Creating Features from a Learned Grammar
in a Simulated Student

NanLi and Abraham Schreiber and William W. Cohen and Kenneth R. Koedinger!

Abstract. Understanding and developing intelligent agents that
simulate human learning has been a long-standing goal in both ar-
tificial intelligence and cognitive science. Although learning agents
are able to produce intelligent behavior with less human knowledge
engineering than in the past, intelligent agent developers are still re-
quired to manually encode much prior domain knowledge. We re-
cently proposed an efficient algorithm that acquires representations
of the world using an unsupervised grammar induction algorithm,
and integrated this representation learner into a simulated student,
SimStudent. In this paper, we use the representation learner to au-
tomatically generate a set of feature predicates based on the ac-
quired representation, and provide the automatically generated fea-
ture predicates to SimStudent as prior domain knowledge. We show
that with the automatically-generated feature predicates, the learning
agent can perform at a level comparable to when it is given manually-
constructed feature predicates, but without the effort required to cre-
ate these feature predicates.

1 Introduction

One of the fundamental goals of artificial intelligence is to under-
stand and develop intelligent agents that simulate human-like intel-
ligence. Much research (e.g., [7, 26]) has been put toward accom-
plishing this challenging task. By modeling human-like intelligence,
we get a better understanding of how human beings acquire knowl-
edge, and how human students’ learning abilities vary from individ-
ual to individual. Understanding human learning will ultimately lead
to tools and educational processes that make human students better at
learning, thus making education in the 215 century more effective.

Therefore, a growing body of research (e.g., [14]) has been car-
ried out in developing intelligent agents that model human learning
of math and science, and has successfully demonstrated that such
agents are able to produce intelligent behavior. In order to build
a more effective and cognitively plausible learning agent, it is im-
portant to reduce the amount of supplied prior domain knowledge
and to supplant it with learned domain knowledge. This more ac-
curately reflects the way a student learns basic domain knowledge
before solving problems in the domain. As an additional benefit, re-
ductions in manually encoded prior domain knowledge represent a
reduction in the time-consuming and error-prone process of produc-
ing this knowledge in a form applicable by the learning agent. An
intelligent agent that requires only domain-independent prior knowl-
edge as given inputs would be a better engineering tool that can be
more effectively applied across multiple domains.

1 Carnegie Mellon University, USA, email: nlil @cs.cmu.edu, abra-
hamjschreiber @ gmail.com, wcohen@cs.cmu.edu, koedinger@cmu.edu

The hypothesis that substantial prior knowledge is necessary for
skill learning is supported by previous work in cognitive science [3].
It was shown that one of the key factors that differentiates experts and
novices in a field is their different prior knowledge of world state rep-
resentation. Experts view the world in terms of deep functional fea-
tures (e.g., coefficient and constant in algebra), while novices only
view it in terms of shallow perceptual features (e.g., integer in an ex-
pression). We [10] have recently developed an unsupervised learning
algorithm that acquires deep features (e.g., what is a coefficient) au-
tomatically with only domain-independent knowledge (e.g., what is
an integer) as input. Specifically, the deep feature learner acquires a
probabilistic context-free grammar (pCFG) that parses input strings
(e.g., -3x), and models the deep features as nonterminal symbols in
the learned pCFG (e.g, SignedNumber in Expression — 1.0, Signed-
Number Variable).

We present both a new method for discovering perceptual feature
predicates in an unsupervised way and an evaluation of this method
in the context of complex skill learning. This method creates fea-
ture predicates from non-terminals in the parse tree and from re-
lationships between non-terminals expressed in the grammar rules.
We provide these automatically generated feature predicates as prior
knowledge to the skill learning component of SimStudent [14]. More
specifically, we automatically generate, from the acquired deep fea-
tures, a set of predicates that can be used by the inductive logic pro-
gramming (ILP) component that learns when to apply a skill. It is im-
portant and interesting that this integration of an unsupervised deep
feature learner and a supervised skill learner makes it possible, for
the first time, for a computer to learn a complex skill without domain-
specific feature or representation engineering. Prior skill learning ef-
forts have always required such engineering. We evaluate the quality
of the automatically generated feature predicates in the algebra equa-
tion solving domain, and report the results in the experiment section.

2 A Brief Review of SimStudent

Before introducing the deep feature learner, let’s first briefly describe
the basic learning mechanisms of SimStudent. For full details, please
refer to authors [19]. SimStudent is an intelligent learning agent that
acquires skill knowledge from worked out solutions and problem
solving experience. It is an extension of programming by demon-
stration [9] using inductive logic programming [18] as an underlying
learning technique. Figure 1 shows a screenshot of the interface used
to tutor SimStudent to solve algebra equations.

