure processing, for instance, a paper is decomposed
into figures, a figure is decomposed into panels, and a mi-
croscope panel might be decomposed into individual images
of cells. A decompositionalso has alabel. Decomposition
labels allow objects to be split into subparts in different, po-
tentially overlapping ways; for instance, a PDF document
might be decomposed into pages and also into sentences.

Views and decompositions are also considered to be enti-
ties, but of a different sort than external entities. While ex-
ternal entities correspond to things in the “real” world that
the extraction system is trying to model1, views and decom-
positions correspond to things inside the blackboard system
itself.

The network of external entities, views, and decomposi-
tions can be visualized as a forest, as shown in Figure 2.
By adding an additional artificial “root” entity to the forest,
one can force it to be a tree. In this tree, called theentity
tree, external entities are parents of associated views and de-
compositions, and decompositions are parents of their “part”
entities.

In information extraction applications, most entities are
naturally subparts of something else. The entity tree defines
a part-subpart relationship, as follows: entitye1 is asubpart
of entity e2 iff there ise1 is a descendant ofe2 in the entity
tree, and if the path frome2 to e1 passes through at least one

1I use scare quotes around “real” since the world being modeled
might well consist only of on-line documents, which are in some
sense no more “real” than the blackboard system.

Entity→ ExternalEntity| View | Decomp

ExternalEntity→ ENAME | NamedDecomp ENAME
View→ ExternalEntity-VNAME.EXT
Decomp→ NamedDecomp
NamedDecomp→ ExternalEntity-DNAME/

VNAME → [A-Za-z0-9]+ // the name of a view
EXT→ [A-Za-z0-9]+ // the MIME type of a view
ENAME→ [A-Za-z0-9]+ // the name of an entity
DNAME → [A-Za-z0-9]+ // the name of a decomposition

Table 1: BNF grammar for the naming scheme for entities.

decomposition entity. Entitye1 is adirect subpartof e2 iff
the path frome2 to e1 passes through exactly one decompo-
sition entity.

In addition to the part/subpart relationship, entities are as-
sociated together by extensionally definedrelations. A re-
lation is a named set ofk-tuples of entities. Following con-
vention, we will user(e1, . . . , ek) for the tuple〈e1, . . . , ek〉
in the relation namedr.

The naming scheme and blackboard
In order to manipulate these entities, they must be identi-
fied. A naming schemeis a one-to-one functionfname map-
ping entities to strings. It is possible to simply assign unique
identifiers to every entity, as in the figure. However, in our
system, the range offname is defined by the BNF gram-
mar of Table 1, andfname is defined compositionally ac-
cording to the grammar, in the obvious way: for instance,
for a view entityev with label “image.jpg” and parentex,
fname(ev) = fname(ex)+ “-image.jpg” (here the plus sign
denotes string composition).

As further examples (relating to the figure), if
fname (PAPER32)=“p32” then we might have

fname (DECOMP17) = “p32-figures/”
fname (FIG198) = “p32-figures/fig3”
fname (IMG245) = “p32-figures/fig3-image.jpg”
fname (DECOMP92) = “p32-figures/fig3-panels/”

Notice that as new entities are constructed, it is fairly easy
to assign them names, especially if they are direct subparts
of existing entities. Notice also that the names of views look
much like file names, and all entity names look much like
URIs (Berners-Lee, Fielding, & Masinter 1998).

The blackboard storesassertionsabout entities: that is,
k-tuples of entities, tagged with the name of a relation. The
primitive operations on the blackboard are tostorespecific
(ground) assertions, andretrieve all assertions that match
a pattern. Apattern is a relation name, plus ak-tuple of
strings, which might either be entity names, or the special
value “*”, which matches every entity name. No more gen-
eral notion of unification or logical variable is supported.

The blackboard also controlsaccessto views. The prim-
itive operations are reading and writing to a view, or equiv-
alently, mapping views to file pointer/descriptor objects.



Since the names of view entities are so close to file names,
this can be trivial; however, making the mapping an explicit
process allows other nontrivial mappings to be used.

