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Abstract

Most statistical approaches to modeling text implicitly assume that in-
formative words are rare. This assumption is usually appropriate for topical
retrieval and classification tasks; however, in non-topical classification and
soft-clustering problems where classes and latent variables relate to senti-
ment or author, informative words can be frequent. In this paper we present a
comprehensive set of statistical learning tools which treat words with higher
frequencies of occurrence in a sensible manner. We introduce probabilistic
models of contagion for classification and soft-clusteringbased on the Pois-
son and Negative-Binomial distributions, which share withthe Multinomial
the desirable properties of simplicity and analytic tractability. We then intro-
duce the∆2 statistic to select features and avoid over-fitting.

1 Introduction

Fifty years ago, Herbert Simon (1955) argued that, “as a textprogresses, it creates a
meaningful context within which words that have been used already are more likely
to appear than others.” A simple but important notion of “context” for a particular
word w is how oftenw has appeared previously. Unfortunately, even this type of
context is not captured by the usual multivariate Bernoulliand multinomial models;
however, it is captured by usingcontagious distributions, such as the Poisson or
Negative-Binomial, to model word frequencies in documents[36].

Contagious distributions for language modeling are not new. They were used
by Mosteller and Wallace (1964, 1984) to model the frequencyof function words
(as indicators of personal writing styles) for the authors of the Federalist Papers;
later, Church and Gale (1995) showed that Poisson mixtures often fit the observed
word-frequency data better than standard Poissons [30, 12]. Nonetheless, most
modern language models–even very sophisticated ones–are based on multinomial
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models of frequency, largely, because of (1) the mathematical convenience of the
very simple Dirichlet conjugate prior, (2) the tendency of more complex word-
frequency models to overfit, and (3) the good performance of multinomial distri-
bution on some classical problems, e.g., topic classification.

In this paper we derive practically useful contagious distributions that naturally
fit into modern language models. To this end, we first introduce a new hierarchi-
cal Bayesian model, which naturally extends that of Mosteller and Wallace (1964,
1984) and makes use of re-parameterization of the Poisson and Negative-Binomial
distributions in order to take advantage of the Dirichlet asa natural non-informative
prior for the new parameters while maintaining analytical tractability. Second, in
order to avoid overfitting, we present a novel statistic for selecting features accord-
ing to their importance, the∆2 statistic, which helps avoid over-fitting by using
sound assumptions about the particular contagious distribution for the occurrence
of words along with False Discovery Rate arguments in order to control the overall
probability of selecting irrelevant words. Third, we demonstrate that our distribu-
tions improve on the cross-validated classification accuracy achieved by multivari-
ate Bernoulli and multinomial models.

Further, in order to boost the speed of feature selection strategies based upon
the ∆2 statistic, we derive its asymptotic distributions, with different degrees of
precision, assuming both Poisson and Negative-Binomial word counts; this allows
one tocomputep-values for∆2, instead ofsampling.

Most importantly, the analytic tractability of these contagious distributions en-
ables fast inference mechanisms for more complex language models, such as latent
Dirichlet allocation (Blei, Ng, and Jordan, 2003) or author-topic models (Erosheva,
Fienberg, and Lafferty 2004), by simply plugging in these more realistic distribu-
tions and then updating the formulas—with some necessary approximations. For
example, we use simple approximations to obtain a lower bound for variational
inference in closed form for a soft-clustering version of our models [7, 16, 3].

1.1 Background and Related Work

The naı̈ve Bayes approach is usually associated with multivariate Bernoulli and
multinomial models. It consists of a simple application of Bayes’ theorem to solve
a classification problem. Its “naı̈vety” is in the fact that different words are consid-
ered to be pairwise independent, and the model is not specificas to the position of
the words in the text [14]. Domingos and Pazzani (1997) give acomplete charac-
terization of naı̈ve Bayes models, and study conditions fortheir optimality from a
decision theoretic perspective [14].

Several works focused on the analysis of the limitations of naı̈ve Bayes Bernoulli
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and multinomial models [25, 34]; in particular the assumption that occurrences of
a same word happen independently of one another has seriously been challenged
and strong evidence, both theoretical and empirical, has been produced against it
in extensive studies of textual data [41, 40, 26, 22, 17]. Ad hoc models have also
been proposed to go beyond the independence assumption [11,6, 12, 38]. Our
work investigates a principled approach to relaxing the independent-occurence as-
sumption.