2.1 Knowledge Representation

Skill knowledge is represented as production rules. The left side of
Figure 2 shows an example of a production rule learned by SimStu-

NO Student Interface
Student

LHS RHS Skill Operand Hessyges
3x+2 8
("Done) (Help)
Figure 1. The interface where SimStudent is being tutored in an equation

solving domain.

dent in a readable format®. There are three parts in a production rule:
the perceptual information part (where to obtain the data needed), the
precondition part (when to apply the skill), and the operator function
sequence part (how to perform the skill). The rule to “divide both
sides of -3x=6 by -3,” shown at the left side of Figure 2, would be
read as “given a left-hand side (i.e., -3x) and a right-hand side (6) of
the equation, when the left-hand side does not have a constant term,
then get the coefficient of the term at the left-hand side and divide
both sides by the coefficient.”

2.2 Learning by Tutoring

For each problem step (e.g., -3x = 6), SimStudent first tries to pro-
pose a next action based on the skill knowledge it has acquired so far.
If it cannot find any applicable skill, a tutor® demonstrates the correct
next action to SimStudent. SimStudent then updates its skill knowl-
edge to incorporate this new training example. If SimStudent finds a
next action and the tutor gives positive feedback, SimStudent directly
continues to the next step without updating its skill knowledge. If the
proposed next action is not correct, the tutor gives negative feed-
back, and demonstrates the correct next action to SimStudent. In this
case, SimStudent modifies the acquired skill according to the pro-
posed negative example and the demonstrated positive example.

2.3 Learning Mechanisms

The “where” learner acquires the perceptual information part by find-
ing paths which identify useful information in the GUI. These pieces
of useful information percepts are observed within the GUI elements,
such as cells/textboxes. Elements in the interface are organized in a
tree structure. For example, the table node has columns as children,
and each column has multiple cells as children. Each element is cov-
ered by a set of paths ranging from specific to general. For instance,
the possible paths to Cell 21 are: 1) the exact path to the cell, Pcei21,
2) the generalized path to any cell in row 2 or column 1, Pcej27 or
Pcei171, and 3) the most general path to any cell in the table, Pceyi77.
Each training example provides a list of GUI elements that are useful
in generating the next action. For example, (Cell 21, Cell 22) is a list
of cells from one training example for the skill “divide”. The learning

2 Actual production rules follow the LISP format.

3 Although other feedback mechanisms are also possible, in our case, the
feedback is given by automatic tutors, that have been used to teach real
students.

Extended:
Skill divide (e.g. -3x = 6)
Perceptual information:

Original:

Skill divide (e.g. -3x = 6)

Perceptual information:
Left side (-3x)

Right side (6) (6)
Precondition: ition:

Left side (-3x) does not Left side (-3x)-does-not

have constant term have constantterm

-3 is the left child of the

left side (-3x)

-3 is a signed number
Operator sequence:

side{=3x)

Divide both sides with the

coefficient (-3)

Operator sequence:
Get coefficient (-3) of left
side (-3x)

Divide both sides with the
coefficient (-3)

Figure 2. Original and extended production rules for divide.

process proceeds from specific to general. The learner uses a brute-
force depth-first search algorithm to find the most specific paths that
cover all training examples. If we have received three training ex-
amples of skill “divide”, (Cell 21, Cell 22), (Cell 11, Cell 12) and
(Cell 51, Cell 52), the most specific paths that cover these training
examples are (Pceii?1, Pcoenir2).

The “when” learner acquires the preconditions of a produc-
tion rule based on a set of feature predicates. Each feature pred-
icate is a boolean function that describes relations among objects
in the domain. For example, (has-coefficient -3x) means -3x has
a coefficient. The feature test learner employs an inductive logic
programming system, FOIL [21] to acquire a set of feature tests
that describe the desired situation in which to fire the produc-
tion rule. FOIL is a concept learner that acquires Horn clauses
that separate positive examples from negative examples. For ex-
ample, (precondition-divide ?percept, ?percepts) is the precondi-
tion predicate to be learned for the production rule named “divide”.
(precondition-divide -3x 6) is a positive example since when we have
-3x on one side of the equation and 6 on the other side, we would like
to divide both sides by -3. (precondition-divide 2x+4 6) is a negative
example since when we have 2x+4 on one side of the equation and
6 on the other, we would like to subtract 4. For all values that have
appeared in the training examples (e.g., -3x, 6, 2x+4, 6), we test the
truthfulness of the feature predicates given all possible combinations
of the observed values. For instance, for the feature predicate (has-
coefficient ?val0), (has-coefficient -3x) is true, and (has-coefficient
2x+4) is false. Given these inputs, FOIL will acquire a set of clauses
formed by feature predicates describing the precondition predicate.
In the case of skill “divide”, the feature test learned is (not (has-
constant-term ?val0)). The “when” learning process proceeds from
general to specific, as FOIL starts from an empty feature test set, and
grows the test set gradually until all of the training examples have
been covered.

