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Abstract

Most statistical approaches to modeling text impliciths@ame that in-
formative words are rare. This assumption is usually apmaigpfor topical
retrieval and classification tasks; however, in non-tdpitassification and
soft-clustering problems where classes and latent vasatglate to senti-
ment or author, informative words can be frequent. In thjzpave present a
comprehensive set of statistical learning tools whichttweads with higher
frequencies of occurrence in a sensible manner. We inteduababilistic
models of contagion for classification and soft-clustetiaged on the Pois-
son and Negative-Binomial distributions, which share wfith Multinomial
the desirable properties of simplicity and analytic tradity. We then intro-
duce theA? statistic to select features and avoid over-fitting.

1 Introduction

Fifty years ago, Herbert Simon (1955) argued that, “as gaedresses, it creates a
meaningful context within which words that have been useshdly are more likely
to appear than others.” A simple but important notion of ‘teodti’ for a particular
word w is how oftenw has appeared previously. Unfortunately, even this type of
context is not captured by the usual multivariate Bernauitl multinomial models;
however, it is captured by usimgpntagious distributionssuch as the Poisson or
Negative-Binomial, to model word frequencies in documé&ses.

Contagious distributions for language modeling are not rigwey were used
by Mosteller and Wallace (1964, 1984) to model the frequesfdynction words
(as indicators of personal writing styles) for the authdrshe Federalist Papers;
later, Church and Gale (1995) showed that Poisson mixtutes 6t the observed
word-frequency data better than standard Poissons [30, N@hetheless, most
modern language models—even very sophisticated onesasee lbn multinomial



models of frequency, largely, because of (1) the mathemlatmnvenience of the
very simple Dirichlet conjugate prior, (2) the tendency obrm complex word-
frequency models to overfit, and (3) the good performance wfinomial distri-
bution on some classical problems, e.g., topic classifinati

In this paper we derive practically useful contagious thstrons that naturally
fit into modern language models. To this end, we first intredacew hierarchi-
cal Bayesian model, which naturally extends that of Mostedhd Wallace (1964,
1984) and makes use of re-parameterization of the PoissbNegative-Binomial
distributions in order to take advantage of the Dirichleadagtural non-informative
prior for the new parameters while maintaining analyticattability. Second, in
order to avoid overfitting, we present a novel statistic #lesting features accord-
ing to their importance, thé\? statistic, which helps avoid over-fitting by using
sound assumptions about the particular contagious disiiib for the occurrence
of words along with False Discovery Rate arguments in omepntrol the overall
probability of selecting irrelevant words. Third, we deratrate that our distribu-
tions improve on the cross-validated classification aaguezhieved by multivari-
ate Bernoulli and multinomial models.

Further, in order to boost the speed of feature selectiategfies based upon
the A? statistic, we derive its asymptotic distributions, witlifelient degrees of
precision, assuming both Poisson and Negative-Binomiatlwounts; this allows
one tocomputep-values forA?, instead okampling

Most importantly, the analytic tractability of these cagitaus distributions en-
ables fast inference mechanisms for more complex languagkels) such as latent
Dirichlet allocation (Blei, Ng, and Jordan, 2003) or autbmpic models (Erosheva,
Fienberg, and Lafferty 2004), by simply plugging in theseren®alistic distribu-
tions and then updating the formulas—with some necessamsogimnations. For
example, we use simple approximations to obtain a lower ¢bdan variational
inference in closed form for a soft-clustering version of models [7, 16, 3].

1.1 Background and Related Work

The naive Bayes approach is usually associated with ratikite Bernoulli and
multinomial models. It consists of a simple application @fyBs’ theorem to solve
a classification problem. Its “naivety” is in the fact th#fatent words are consid-
ered to be pairwise independent, and the model is not spasific the position of
the words in the text [14]. Domingos and Pazzani (1997) gieeraplete charac-
terization of naive Bayes models, and study conditiongHeir optimality from a
decision theoretic perspective [14].

Several works focused on the analysis of the limitationsadfe& Bayes Bernoulli



and multinomial models [25, 34]; in particular the assumptihat occurrences of
a same word happen independently of one another has sgrimeesh challenged
and strong evidence, both theoretical and empirical, has peoduced against it
in extensive studies of textual data [41, 40, 26, 22, 17]. Ad imodels have also
been proposed to go beyond the independence assumptiof,[12, 38]. Our
work investigates a principled approach to relaxing thepahdent-occurence as-
sumption.