Recently, a number of extensions have been proposed to the naı̈ve Bayes ap-
proach, which prescribe hierarchical (graphical) models,with both observed and
hidden variables, in order to describe, cluster, and classify documents [7, 8, 9, 18,
16]. In order to perform inferences in these models, the constants underlying the
distributions of the variables in the top layer of the hierarchy have to be fixed. The
empirical Bayes approach [10] is used here, often in combination with methods
to approximate certain intractable (marginal) distributions, for example, MCMC
[35], variational methods [21], and expectation propagation [27]. As the main in-
gredients of these extensions are the multinomial model andits conjugate Dirich-
let prior, many of them could be adapted to handle other frequency models with
tractable conjugate priors. We discuss to what extent our models can be combined
with these more sophisticated language models in Section 3.3.

1.2 Notation

Our data consists of the number of times words appear in the texts. For each
category (c ∈ C) we have a collection ofDc documents, and we represent each
as a random vectorXdc := [X1, X2, ..., XV ]dc, that is, a bag of word counts,
where the words indexed byw = 1, ..., V belong to a pre-specified vocabulary. We
denote the observed word counts, instances of the corresponding random numbers,
with lowercasex’s.

2 Contagious Distributions for Words and Context

Contagious distributions provide a better fit for frequent terms by relaxing the as-
sumption of independence of successive occurrences of the same word across the
text. Intuitively, contagionmeans that the occurrence of a word makes its subse-
quent occurrences more likely. We argue that this notion of contagion introduces
a natural notion of context, i.e., the more a word is used, themore likely it is that
it will occur again, thus defining the writing style of an author, or the prevalent
sentiment in a sentence. In our experiments these distributions also led to lower
cross-validated classification errors.
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In this section, we reparametrize widely used contagious distributions such as
the Poisson and the Negative-Binomial for word frequency. Our goal is to make
their connection explicit, and introduce quantities that will help correcting the esti-
mates of the relevant parameters by taking into account the different lengths of the
texts.

2.1 The Poisson Model Revisited

For text data, using the Poisson model implicitly assumes that words or terms oc-
cur randomly and independently, but with some mean frequency. Stated differently,
suppose the usage of word each wordw is modeled as a random variableT denot-
ing the expected “time till usage” ofw. The Poisson distribution gives a particular
form for the density ofT , since one may interpret a Poisson distribution with pa-
rameter τ

E(T ) =: θ as the probability ofw being usedx times in a time interval of
lengthτ . If Xwd encodes the number of timesw appears in documentd, then

Poisson (Xwd = x |Θw = θ) =
θxe−θ

x!
, x ≥ 0.

We rewriteθ = ωdµ, whereωd is the observable size of documentd in thousands
of words andµ is the rate of occurrence of a word per thousand words, so that

Poisson (Xwd = x |ωd, Mw = µ) =
(ωdµ)x e−ωdµ

x!
, x ≥ 0.

The maximum likelihood estimator forMw is
P

d Xwd
P

d ωd
, which takes into account

the variable length of the texts,ωd. Note thatωd > 0.

2.2 The Negative-Binomial Model Revisited

The Negative-Binomial distribution can be obtained from expansion of(Q−P )−κ,
whereQ = (1 + P ), P > 0, and andκ is positive real. Note thatP need not be in
(0, 1). If Xwd encodes the number of timesw appears in documentd,

Neg-Bin (Xwd = x |Pw = p, Qw = q) =

(

κ + x − 1

κ − 1

)(

1 −
p

q

)κ (

p

q

)x

,

for any x ≥ 0. In this parameterization, the mean equalsκPw and the variance
equalsκPw(1 + Pw). The standard parameterization is obtained by introducinga

single parameterP ′
w =

(

1 − Pw

Qw

)

∈ (0, 1).
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Poisson Model Negative-Binomial Model
Reagan− Reagan+ Reagan− Reagan+Pool of words
(38 texts) (75 texts) (38 texts) (75 texts)

50 highest frequency words 12 (50) 3 (50) 31 (50) 49 (50)
21 semantic features 3 (21) 1 (21) 21 (21) 20 (21)
27 words by information gain 0 (7) 0 (8) 7 (7) 8 (8)

Table 1: Goodness of fit of Poisson and Negative-Binomial models for various pools of
words. The pools are selected from positive (written by Reagan) and negative (written
by Hannaford) examples of Reagan’s radio addresses. Unbracketed counts are predicted
number of words; in brackets we give the actual number of words. Predictions were made
using p-values from a two-sample Kolmogorov Smirnov test. Source [1].