The “how” learner is given a set of basic transformations (e.g.,
add two numbers) called operator functions that can be applied to
the problem. It seeks to find a sequence of operator functions that
generates the correct next step using the percepts identified in the
“where” part. For each training example ¢, the learner takes the per-
cepts, percepts;, as the input, and the step, step;, as the output. We
say an operator function sequence explains a percepts-step pair, (
percepts;, step;), if the system takes percepts; as input and yields
step; after applying the operator function sequence. The operator
function sequence (coefficient -3x ?coef) (divide ?coef) is a possi-
ble explanation for{(-3x, 6), (divide -3)). Given all training examples
for some skill, the learner attempts to find a shortest operator function

Expression Expression

/\A

SignedNumber Variable MinusSign

Number Variable

MinusSign Number

\ \ \ \

—_— 3 X _— 3 X
Figure 3. Correct and incorrect parse trees for —3x.

sequence that explains all of the (percepts, step) pairs using iterative-
deepening depth-first search within some depth-limit.

Note that operator functions are divided into two groups, domain-
independent operator functions and domain-specific operator func-
tions. Domain-independent operator functions are basic skills used
across multiple domains (e.g., adding two numbers, (add 1 2), copy-
ing a string, (copy -3x)). Human students usually have knowledge of
these simple skills prior to class. Domain-specific operator functions,
on the other hand, are more complicated skills, such as getting the co-
efficient of a term, (coefficient -3x) and adding two terms, (add-term
5x-5 5). Human students may not have enough domain expertise to
perform these operator functions prior to taking a class in the do-
main. As we will see later, by integrating deep feature learning into
SimStudent, the learning agent is able to achieve as good or better
performance without domain-specific operator functions.

3 A Review of Deep Feature Learning

Having reviewed SimStudent, we move on to a review of deep feature
learning, and how it was originally integrated into SimStudent. Deep
feature learning is an important aspect in human knowledge acquisi-
tion. Modeling this learning procedure helps us in understanding how
anovice becomes an expert. Due to the limited space, we only briefly
review the propose approach, please refer to [19] for full details.

3.1 Deep Feature Learning as Grammar Induction

We [10] examined the nature of deep feature learning in algebra
equation solving, and discovered that it could be modeled as a gram-
mar induction problem given observational data (e.g. equations in
algebra). As shown at the left side of Figure 3, the coefficient of -3x
can be identified by extracting the signed number before a variable
in the parse tree. Table 1 shows a context free grammar that gener-
ates the parse tree.* The deep feature “coefficient” then becomes a
non-terminal symbol in one of the grammar rules. Viewing feature
learning tasks as a grammar induction problem also explains many
of the causes of student errors. For example, if the learning algorithm
incorrectly learned the parse tree shown the right side of Figure 3, it
will consider 3 as the coefficient, which is one of the most frequently
observed errors in human student data.

Therefore, we [10] extended an existing probabilistic context-free
grammar (pCFG) learner [12] to support deep feature learning and
transfer learning. The pCFG learner is a variant of another pCFG
learner, the inside-outside algorithm [8]. The input to the pCFG
learner is a set of observation sequences, O. Each sequence is a string
of characters obtained directly from user input (e.g., -3x). The output
is a pCFG that can generate all input observation sequences with high

4 The nonterminal name was manually added to make the discussion more
readable. It would normally be an arbitrary identifier generated by the deep
feature learner.

probabilities. The system consists of two parts, a greedy structure
hypothesizer (GSH), which creates non-terminal symbols and asso-
ciated grammar rules as needed, to cover all the training examples,
and a Viterbi training step, which iteratively refines the probabilities
of the grammar rules.