Recently, a number of extensions have been proposed to ithe Bayes ap-
proach, which prescribe hierarchical (graphical) modeigh both observed and
hidden variables, in order to describe, cluster, and dladsicuments [7, 8, 9, 18,
16]. In order to perform inferences in these models, the teots underlying the
distributions of the variables in the top layer of the hiehgrhave to be fixed. The
empirical Bayes approach [10] is used here, often in contibimavith methods
to approximate certain intractable (marginal) distribng, for example, MCMC
[35], variational methods [21], and expectation propagafR7]. As the main in-
gredients of these extensions are the multinomial modeltarabnjugate Dirich-
let prior, many of them could be adapted to handle other frrgy models with
tractable conjugate priors. We discuss to what extent outetsaccan be combined
with these more sophisticated language models in Sectgn 3.

1.2 Notation

Our data consists of the number of times words appear in tis. teFor each
category ¢ € C') we have a collection oD, documents, and we represent each
as a random vectaX ;. := [X;, Xo, ..., Xv]4, that is, a bag of word counts,
where the words indexed hy = 1, ..., V belong to a pre-specified vocabulary. We
denote the observed word counts, instances of the corrdsgprandom numbers,
with lowercaser’s.

2 Contagious Distributions for Words and Context

Contagious distributions provide a better fit for frequentrts by relaxing the as-
sumption of independence of successive occurrences oathe s/ord across the
text. Intuitively, contagionmeans that the occurrence of a word makes its subse-
guent occurrences more likely. We argue that this notionootagion introduces

a natural notion of context, i.e., the more a word is usedntbee likely it is that

it will occur again, thus defining the writing style of an aothor the prevalent
sentiment in a sentence. In our experiments these disoiizuglso led to lower
cross-validated classification errors.



In this section, we reparametrize widely used contagiossilutions such as
the Poisson and the Negative-Binomial for word frequencur @bal is to make
their connection explicit, and introduce quantities thak kelp correcting the esti-
mates of the relevant parameters by taking into accountitfezaht lengths of the
texts.

2.1 The Poisson Model Revisited

For text data, using the Poisson model implicitly assumaswlords or terms oc-
cur randomly and independently, but with some mean frequeStated differently,
suppose the usage of word each weris modeled as a random varialffedenot-

ing the expected “time till usage” af. The Poisson distribution gives a particular
form for the density off’, since one may interpret a Poisson distribution with pa-
rameter@ =: ¢ as the probability ofv being usedr times in a time interval of

lengthr. If X,,; encodes the number of timasappears in documet then
. 6re—0
Poisson (Xyg =x |0, =0) = > x> 0.
xZ:

We rewrited = w4, Wherewy is the observable size of documehin thousands
of words andu is the rate of occurrence of a word per thousand words, so that

(wap)?” e~

Poisson (Xyq = x |wg, My = p) = '
!

, x>0.

The maximum likelihood estimator fav/,, is % which takes into account
the variable length of the texts,. Note thatv,; > 0.

2.2 The Negative-Binomial Model Revisited

The Negative-Binomial distribution can be obtained fromaasion of Q@ — P) ",
where@ = (1 + P), P > 0, and andk is positive real. Note thaP need not be in
(0,1). If X,,q encodes the number of timesappears in document

Neg-Bin (Xya=2| Py =p, Qu=1q) = <H+m_1> (1_B>H<B>m7

k—1 q q
for anyx > 0. In this parameterization, the mean equal3, and the variance
equalskP,(1 + P,). The standard parameterization is obtained by introduaing

single parameteP,, = (1 - %) € (0,1).



Poisson Model Negative-Binomial Model
Reaganr- | Reagar | Reagan- Reagan-
(38 texts)| (75texts)| (38texts)| (75 texts)
50 highest frequency words 12 (50) 3 (50) 31 (50) 49 (50)

21 semantic features 3(21) 1(21) 21 (21) 20 (21)
27 words by information gain 0(7) 0(8) 7(7) 8(8)

Pool of words

Table 1: Goodness of fit of Poisson and Negative-Binomial models &ious pools of
words. The pools are selected from positive (written by Red@nd negative (written
by Hannaford) examples of Reagan’s radio addresses. Ukdietcounts are predicted
number of words; in brackets we give the actual number of woRdedictions were made
using p-values from a two-sample Kolmogorov Smirnov tesurge [1].