The blackboard is itself stored in a set of views. Specifi-
cally, all assertionsr(e1, . . . , ek) are stored in a view of en-
tity e′1 labeledr.FACTS, wheree′1 is the nearest ancestor of
e1 that is an external entity. For instance, an assertion about
the dimensions of IMG245 in Figure 2 might be stored in the
view “p32-figures/fig3-dimension.FACTS”. Notice that this
means that assertions can be retrieved relatively easily if the
value of their first argument is known, providing a simple
indexing mechanism.

The view-based storage of the blackboard also means that
the contents of the blackboard are contained in many sep-
arate subunits. It is convenient if the software components
that use these subunits can control access to them. To imple-
ment this, define akey for an assertionr(e1, . . . , ek) to be
the pair(r, e′1) from the discussion above. Any component
canclaim any unclaimed key, giving it “ownership” of the
corresponding subunit. Once a key has been claimed, the
owning component can restrict write access to this key by
other components.

By default, the component that first claims a key is the
only component with write access, and all other components
have read access only. This encourages having one informa-
tion “producer” and many “consumers” for each key, which
simplifies execution planning and concurrency issues. A
natural extension would be to restrict read access as well,
which could be used for certain types of information hiding
(e.g., to limit visibility of part of the blackboard to a certain
set of components).

A consequence of this scheme is that components must
identify themselves whenever they access the blackboard.
This is desirable for other reasons: for instance, one could
find redundant blackboard views that are written but never
read. Another possible extension is to allow owning com-
ponents toclosea key, forbidding any further writes to it.
This would allow a reasoning system to make a local closed
world assumption (Etzioni, Golden, & Weld 1994).

Properties of the naming scheme
In this section, we will make some more precise claims
about the nature of the proposed solution. We begin with
some definitions.

Definition 1 (Properties of naming schemes)Let fname

be a naming scheme,S be an operating system,P be a
unary predicate on entities, andR be a binary function on
entities.

• fname is RDF-compatibleiff there is a functiongURI such
that for every view or decomposition entitye, (fname ◦
gURI )(e) is a valid uniform resource identifier (URI).

• fname is lightweight onS iff there is a functiongfile such
that (a) for every view entityev, (fname ◦ gfile)(ev) is a
valid file name and (b) for every decomposition entityed,
(fname ◦ gfile)(ed) is a valid directory name inS.

• fname is accountableiff it is lightweight and if(fname ◦
gfile) is efficiently invertible.

• fname is faithful for P (respectively, forR) if there is a
unary function on stringsgP (s) (respectively, a binary
functiongR(s1, s2)) such thatgP (fname(e)) = 1 iff P (e)
is true (respectively,gR(fname(e1), fname(e2)) = 1 iff
R(e1, e2) is true).

The desirability of thse properties are clear. Iffname is
RDF-compatible, then any blackboard assertions can be eas-
ily translated into Resource Description Framework (RDF)
(Lassila & Swick 1999), which allows a wide variety of op-
eration for transferring, storing, and reasoning with the data.
If it is “lightweight”, non-external entities (views and de-
compositions) can be implemented using the host operating
systems’ file system2. If it is “accountable”, then files and
directories created by the system can be easily mapped back
to the entities they implement. If it is “faithful” for a pred-
icate, then the predicate can be tested simply by looking at
the entity names, without recourse to the blackboard.

We omit any proof of the following theorem, which is
straightforward.

Theorem 1 Let fname be the naming scheme of Figure 1.
LetPisView (e) be true iffe is a view entity,PisDecomp(e) be
true iff e is a decomposition entity,Rpart(e1, e2) be true iff
e1 is a direct subpart ofe1, andRpart ∗ (e1, e2) be true iff
e1 is a subpart ofe2.

Thenfname is RDF-compatible, lightweight on POSIX-
compliant systems, accountable, and faithful forPisView ,
PisDecomp ,Rpart , andRpart∗.