Table 1. Probabilistic context free grammar for coefficient in algebra

Terminal symbols: —, x;

Non-terminal symbols: Expression, SignedNumber,
Variable, MinusSign, Number;

Ezxpression — 1.0, [SignedNumber| Variable

Variable — 1.0, x

SignedNumber — 0.5, MinusSign Number

SignedNumber — 0.5, Number

MinusSign — 1.0,

After learning the pCFG, to support feature learning, the sys-
tem counts the number of times that a symbol in some grammar
rule corresponds to the deep features, and picks the symbol that
matches the most training records as the learned feature. For instance,
if most of the input records match with SignedNumber in Expres-
sion — 1.0, SignedNumber Variable, this symbol-rule pair will be
considered as the target feature pattern. To support transfer learn-
ing, the learner keeps record of the acquired grammar rules as well
as their application frequencies from previous tasks, and adds new
rules based on previously acquired grammar rules.

3.2 Integrating Deep Feature Learning by
Extending Perceptual Learning

Having built the deep feature learner, to better evaluate how the learn-
ing algorithm could affect the performance of an intelligent agent,
we next introduce how to integrate deep feature learning into Sim-
Student. As we have mentioned above, SimStudent is able to ac-
quire production rules in solving complicated problems, but requires
a set of domain-specific operator functions given as prior knowledge.
In order to both reduce the amount of prior knowledge engineering
needed for SimStudent and to build a better model of real students,
we integrated the feature learner into SimStudent.

Recall that GUI elements are organized in a tree structure. To in-
corporate the problem representation acquired by the deep feature
learner into SimStudent, we extended this element hierarchy to in-
clude the parse trees corresponding to the contents of the leaf nodes
(cells). Then, SimStudent prunes out irrelevant contents in the parse
trees based on the output of the “where” learner. For example, -, 3,
x are irrelevant contents in the parse tree of -3x. Only -3 is useful in
solving -3x = 6.

Figure 2 shows a comparison between production rules acquired
by the original SimStudent and the SimStudent with deep feature
learning. As we can see, the coefficient of the left-hand side (i.e., -3)
is included in the perceptual information part in the extended produc-
tion rule. Therefore, the operator function sequence no longer needs
the domain-specific operator function, (coefficient -3x). In past work,
this has been shown to generate as good or better performance while
requiring much less knowledge engineering of operator functions.

4 Generating Feature Predicates from the Learned
Grammar

Having removed the dependency on domain-specific operator func-
tions, we would like to further reduce the knowledge engineer-

ing required by eliminating SimStudent’s dependency on manually-
constructed feature predicates. As implied by its name, the deep fea-
ture learner acquires information that reveals essential features of the
problem. It is natural to think that these deep features can be used in
describing desired situations to fire a production rule. In this work,
we automatically generate, from the acquired deep feature grammar,
a set of predicates that can be used by the inductive logic program-
ming (ILP) component. These automatically generated feature pred-
icates can then replace manually constructed feature predicates.

Hence, we make use of the domain-specific information in the
grammar acquired by the deep feature learner to automatically gen-
erate a set of feature predicates. There are two main categories of the
automatically generated feature predicates: topological feature pred-
icates, and nonterminal symbol feature predicates. A third category,
parse tree relation feature predicates, considers a combination of the
information used in the first two. Each of these types of predicates
are applicable to a general pCFG and the parse trees it generates. The
truthfulness of the feature predicates is decided by the most probable
parse tree of the problem.

4.1 Topological Feature Predicates

Topological feature predicates evaluate whether a node with the
value of its first arguments exists at some location in the parse tree
generated from the second argument (e.g., (is-left-child-of -3 -3x)).
There are four generic topological feature predicates: (is-descendent-
of 2val0 ?vall), (is-nth-descendent-of ?val0 ?vall), (is-tree-level-
m-descendent-of ?val0 ?vall) and (is-nth-tree-level-m-descendent-of
2val0 ?vall). These four generic feature predicates are used to gener-
ate a wide variety of useful topological constraints based on different
n and m values. An automatically-generated predicate is created for
each m between 0 and M-I, where M is the maximum number of
nonterminal symbols on the right side of the grammar rules, and for
each n between 0 and N-1, where N is the maximum height of the
parse trees encountered.