Intuitively, the Negative-Binomial distribution can be though of as a Poisson
distribution with extra variability1. In order to make this connection explicit and
obtain parameters easy to interpret when we specify our model for the word counts,
we introduce the extra-variability parameterDw, and we setPw = ωdDw and
Qw = (1 + Pw) = (1 + ωdDw) to get

Neg-Bin (Xwd = x |ωd, Mw = µ,Dw = δ) =
Γ(x + κ)

x!Γ(κ)
(ωdδ)

x(1+ωdδ)
−(x+κ)

for any x ≥ 0, whereµ > 0, δ > 0, ωd > 0, andκ is a redundant parameter
such thatκ · δ = µ. As in the Poisson case,ωd is the observable size of document
d in thousands of words andµ is the rate of occurrence of a word per thousand
words. The parameterδ is the non-Poissonnessparameter, that is, a parameter
that controls how far the Negative-Binomial distribution is from its corresponding
Poisson limit. More formally, asD → 0, andκ → ∞, the Negative-Binomial
converges in distribution to its Poisson limit, for a fixed rate µ. The Negative-
Binomial with parameters(ωd,M,D) has mean equal toωdM , and variance equal
to ωdM(1 + ωdD), that is, the same mean as its corresponding Poisson limit with
an extra variability factor,(1 + ωdD). Thus the extra-Poissonness parameter,D,
allows us to model heavy tails, or extra variability, relative to the Poisson.

For example, in a prior studies of authorship attribution Airoldi et al. (2005)
used this parameterization for the Negative-Binomial, in terms of(ωd,M,D), and
observed that estimates ofδ were relatively stable across words and authors. For
most words,̂δ ∈ [0, 0.75]. The Negative-Binomial model often captures the vari-
ability in observed word-frequency data better than the Poisson model. In Table 1
we present some data demonstrating that the flexibility gained by introducing two

1A thorough treatment of these two distributions is given in Johnson et al. (1992) [20].
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Dataset # of classes Selection Naı̈ve Bayes Poisson Neg-Bin
Newsgroups 5 Info. Gain ∗4.34% 3.86% 4.04%
Reuters 3 Info. Gain ∗9.97% 6.42% 8.12%
Spam-Assassin 3 Info. Gain 6.03% 1.79% 2.42%
Fraud Detection 3 Info. Gain 0.78% 0.91% 1.09%

Table 2: The prediction errors on popular data sets. Errors refer to words selected by
information gain; we used internal five-fold cross-validation to select how many. Whenever
the best accuracy was obtained using all words there is no selection involved. The baseline
is naı̈ve Bayes withp(xwd|θw) ∝ (θw)xwd , where the estimates ofθw were corrected for
the different lengths of documents. Further, to provide a stronger baseline, we give the best
accuracy between TFIDF-scaled (marked with a *) and unscaled naı̈ve Bayes.

numeric parameters for each word allows one to better capture the way frequent
and/or semantically important words are used [1].

Mosteller and Wallace (1964, 1984) gave non-Bayesian method-of-moment
estimators for the Negative-Binomial parameters [30, 31].Their estimators account
for the different word-length of the documents,ωd for d = 1, . . . , N , and are
“optimal” at the Poisson limit:

{

µ̂w = mw,

δ̂w = dw = max
{

0, vw−mw

mwr

}

,

mw =
P

j xwd
P

d ωd
,

vw = 1
N−1

∑

d ωd

(

xwd

ωd
− mw

)2
,

r = 1
N−1

(

∑

d ωd −
P

d ω2

d
P

d ωd

)

.

2.3 Conditioning on the Word-Length of a Document

Word count models based on the Multinomial distribution fail to account for some
variability in the length of the documents, in various ways.Sampling a document
from our models, instead, guarantees the desired word length on average, rather
than exactly, thus accounting for some variability. Specifically, the parameterω
is used to condition on the size of the documents, in the(ω,M) and (ω,M,D)
parameterizations for the Poisson and Negative-Binomial,respectively.