Extensions to the naming scheme
Some simple extensions of the naming scheme make it more
practical; for instance, we also allow relations to contain
“constant entities” like “number://98.6” and “string://false”,
as long as (for RDF-compatibility) these entities are not the
first argument of a relation.

Another useful extension is the notion ofcomputed sub-
parts. If the description of how to compute a subpart is com-
pact, then it may be more convenient to include that descrip-
tion in the name of the subpart entity. As an example, con-
sider the application of labeling substrings of a document as
training data for a learned extraction system. One would like
to generate assertions about substrings (for instance, “this
substring is/isn’t a protein name”) but it is not necessary to
actually create any views of the substring. Of course, later
processing might require creating views of the substring (for
instance, one might wish to save a parsed or tokenized ver-
sion of a substring) so one would like views of computed
enties to still be mappable to file names.

Computed subpartsare supported by the following addi-
tional grammar rules:

ExternalEntity→ ComDecomp NUMBER(,NUMBER)*
ComDecomp→ ExternalEntity-VNAME.EXT,FNAME/
FNAME→ [A-Za-z0-9]+ // a “part-of” function

For example, the substringes extending from character posi-
tion 22 to 33 of the caption of FIG199 might be named by the
string “p32-figures/fig4-caption.txt,substring/22,33”, and a

2Of course, other implementations are possible.



act: find scale bar graphic in panel Y of figure X R1
pre: X-panels/Y-subimage.jpg
post: scaleBarGraphic(Y-subimage.jpg, UL,UR,LL,LR)
act: extract scale bar from caption of figure X R2
pre: X-caption.txt
post: scaleBarMeasure(X, SizeinMM)
act: compute features for panel classifier, includingR3

the “scaleBarMeasure” feature from caption
pre: X-panels/Y-subimage.jpg,

scaleBarMeasure(X, SizeInNM)
post: X-panels/Y-panelClassifierFeatures.data
act: run the panel classifier R4
pre: X-panels/Y-panelClassifierFeatures.data
post: isFluorescenceMicroImage(Y-subimage.jpg)
act: assign scale of panel—this is only done for R5

panels that are fluorescence microscope images
pre: X-panels/Z-subimage.jpg,

isFluorescenceMicroImage(Y-subimage.jpg),
scaleBarMeasure(X, SizeInMM),
scaleBarGraphic(Z-subimage.jpg, UL,UR,LL,LR),

post: panelScale(Y-subimage.jpg, SizeInPixels)

Figure 3: Sample control rules from the figure-processing
domain.

tokenized version ofes might be stored in “p32-figures/fig4-
caption.txt,substring/22,33-tokens.txt”

Computed subparts are treated the same as any other ex-
ternal entity, exception in storing assertions: ife1 is a com-
puted subpart, then thekeyfor r(e1, . . .) is (r, e′1) wheree′1
is the nearest ancestor ofe1 that is anon-computedexter-
nal entity. For instance, the assertion “protein(es)” would be
stored in the view “p32-figures/fig4-protein.FACTS”.

The declarative control subsystem
Thecontrol subsystemconsists of a set of STRIPS-like rules
calledview builders, together with a simpleplanner. Each
view builder consistspreconditions, postconditions, and an
action function. The postconditions specify views that will
exist after the actions are successfully executed, and the pre-
conditions specify views that must exist before the actions
can be executed. Theaction functionis an imperative func-
tion in the host language that takes as an argument two lists
of entity names, corresponding to the precondition and post-
condition views, and creates the postcondition views.

The pattern language for preconditions and postcondi-
tions uses a special path-like syntax based on entity names.
Excepting views of the root entity, every view name can be
written as “d/s-label.ext” where “d/” is a decomposition en-
tity and “s”, “ label”, and “ext” are strings; similarly, any
decomposition can be written “d/s-label/”. We call “s” here
asubpart stem, and “d/” the subpart container.