The level specificity in the desired location varies from the most
general topological predicate, (is-descendent-of ?valO ?vall), to the
most specific (is-nth-tree-level-m-descendent-of ?valO ?vall). (is-
descendent-of ?val0 ?vall) determines whether ?val0 exists any-
where in the subtree rooted at ?vall. For example, since 3 is a grand-
child of -3x in the parse tree shown in Figure 3, (is-descendent-of 3 -
3x) is true. The next two topological feature predicates each encorpo-
rate one of the two pieces of information available about the location
of a node: the depth of the node in the parse tree and in which sub-
tree its located when the child nodes are ordered. (is-nth-descendent-
of ?val0 ?vall) is slightly more specific than (is-descendent-of ?valO
2vall). It tests whether ?val0 exists anywhere in the subtree rooted at
the n*" child of ?vall. In the correct parse tree of -3x, 3 appears in the
left subtree of -3x, therefore, (is-Oth-descendent-of 3 -3x) is true. (is-
tree-level-m-descendent-of ?valO ?vall) represents a similar level of
specificity to (is-nth-descendent-of ?val0O ?vall), in that it encorpo-
rates one of the two pieces of information available. It tests whether
?valO appears at the m‘" level in the subtree rooted at ?vall. For
instance, 3 appears at level two of the parse tree so (is-tree-level-2-
descendent-of 3 -3x) is true. The last topological feature predicate (is-
nth-tree-level-m-descendent-of ?valO ?vall) considers both the tree
level m and the descendent index n. It defines whether ?val0 exists
m-1° levels down in the subtree rooted at the n** child of ?vall. If

5 We are considering nodes m-1 levels down in the tree rooted at the nt/
child, rather than m, because the n " child is already 1 level down in the
tree rooted at ?vall.

m=1, n=0, (is-nth-tree-level-m-descendent-of ?val0 ?vall) is equiv-
alent to (is-left-child-of ?val0 ?vall).

4.2 Nonterminal Symbol Feature Predicates

Nonterminal symbol feature predicates are defined based on the non-
terminal symbols used in the grammar rules. For example, -3 is as-
sociated with the nonterminal symbol SignedNumber based in the
grammar shown in Table 1. There are three generic nonterminal
symbol feature predicates: (is-symbol-x ?valO ?vall), (has-symbol-
x 2val0 ?vall), and (has-multiple-symbol-x ?val0O ?vall) where x can
be instantiated to any nonterminal symbols in the grammar.
(is-symbol-x ?val0 ?vall) describes whether ?val0 is associated
with symbol x in the parse tree of ?vall. For instance, (is-symbol-
SignedNumber -3 -3x) tests whether -3 is associated with Signed-
Number in the parse tree of -3x. (has-symbol-x ?val0 ?vall) tests
whether any node in the subtree of ?val0 is associated with symbol x
in the parse tree of ?vall. Although -3 is not associated with symbol
Number, it has a child, 3, that is associated with symbol Number.
In this case, (is-symbol-Number -3 -3x) is false, but (has-symbol-
Number -3 -3x) is true. The last symbol feature predicate (has-
multiple-symbol-x ?val0 ?vall) operates similarly to (has-symbol-
x ?2val0 ?vall), but examines whether there are multiple separate
nodes in the subtree of ?val0 which are associated with the sym-
bol x. For the purposes of this predicate, two nodes A and B in a
parse tree are separate iff A is not in B’s subtree and B is not in
A’s subtree. In math and logic, an exact number is often less sig-
nificant than whether a number falls into the category of zero, one,
or many/infinite. The (has-multiple-symbol-x) predicate thus covers
the category of many/infinite, without the need to create individual
predicates for specific numbers of nodes which are associated with
some symbol. (has-multiple-symbol-Number 4-3 x+(4-3)) would re-
turn true because 4-3 has 2 nodes, 4 and 3, each of which is associ-
ated with the symbol Number and neither is in the other’s subtree.

4.3 Parse Tree Relation Feature Predicates

Topological feature predicates examine the position of a particular
input in the overall parse tree and symbol feature predicates exam-
ine the symbol associated with a particular input. The third class of
feature predicates, parse tree relation predicates, examine both the
positions of nodes in the tree and their associated symbols. These
allow SimStudent to examine the surrounding nodes in the parse tree
and determine if they have a particular symbol from the grammar
associated with them.