Let us consider the Poisson case, where the rateΘ = ωdM , and let us as-
sume that our observations are number of times a certain wordoccurs in a set of
documents with possibly different word-lengths. The new parameterizationωdM

breaks the rate into two parts:M , which is the rate of occurrence of the word un-
der study, say, in a thousand consecutive words of text, or` consecutive words in
general, i.e., the rate as measured on a document with a reference length, in terms
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of number of words; andωd, which is the length of a document expressed as a pure
number, multiple of the word-length of the reference document, e.g.,ωd = 1.67
for a document 1670 word long if the reference text is a thousand words, i.e., if
` = 1000. This allows us to express the rateθ as the rate of occurrence of a word
in a document̀ word long,M , conditionally on the desired, or observed, length
of the text,ωd, expressed as a multiple of the word-length of the referencetext.
Similar considerations can be made in the Neagative-Binomial case.

3 Bayesian Models of Contagion for Words and Context

The models presented in sections 2.1 and 2.2 depend on a largenumber of param-
eters, one or two for each word in the vocabulary. In this section we introduce
more parsimonious models by assuming that the population ofparameters can be
described compactly, in terms of distributions with simplefunctional forms that
ultimately depend on a set of at most five underlying constants.

The Bayesian models we introduce here are hierarchical generative models.
In this class of models the focus is on the hierarchy of probabilistic assumptions
about the parameters and the data. Classification and soft-clustering tasks are then
two sides of the same coin, differing mostly in the amount of labeled documents
available for initializing the inference, that is, for training parameters or initializ-
ing latent categories [5]. The parameterizations in terms of (ω,M) and(ω,M,D)
account for the natural variability in the length of the texts, but it is hard to posit a
set of natural prior distributions for then, in cases where we have little or no infor-
mation about the parameters. Below we introduce an novel idea for parametrizing
contagious distributions and we discuss the properties it entails.

3.1 Sum/Ratio Parameterizations

The idea behind what we termsum/ratio parameterizationsis very intuitive; we
map a parameter vector inRC to a new parameter vector inR × [0, 1]C−1. We do
this by introducing asumparameter, sum of the components in the original vector,
and additionalratio parameters, obtained dividing components of the original vec-
tor by the sum parameter2. In the models of contagion we introduced above, for
each wordw:

σw =
∑C

c=1 µwc, τwc = µwc
PC

c=1
µwc

,

ζ = log(1 + δ),

ξw =
∑C

c=1 ζwc, ηwc = ζwc
PC

c=1
ζwc

.

2Note that the ratio parameters sum to one, so we only needC − 1 of them.
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for c = 1, ..., C − 1, where the log transformationζ = log(1 + aδ) serves the pur-
pose of dampening the heavy tails of the distribution ofδ̂ we explored in separate
studies [1]. This transformation is one possibility among many; more generally we
could uselog(1+aδ), wherea is depends on the document length. The parameters
(τw,C , ηw,C) are redundant. Further, we make the following assumptions:

(A1) the vectors(σw, τw,1, ..., τw,C−1, ξw, ηw,1, ..., ηw,C−1) are independent across
words,

(A2) ξw, the vector(ηw,1, ..., ηw,C−1) and the vector(σw, τw,1, ..., τw,C−1) are
independent from each other for each wordw.

This class of parameterizations has the major advantage of separating the over-
all rate of occurrence from the way it’s allocated to the various categories, indepen-
dently of whether they are observed or latent. This simplifies, at times, inference
calculations in complex language models. Further, it naturally3 leads to simple
analytic forms for the non-informative priors. In most cases is possible to derive
an expression for the maximum likelihood estimators of the sum parameter, on
which we can condition on in the inference process, both in the classification and
soft-clustering versions of our models, in order to improvefit to the data.

3.1.1 Natural Non-Informative Priors: Full Specification

The parameter vector{τwc, c ∈ C} and{ηwc, c ∈ C} both have support in[0, 1]C ,
and we assume their values follow a symmetric Dirichlet distribution; this entails
the same expected rate of occurrence,1

C
, for the parameters{µwc, c ∈ C}. The

residual parameterσw is greater than zero. We rely on prior studies in order to pick
the functional form of the non-informative priors for this parameter [30, 12, 1]. In
summary, for frequent terms we propose:

(A3) (τw,1, ..., τw,C−1)|σc is symmetric Dirichlet with parameter(β1 + β2 σw),

(A4) σw has an improper4 constant density,

(A5) (ηw,1, ..., ηw,C−1) is symmetric Dirichlet with parameter(β3),

3Briefly, we modelτ according to a Dirichlet distribution. We argue this is anaturalchoice since
alternative sampling schemes are equivalent, exactly or asymptotically. For example, if we model the
components of the vector of rates,µw, with independent Gamma distributions, thesumparameter
is Gamma and theratio parameter vector follows a Dirichlet distribution. See Kotz et al. (2000) for
details and similar results [23].