Eachpre- or postcondition patternis written like an en-
tity name, except that subpart stems can be replaced with
variables (uppercase letters), and subpart containers can be
omitted. As an example, the following are all valid pre- and
post- condition patterns:

1. Y-caption.txt
2. X-figures/Y-image.jpg
3. X-figures/Y-caption.txt

4. X-figures/Y-panels/Z-scaleBarSize.txt

These patterns arenot matched by binding subpart stems to
variables; instead, they are matching by binding the external
entity names corresponding to these subpart stems to vari-
ables. For instance a pair of entitiesX,Y match pattern 2 if
X has a decomposition-entity child labeled “figures”,Y has
a view-entity child labeled “image.jpg”, andY is a direct
subpart ofX. Each pattern thus compactly specifies a set of
constraints on external entities in terms of the entity tree.

As a very simple example, the following is a legal control
rule:

action: cc -c X-source.c
pre: X-source.c

post: X-object.o

The similarity of control rules and rules for the UNIX
“make” utility is deliberate: recall that one design goal was
comprehensibility to persons without training in planning
and logic.

To simplify pattern matching, all variables in the precon-
ditions must occur in the preconditions, except for the spe-
cial variable “*”, which is implicitly universally quantified.

For convenience, some syntactic shortcuts are allowed
in the pattern language. A pattern for a view con-
taining blackboard assertions for relationr can be writ-
ten “r(e1, e2, . . . , ek)”. For instance, the pattern “X-
dimension.FACTS” could be written as “dimension(X-
image.jpg, Height, Width)”—the extra arguments “Height,
Width” are not needed to build the view name, and will be
ignored by the planner. In addition to better readability, this
convention relieves the user from understanding the details
of how keys are computed.

Figure 3 gives some control rules from the extended ex-
ample of the introduction (with action functions replaced
with comments). These rules specify the dependencies in-
volved in a certain scale-finding process. To find the “pan-
elScale” of a panel Y in a figure X, the planner might pro-
pose this sequence of actions based on these rules: (1) find
all scale bar measurements (e.g. “5 mm”) in the caption
for X (2) compute features for the panel classifier, including
features based on the stated scale bar size (3) run the panel
classifier (4) find the scale bar graphic in the image for Y (5)
if Y is a fluorescence microscope image, associate a scale
(in mm/pixel) with the panel.

Having the planner find this sequence “on the fly” means
that it is not necessary to rewrite control code if ordering
constraints change. For instance, if it is indeed necessary
to find scale bar graphics that are shared between multiple
panels, one might replace rule R1 in Figure 3 with

action: find scale bar graphics, perhaps in nearby panels
pre: X-panels/Z-subimage.jpg, X-panels/*-subimage.jpg,

panelPosition(X,Z1,UL,UR,LL,LR),
post: scaleBarGraphic(Z-subimage.jpg, UL,UR,LL,LR)

and the planner will automatically choose a new sequence of
actions that satisfies these constraints.

Planning technology of this sort is fairly well understood.
Except in very trivial cases, planning systems can not be
guaranteed to be simultaneously sound, complete and effi-
cient (Bylander 1994; Erol, Nau, & Subrahmanian 1995). In



our limited experience with this approach, however, plan-
ning is not a computational bottleneck: for SLIF, the time
spent in sequencing actions of the components is dwarfed
by the time needed for image processing and text analysis.
This is true even though the current planner is a fairly simple
one, based on backward chaining with a fixed depth bound
to avoid looping.

Implementation Status
The system describes above has been completely imple-
mented (including a number of minor extensions not dis-
cussed above) and is used as the sole intra-component com-
munication and control scheme for the extended version of
SLIF, a non-trivial information extraction system. (The ex-
tended version of SLIF is currently based on about 48,000
lines of code in several languages, including Perl, C, Matlab,
and Java.) Of these 48,000 lines of code, 580 non-comment
source lines of code define the control strategy.

The control system and blackboard are written in Perl5,
and consist of about 850 lines of non-comment source code.
About 400 lines of these implement the planner. An addi-
tional 550 lines of code implement an HTML-based tool al-
lowing developers to interactively browse or query a black-
board, or monitor progress of an extraction process.