For the algebra study, three such predicates were used which
represent examining the nearest nodes in the parse which are not
in the input’s subtree: (parent-is-symbol-x ?val0O ?vall), (sibling-
is-symbol-x ?val0 ?vall), and (uncle-is-symbol-x ?val0 ?vall) (or
aunt). As their names imply, these predicates examine whether a par-
ent/sibling/uncle(aunt) node of the input is associated with the sym-
bol x, where x could be any nonterminal symbol in the grammar.
As an example, referring again to Figure 3, consider the predicate
(sibling-is-symbol-MinusSign 3 -3x). This would return true because
in the parse tree for -3x, the node representing the number 3 does
have a sibling whose associated symbol is minus sign. In ongoing
work, these types of predicates have been generalized to encompass
arbitrary relations between nodes in the tree in much the same way
that (is-child-of ?val0 ?vall) has been generalized to (is-tree-level-
1-descendent-of ?val0 ?vall). An arbitrary relationship representing
the relative position of any two nodes in a parse tree can be described

by the predicate (i-j-relation-is-symbol-x ?val0 ?vall). This repre-
sents examining whether the nodes reached by moving up i times in
the tree, then down j fimes are associated with the symbol x. Using
this notation, (I-1-relation-is-symbol-x ?val ?vall) is equivalent to
(sibling-is-symbol-x ?val0 ?vall).

5 Experimental Study

In order to evaluate whether the extended SimStudent is able to ac-
quire correct knowledge with automatically generated feature pred-
icates, we carried out an experiment in equation solving. Although
not shown here, we have demonstrated that SimStudent can be used
to discover models of human students that are better than those found
by experts [11].

5.1 Experiment Design

The deep feature learner was first trained on a sequence of feature
learning tasks (i.e., what is a signed number, what is a term, and
what is an expression). Then, SimStudent was tutored by an auto-
matic tutor, CTAT [1], which was used by 71 human students in a
classroom study, to solve basic algebra problems. All of the training
and testing problems were extracted from the same classroom study.
There were four sets of training problems. Each set has 35 training
problems. The testing problem set contains 11 problems. In this way,
we have provided Simstuent with the same information and training
as would be provided to human students.

We compared three SimStudents: one SimStudent given the man-
ually constructed feature predicates known to be useful in solving
algebra problems, one SimStudent given the automatically generated
feature predicates, and one SimStudent given no feature predicates.

We evaluated the effectiveness of SimStudent in two aspects: the
amount of knowledge engineering needed, and the speed of learning.
To assess the knowledge engineering effort required, we counted the
number of lines of Java code a developer needed to write for each
feature predicate, and reported the total number of lines developed
for all feature predicates used in the acquired rules.

To measure learning gain, we calculated a first attempt accuracy
and an all attempt accuracy for each step in the testing problem. First
attempt accuracy measures the percentage of the time SimStudent’s
first attempt is a correct action. For all attempt accuracy, we counted
the number of proposed correct steps, and reported this number, di-
vided by the total number of correct next steps plus the number of
proposed incorrect next steps. For example, if there were four possi-
ble correct next steps, and SimStudent proposed three, of which two
were correct and one was incorrect, then only two correct next steps
were covered, and thus the all attempt accuracy is 2/(4+1)=0.4.

5.2 Results

Since there is no manual encoding of domain knowledge needed for
the automatically generated feature predicates, the number of lines of
domain-specific code needed in equation solving is 0. On the other
hand, the manually constructed feature predicates required 2093 lines
of Java code, which is also a measure of the amount of knowledge
engineering saved by automatic feature predicate generation.

The second study we carried out focused on evaluation of learn-
ing speed. The average learning curves for the three SimStudents are
shown in Figures 4(a) and 4(b). As we can see, there is a huge gap
between the SimStudents with and without manually constructed fea-
ture predicates (i.e., the two blue lines). The goal of our algorithm is
to fill in the gap without requiring extra knowledge engineering.

As shown in the figures, the SimStudent with automatically gener-
ated feature predicates has a slower learning curve than the SimStu-
dent with manually constructed feature predicates. It does, however,
gradually catch up after being trained on more problems. This is to
be expected because while the manually constructed feature predi-
cate directly evaluate information which is known to be applicable
in solving the problem, the automatically generated feature predi-
cates evaluate a larger set of information obtained from the parse
trees. Much of this information does not turn out to be relevant to
solving the problem. It therefore takes more examples for the Sim-
Student with automatically generated feature predicates to learn to
solve the problems because it must first determine which of the au-
tomatically generated predicates are relevant. As the results show,
after being trained on 35 problems, the SimStudent with automati-
cally generated feature predicates achieved comparable performance
to that with manually constructed feature predicates. This is the case
for both measurements (i.e., 0.77 vs. 0.75 for first attempt accuracy,
0.83 vs. 0.79 for all attempt accuracy). Taken together, we conclude
that with automatic feature predicate generation, we are able to ob-
tain nearly comparable performance while significantly reducing the
amount of knowledge engineering effort needed.