4An improper constant density is constant density over an infinite support; it isimproperas it
does not integrate to 1.
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(A6) ξw is Gamma with parameters(β5,
β4

β5
).

When β2 > 0 in (A3) the model encodes the notion that words that occur
often are a-priori less likely to be useful in discriminating categories. The higher
the overall occurrence of wordw (i.e., the higherσw) the higher the Dirichlet
parameter, and the lower the a-priori variability of the elements ofτw.

3.2 Inference and Parameter Estimation

The Bayesian models of contagion for frequent words and context can be used
for classification and soft-clustering tasks; here we present some calculations that
relate to the classification task. To that extent, we assume there areC categories
and we predict the category of a new document by evaluating the log-odds of each
classc, i.e., f(xnew, θ, c) = log p(c|xnew,θc)

p(1|xnew,θ1)
. The log-odds are function of the

parameters{θwc} that need be learned from training documents. Our models posit
a hierarchy of probabilistic assumptions on the parameters, and Bayesian inference
is required to learn their values. Note that we posit a separate model for each
category, thus a new index appears,c, which runs from1 to C.

3.2.1 MAP Estimation

We first evaluated the log-odds at the mode of the posterior distribution of the pa-
rameters given the data. We derived closed form expressionsfor the first and sec-
ond derivatives of a quantity proportional to the posterior, for both our hierarchical
Bayesian models. We then used Newton-Raphson to perform themaximization.
Note that the maximization may fail for fairly rare words, asthe matrix of second
derivatives corresponding to the Negative-Binomial modelmay vanish.

3.2.2 MCMC

As an alternative we evaluated the log-odds at the mean of theposterior distribu-
tion of the parameters given the data; this is theoreticallymore sound, but com-
putationally more expensive. For both models we used a Metropolis in Gibbs
sampler with Gaussian proposals. Briefly, an outer loop iteratively samples one-
dimensional full conditionals (Gibbs) and an inner loop is called upon to sample
from those conditionals that are known up to a proportionality constant (Metropo-
lis) [35]. In the Dirichlet-Poisson model, for example, theposterior distributions
of (τw,1, ..., τw,C−1, σ)|xwdc, entails the following full conditionals.

log P (τc|τ(−c), σ, xwdc) ∝ −
∑

d

wdc τc σ−
∑

d

wdC τC σ+(β1+β2 σ) log(τc τC)
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for all c = 1, . . . , C − 1, andτC = 1 −
∑C−1

c=1 τc.

log P (σ|τ1, ..., τC−1, xwdc) ∝ −
∑

c

∑

d wdc τc σ +
∑

c

∑

d xdc log(
∑

d wdc τc σ)

+ (β1 + β2 σ) log(
∏

c τc) + log
[

Γ[C (β1+β2 σ)]
Γ[(β1+β2 σ)]C

]

.

Similar derivations give the set of full conditionals to perform inference in the
Dirichlet-Negative-Binomial model.

3.2.3 Full Bayes

The sets of constants(β1, β2) and(β1, . . . , β5), underlying Poisson and Negative-
Binomial models respectively, need to be fixed. Following a fully Bayesian ap-
proach, we did not estimate the underlying constants using our data. Instead, we
relied on results from a prior study, on a separate data set, and selected 20 sets
of constants that lead to reasonable tails for the priors [1]. We then evaluated the
cross-validated error rates corresponding to each set of underlying constants,β, in
order to get a sense for how sensitive our predictions may be.The errors reported
in Table 3 were obtained withβ = (2, 1)

3.3 A Note on Soft-Clustering

The reparameterization in section 3.1 partially maps the parameters of Poisson and
Negative-Binomial models to the simplex, thus allowing oneto combine into a hier-
archy of probabilistic assumptions the Dirichlet density,a natural non-informative
prior for frequent terms, with powerful contagious distributions, which introduce
an intutive notion of context. This is not only of interest for the understanding of
the mathematical connections of our models with, for example, the latent Dirichlet
allocation of Blei et al. (2003), but improves their analytical tractability as well.
Specifically, separating the sum of the rates,Σ, from its split across classes allows
us to estimateΣ directly from the data and condition other estimates on it—in
classification—and allows us to carry out variational inference conditionally on
it—in soft-clustering—leading to some closed formula variational EM updates.