An advantage of the extremely lightweight implementa-
tion is that it is feasible to re-implement key components
in different host languages; for instance, one could easily
re-implement the blackboard in C, Matlab, and Java, thus
allowing closer co-ordination of components written in mul-
tiple languages. It would also be relatively simple to replace
the current file-based implementation, for instance with one
that keeps more information in memory for faster access.

A final advantage of the architecture is that, since view
and decomposition names can be easily mapped to URI’s,
it would be straightforward to have the blackboard be dis-
tributed over multiple machines; in fact, the entire extraction
system could be distributed across the web. This might be
useful for a information extraction system developed by a
geographically distributed group of researchers.

Concluding Remarks and Related Work
To summarize, I have described and motivated an impor-
tant piece of infrastructure for complex, real-world infor-
mation extraction systems. The infrastructure consists of
two tightly-coupled subsystems: a RDF-compatible black-
board subsystem, and a declarative control subsystem. This
scheme allows extraction, classification, and feature compu-
tation components to share information and co-ordinate their
actions, even if they use completely different representations
for entities—e.g., in the scientific figure processing task
used as an extended example of the introduction, coordina-
tion is possible between image-processing algorithms and
text-processing algorithms that operate on the caption and
image associated with a figure, respectively. The scheme is
also lightweight and conceptually simple.

A number of architectures for information extraction sys-
tems have been proposed in the past. Typically these have

grown out of work in natural language processing, and as-
sume a more sequential control model, based on relatively
well-understood steps like tokenization, part-of-speech tag-
ging, etc. The general-purpose architecture most similar to
ours is probably GATE (Cunninghamet al. 2002), which
is based on TIPSTER architecture (Grishman 1997). In
GATE, intra-component communication is based on docu-
ment annotations, and control is based around pipeline-like
“processing components”. GATE includes tools allowing a
user to interactively explore possible pipelines using a pre-
condition/postcondition model of components. Compared to
GATE, the architecture proposed here allows for more het-
erogeneity in representations and more flexibility in control.

Although applying this combination of subsystems to in-
formation extraction tasks is (at least to my knowledge)
novel, it is acknowledged that few of the subsystems are
themselves novel; in fact, most of them are much simpler
than have been explored in recent research. As noted above,
STRIPS-style planning is very well-understood (Bylander
1994; Erol, Nau, & Subrahmanian 1995), and very sophis-
ticated methods for it exist (e.g., (Weld 1999; Kautz & Sel-
man 1999)); however, simple techniques appear to be ad-
equate for this task. Blackboard architectures for storing
and retrieving tuples are also widely used, often in con-
junction with distributed models of computation (for a sur-
vey, see (Papadopoulos & Arbab 1998)). The blackboard
system adopted here is very simple, in part because dis-
tributed computation is typically not an issue in informa-
tion extraction, as the task is highly data-parallel. (How-
ever, the “key” mechanism is necessary to ensure that intra-
component communications are not be blocked when multi-
ple extractions are run in parallel.)

I are not aware of other “naming systems” which formally
and explicitly encode relationships between parts and sub-
parts, or between external entities and internal (views and
decompositions) of these entities. However, the idea of a
naming system is a natural one, and one often used infor-
mally in software systems. The syntax for naming proposed
here is heavily influenced by existing W3C standards for
path-based query languages like XPath and representation
schemes like RDF (Lassila & Swick 1999).

Finally, there is a large body of previous work on control
architectures of this general sort in the multi-agent literature
(for a survey, see (Stone & Veloso 2000)), but apparently
little consensus as to what sorts of architectures are best for
what sorts of tasks. To my knowledge, the most similar tasks
considered in the multi-agent literature are information gath-
ering tasks (e.g., (Menczer 1997; Srinivasanet al. 2002;
Chen & Sycara 1998), in which agents conspire to rank
and distribute existing documents. From a technical point
of view, this is a rather different task—notably, since sub-
parts are not constructed during a computation, information
sharing and control issues are much simpler. In the terminol-
ogy of this community, this paper is a specific proposal for
(and experimental validation of) an multi-agent architecture
that is appropriate for information extraction tasks based on
many learned components.
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