6 Related Work

The main contribution of this paper is to reduce the amount of knowl-
edge engineering required in building an intelligent agent by au-
tomatically generating feature predicates. Although there has been
considerable work on representation change (e.g., [17, 13, 27, 5])
in machine learning, little has occurred in the context of deep fea-
ture learning. Additionally, research on deep architectures [2] and
Markov logic networks [23] shares a clear resemblance with our
work, but the tasks on which we work are different. These works
are used more often in classification tasks whereas our work focuses
on simulating human learning of math and science. Other research
in cognitive science also attempts to use probabilistic approaches to
model the process of human learning. Kemp and Tenenbaum [6] use
a hierarchical generative model to show the acquisition process of
domain-specific structural constraints, but did not integrate it an in-
telligent agent.

Research on ILP (e.g., [21, 22, 25]) is also closely related to our
work, as SimStudent uses FOIL as its “when” learner. ILP systems
acquire logic programs that separate positive examples from negative
ones given an encoding of the known background knowledge. Our
work differs from these systems in that it automatically generates
the encoding based on a learned grammar, and calls an existing ILP
algorithm to acquire the “when” part of the production rule.

Research on learning within agent architectures such as Soar [7],
ACT-R [26] and so on mostly engage in speedup learning, whereas
SimStudent engages in knowledge-level learning [20], and induc-
tively acquires complex reasoning rules. Another closely related
research area is learning procedural knowledge by observing oth-
ers’ behavior. Classical approaches include explanation-based learn-
ing [24, 16], learning apprentices [15] and programming by demon-
stration [4, 9]. None of these approaches tend to use a probabilistic
model as a representation acquisition component in a learning agent.

7 Concluding Remarks

To sum up, one of the key challenges in building an intelligent agent
is the requirement of manual encoding of prior domain knowledge.
In this paper, we proposed a novel approach that takes advantage of

Learning Curve

SBEBSS

SE IS
04r me e n0eten

First Attempt Accuracy
o
@
T

TP L2 L

= # = SimStudent w Manually Constructed Predicates

0.1 —— itw A Generated P
'@ SimStudent w No Predicates
od . n T n n n ,
(; 5 10 15 20 25 30 35
Number of training problems
(@

Learning Curve

N

o
©

™ Sl a
r"‘)“l L e
;-I‘ iy
o
’
"L

o
®

o
3

I3
2

[=
Sl N 3
) Se e00800

o
=

PR Ty
senseng tPE

All Attempt Average Accuracy
o o
w @

0.2
= @ = SimStudent w Manually Constructed Predicates
0.1 —— SimStudent w Automatically Generated Predicates
' '® ' SimStudent w No Predicates
. T T T T T ,
5 10 15 20 25 30 35
Number of training problems

Figure 4. Learning curves of three SimStudents in equation solving measured by, a) first attempt accuracy, b) all attempt accuracy.

the representation acquired by a deep feature learner to automati-
cally generate a set of feature predicates, and integrate these predi-
cates into an intelligent agent, SimStudent. We showed that the Sim-
Student with automatically generated feature predicates is able to
achieve comparable performance without requiring any manually-
constructed feature predicates as input.

SimStudent has been evaluated across multiple domains such as
fraction addition and stoichiometry, but we have only evaluated the
automatically generated features in equation solving. We would like
to carry out more experiments on these feature predicates in other
domains. Moreover, the deep feature learning process is currently
carried out before the SimStudent knowledge acquisition. We would
also like to further integrate the deep feature learner to acquire better
representation knowledge during skill knowledge acquisition so that
the two learning systems would mutually assist each other in achiev-
ing better performance. Lastly, we would like to compare SimStudent
with human student data, and see how well does SimStudent fit with
human student behavior.

REFERENCES

[1] Vincent Aleven, Bruce M. Mclaren, Jonathan Sewall, and Kenneth R.
Koedinger, ‘A new paradigm for intelligent tutoring systems: Example-
tracing tutors’, International Journal of Artificial Intelligence in Edu-
cation, 19, 105-154, (April 2009).

[2] Yoshua Bengio, ‘Learning deep architectures for AI’, Foundations
Trends in Machine Learning, 2, 1-127, (January 2009).

[3] Michelene T. H. Chi, Paul J. Feltovich, and Robert Glaser, ‘Categoriza-
tion and representation of physics problems by experts and novices’,
Cognitive Science, 5(2), 121-152, (June 1981).

[4] Watch what I do: programming by demonstration, eds., Allen Cypher,
Daniel C. Halbert, David Kurlander, Henry Lieberman, David Maulsby,
Brad A. Myers, and Alan Turransky, MIT Press, Cambridge, MA, 1993.