Elsewhere, we posit fully generative models for soft-clustering that share the
same hierarchy of probabilistic assumptions about the parameters as that of the
models for classification presented here [3]. The focus of the Bayesian paradigm on
the set of probabilistic assumptions enables us to fit practically useful contagious
distributions into complex language models. Briefly, the soft-clustering version of
our models allow for a variational lower bound in closed form. We devise M-step
updates (in a variational EM algorithm) conditionally on parameters that can be
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reliably estimated from the data, i.e.,Σ, as hinted above. Ultimately, our models
extract a richer set of categories than competing latent allocation models.

4 Feature Selection with∆2

Using more expressive classes of distributions to represent word frequency can
cause overfitting. Here we propose a distribution-based feature selection strategy,
which tests for feature relevance according to a specific word-frequency model,
e.g., Poisson. The test also produces a well-defined p-value, so that feature selec-
tion over many features can be performed in a principled way by using standard
methods for combining multiple statistical tests, such as the False Discovery Rate
[37].

Let Xwdc denote the number of times thewth word in the dictionary appears
in thedth document belonging to thecth class, and let{xwd1 : d = 1, ...,D1} and
{xwd2 : d = 1, ...,D2} denote the observed counts in the texts. We define∆2 for
wordw as follows.

∆2
w =

(

∑D1

d=1 xwd1 −
∑D2

d=1 xwd2

)2

∑D1

d=1 xwd1 +
∑D2

d=1 xwd2

. (1)

We use the∆2 statistic to test the null hypothesis: “wordw is irrelevant to the ex-
tent of discriminating between documents in categories oneand two.” Specifically,
we assume a contagious frequency model for wordw, P (xw|θw), and test whether
θw1 = θw2. The p-value will provide a probabilistic assessments on whether word
w occurred in the two categoriesdifferently enoughto discard the hypothesis that
such differences are the outcome of pure chance, i.e., that word w is irrelevant for
discrimination.

In order to perform the test of irrelevance for a word, we (i) compute the ob-
served value of the statistic,∆2

obs, (ii) use the estimators in sections 2.1 and 2.2 to
estimate the parameters5 underlying the word-frequency model,θ̂w, and (iii) com-
pute the p-value, i.e., we evaluate the following integral:P (∆2

w > ∆2
obs|θw1 =

θw2 = θ̂w).

The naı̈ve solution is that of sampling the distribution ofP (∆2
w|θ̂w) in step

(iii). This may be expensive, especially for rare words. Alternatively, we approxi-
mate analytically the distribution of∆2 under the Poisson and Negative-Binomial

5We estimate one set of parameters corresponding to the collection of documents. It is possible
to use document labels to weight the parameter estimates corresponding to different classes.
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models and compute the p-value using the approximate density. Tedious calcula-
tions lead to the following normal approximations, corresponding to expansions at
different orders:

∆2 ∼ N
(

1, 2 + 1
2µω

)

2-nd

∆2 ∼ N
(

1 − 1
2µω

,
1+µω(25+2µω(11+8µω))

8µ3ω3

)

3-rd

for the case ofX ∼ Pois(ωµ) andY ∼ Pois(ωµ), X andY independent.

Similar approximations for the Negative-Binomial are available. We extend
the∆2 statistics for wordw to multiple categories, e.g., by iteratively computing
the p-values for a class versus all the others and keeping thesmallest p-value.

5 Experiments

We compared the cross-validated accuracies of naı̈ve Poisson and Negative-Binomial
and that of the Bayesian Dirichlet-Poisson to the baselines(multinomial and mul-
tivariate Bernoulli) on eleven data sets.

5.1 Data Sets

In the Newsgroupsproblem we want to classify newsgroups’ posts according to
their topic [29]. In theReutersproblem we abandon the typical breakdown into
very narrow categories, a scenario where low frequency keywords drive the clas-
sification, and create our own high level categories—Money, Crops, andNatural
Resources—in order for medium frequency, weakly topical words to drive the clas-
sification [24]. In theFraud detectionproblem we want to find messages that con-
tain fraudulent intent [4]. In the threeOpinion Extractionproblems we want to
categorize the overall opinion expressed in online news articles (courtesy of In-
fonic.com) as beingPositive, Neutral or Negative[2]. In the Spamproblem we
want to classify emails asEasy Ham, Hard Ham, andSpam, where ham is the term
that indicates legitimate emails6. In theWeb-Masterproblem the task is to classify
web site update requests asAdd, Change, or Delete[13]. In theReagan’s Datathe
problem is that of attributing authorship to text of Ronald Reagan’s radio addresses
broadcasted over the years 1975-1979 [1]. In theMovie Reviewsproblem we want
to associate a positive or negative sentiment with each movie review [32]. In the
Medical Data: the task is to classify whether a patient has a certain disease given
outcomes of different tests.