[S] Tom Fawcett, ‘Knowledge-based feature discovery for evaluation func-
tions’, Computational Intelligence, 12(1), (1996).

[6] Charles Kemp and Joshua B B. Tenenbaum, ‘The discovery of struc-
tural form.”, Proceedings of the National Academy of Sciences of the
United States of America, (July 2008).

[7]1 John E. Laird, Paul S. Rosenbloom, and Allen Newell, ‘Chunking in
soar: The anatomy of a general learning mechanism’, Machine Learn-
ing, 1, 11-46, (1986).

[8] K. Lari and S. J. Young, ‘The estimation of stochastic context-free
grammars using the inside-outside algorithm’, Computer Speech and
Language, 4, 35-56, (1990).

[9] TessaLau and Daniel S. Weld, ‘Programming by demonstration: An in-

ductive learning formulation’, in Proceedings of the 1999 International

Conference on Intelligence User Interfaces, pp. 145-152, (1998).

Nan Li, William W. Cohen, and Kenneth R. Koedinger, ‘A computa-

tional model of accelerated future learning through feature recognition’,

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]
[21]
[22]
[23]
[24]

[25]
[26]

[27]

in Proceedings of 10th International Conference on Intelligent Tutoring
Systems, pp. 368-370, (2010).

Nan Li, William W. Cohen, Noboru Matsuda, and Kenneth R.
Koedinger, ‘A machine learning approach for automatic student model
discovery’, in Proceedings of the 4th International Conference on Ed-
ucational Data Mining, pp. 31-40, (2011).

Nan Li, Subbarao Kambhampati, and Sungwook Yoon, ‘Learning prob-
abilistic hierarchical task networks to capture user preferences’, in Pro-
ceedings of the 21st International Joint Conference on Artificial Intel-
ligence, Pasadena, CA, (2009).

Mario Martin and Hector Geffner, ‘Learning generalized policies from
planning examples using concept languages’, Applied Intelligence, 20,
9-19, (January 2004).

Noboru Matsuda, Andrew Lee, William W. Cohen, and Kenneth R.
Koedinger, ‘A computational model of how learner errors arise from
weak prior knowledge’, in Proceedings of Conference of the Cognitive
Science Society, pp. 1288-1293, Austin, TX, (2009).

Tom M. Mitchell, Sridhar Mahadevan, and Louis I. Steinberg, ‘Leap:
a learning apprentice for vlsi design’, in Proceedings of the 9th inter-
national joint conference on Artificial intelligence, pp. 573-580, San
Francisco, CA, (1985).

Raymond J. Mooney, A General Explanation-Based Learning Mech-
anism and its Application to Narrative Understanding, Morgan Kauf-
mann, San Mateo, CA, 1990.

S. Muggleton and W. Buntine, ‘Machine invention of first-order predi-
cates by inverting resolution’, in Proceedings of the Fifth International
Conference on Machine Learning, pp. 339-352. Morgan Kaufmann,
(1988).

Stephen Muggleton and Luc de Raedt, ‘Inductive logic programming:
Theory and methods’, Journal of Logic Programming, 19, 629-679,
(1994).

William W. Cohen Kennenth R. Koedinger Nan Li, Noboru Matsuda,
‘Integrating representation learning and skill learning in a human-like
intelligent agent’, Technical Report CMU-MLD-12-1001, Carnegie
Mellon University, (January 2012).

Allen Newell, ‘The knowledge level’, Artificial Intelligence, 18(1), 87—
127, (1982).

J. R. Quinlan, ‘Learning logical definitions from relations’, Machine
Learning, 5(3), 239-266, (1990).

Luc De Raedt and Luc Dehaspe, ‘Clausal discovery’, Machine Learn-
ing, 26(2), 99-146, (1997).

Matthew Richardson and Pedro Domingos, ‘Markov logic networks’,
Machine Learning, 62(1-2), 107-136, (2006).

Alberto Segre, ‘A learning apprentice system for mechanical assembly’,
in Proceedings of the Third IEEE Conference on Al for Applications,
pp. 112-117, (1987).

A. Srinivasan, The Aleph Manual, 2004.

Niels A. Taatgen and Frank J. Lee, ‘Production compilation: A simple
mechanism to model complex skill acquisition’, Human Factors, 45(1),
61-75, (2003).

Paul E. Utgoff, Shift of Bias for Inductive Concept Learning, Ph.D. dis-
sertation, Department of Computer Science, Rutgers University, New
Brunswick, NJ, 1984.