6The SpamAssassin corpus is available online at http://www.spamassassin.org/.
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Dataset Class Selection Naı̈ve Bayes Poisson Neg-Bin Dir-Pois
IG 8.97% 8.29% 7.72% 7.50%Reagan’s Data 2
∆2 8.50% 7.81% 6.95% 6.50%
IG 30.64% 28.71% 28.86% 25.75%Movie Reviews 2
∆2 28.07% 26.50% 26.14% 21.93%
IG 13.34% 7.67% 7.52% 6.13%Medical Data 2
∆2 11.28% 7.01% 6.13% 5.95%
IG ∗35.66% 29.83% 31.00% 27.61%Opinions: Finance 3
∆2 ∗35.66% 29.83% 31.00% 27.61%
IG ∗29.00% 28.17% 28.33% 24.83%Opinions: Mixed 3
∆2 ∗29.00% 28.17% 28.33% 24.83%
IG 26.33%Opinions: M & A 3
∆2

∗30.33%
24.33%

27.33% 24.83%

IG ∗11.17% 9.97% 8.93% 7.56%Web-Master 3
∆2 7.46%

Table 3: The prediction errors refer to words selected by information gain; we used in-
ternal five-fold cross-validation to select how many. Whenever the best accuracy was ob-
tained using all words there is no selection involved. The baseline is naı̈ve Bayes with
p(xwd|θw) ∝ (θw)xwd . The estimates ofθw were corrected for the different lengths of
documents. Further, naı̈ve Bayes is sometimes improved by scaling the counts with TFIDF
weights [33]. To provide a stronger baseline, we give the best accuracy between TFIDF-
scaled and unscaled naı̈ve Bayes. (Accuracies for scaled naı̈ve Bayes are marked with a *).
The errors in the central columns refer to our parameterizations for Poisson and Negative-
Binomial models, as given in Sections 2.1 and 2.2. The errorsfor the DiP model were
obtained withβ = (2, 1).

5.2 Results

To allow for a fair comparison we corrected the parameter estimates for the baseline
models to account for different length of documents and transformed the word
counts with TFIDF. In fact, naı̈ve Bayes is sometimes improved by scaling the
counts with TFIDF weights [33]. The tables report the best accuracy between
TFIDF-scaled and unscaled naı̈ve Bayes7. We compared the accuracies on sets of
words selected by information gain and∆2 for different values ofα and different
number of words to make results comparable.

The experiments suggest that the Poisson and Negative-Binomial models fit
textual data better, and lead to log-odds consistently lessextreme than multinomial.
This need not lead to better accuracy, as in the case of the email Fraud data set.
The statistic∆2 favors words that occur often, and leads to higher accuracies than

7Accuracies for scaled naı̈ve Bayes are marked with a *.
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information gain on our classification problems. An advantage of choosing words
that occur often is that a small set of them may be sufficient torepresent the whole
collection of documents, promoting insights into the problem and interpretability
of the results.

6 Conclusions

We have described a simple, principled extension to the widely-used multinomial
model for text. The extension allows better modeling of frequent words by replac-
ing the widely-used multinomial distribution with simple “contagious” distribu-
tions, that is, by relaxing the assumption of independence of different occurrences
of the same word across the text. Using eleven data sets, we show that the model
generally leads to better classification accuracy, sometimes to substantially bet-
ter. The experiments presented here have been with simple “naı̈ve and hierachical
Bayes” models for classification; however, an important advantage of the proposed
extension is that is easy to combine with more complex modelsof text, e.g., mix-
tures and hierarchical mixture models.

In the current paper we also developed tractable non-informative priors for
the models, for use in settings for which a fully Bayesian or empirical Bayesian
approach is appropriate. Elsewhere, we have successfully exploited the proposed
hierarchy of probabilistic assumptions on the parameters to build soft-clustering
counterparts of our models [3].
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