Intuitively, the Negative-Binomial distribution can beotigh of as a Poisson
distribution with extra variability. In order to make this connection explicit and
obtain parameters easy to interpret when we specify our himdide word counts,
we introduce the extra-variability parametéx,, and we setP,, = wqD,, and
Qu = (14 Py) = (14 wgD,) to get

I(z+ k)

Neg-Bin (Xyq = x|wg, My = p, Dy =9) = 2T ()

(wad)® (14wgd) =@+
for anyz > 0, wherey > 0,5 > 0, wg > 0, andx is a redundant parameter
such thats - 6 = p. As in the Poisson casey is the observable size of document
d in thousands of words and is the rate of occurrence of a word per thousand
words. The parametef is the non-Poissonnesparameter, that is, a parameter
that controls how far the Negative-Binomial distributi@fiom its corresponding
Poisson limit. More formally, a® — 0, andx — oo, the Negative-Binomial
converges in distribution to its Poisson limit, for a fixedera. The Negative-
Binomial with parameterévy, M, D) has mean equal to; M, and variance equal
to wgM (1 + wgD), that is, the same mean as its corresponding Poisson lithit wi
an extra variability factor(1 + wyD). Thus the extra-Poissonness paramdtkgr,
allows us to model heavy tails, or extra variability, ralatto the Poisson.

For example, in a prior studies of authorship attributiomofdi et al. (2005)
used this parameterization for the Negative-Binomialemmis of(wg, M, D), and
observed that estimates dfwere relatively stable across words and authors. For
most wordsj € [0, 0.75]. The Negative-Binomial model often captures the vari-
ability in observed word-frequency data better than thes®wi model. In Table 1
we present some data demonstrating that the flexibilityeghlyy introducing two

A thorough treatment of these two distributions is givendhrison et al. (1992) [20].



Dataset # of classes  Selection Naive Bayes Poisson Neg-Bin
Newsgroups 5 Info. Gain *4.34% 3.86% 4.04%
Reuters 3 Info. Gain *9.97% 6.42% 8.12%
Spam-Assassin 3 Info. Gain 6.03% 1.79% 2.42%
Fraud Detection 3 Info. Gain 0.78% 0.91% 1.09%

Table 2: The prediction errors on popular data sets. Errors referdmsvselected by
information gain; we used internal five-fold cross-validato select how many. Whenever
the best accuracy was obtained using all words there is rotgmh involved. The baseline
is naive Bayes withy(x,q4/0.) x (6.,)*», where the estimates 6f, were corrected for
the different lengths of documents. Further, to provide@ngter baseline, we give the best
accuracy between TFIDF-scaled (marked with a *) and undazaéve Bayes.

numeric parameters for each word allows one to better capha way frequent
and/or semantically important words are used [1].

Mosteller and Wallace (1964, 1984) gave non-Bayesian ndetfionoment
estimators for the Negative-Binomial parameters [30, 3hkir estimators account
for the different word-length of the documents, for d = 1,..., N, and are
“optimal” at the Poisson limit:

~ wq ’
Hw = My, ld . 2
bw = dy = max {0’ %} ., w T N 24w (—wdz— mw> )
b _ 1 d%d
T = NI wWq —
-1 zd d Zdwd>

2.3 Conditioning on the Word-Length of a Document

Word count models based on the Multinomial distributiot taiaccount for some
variability in the length of the documents, in various wagampling a document
from our models, instead, guarantees the desired wordHemgtaverage, rather
than exactly, thus accounting for some variability. Spealfy, the parametep
is used to condition on the size of the documents, in(theM/) and (w, M, D)
parameterizations for the Poisson and Negative-Binomeapectively.

Let us consider the Poisson case, where the @ate w;M, and let us as-
sume that our observations are number of times a certain e@rdrs in a set of
documents with possibly different word-lengths. The newapeeterizationv, M
breaks the rate into two partd/, which is the rate of occurrence of the word un-
der study, say, in a thousand consecutive words of text,consecutive words in
general, i.e., the rate as measured on a document with amefefength, in terms
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of number of words; and, which is the length of a document expressed as a pure
number, multiple of the word-length of the reference docuaitne.g.,wy = 1.67

for a document 1670 word long if the reference text is a thodisaords, i.e., if

¢ = 1000. This allows us to express the rdtes the rate of occurrence of a word
in a documen¥ word long, M, conditionally on the desired, or observed, length
of the text,w,, expressed as a multiple of the word-length of the referéexe
Similar considerations can be made in the Neagative-Biaboaise.

3 Bayesian Models of Contagion for Words and Context

The models presented in sections 2.1 and 2.2 depend on anlamgeer of param-

eters, one or two for each word in the vocabulary. In thisisecve introduce

more parsimonious models by assuming that the populatigraiameters can be
described compactly, in terms of distributions with simfulactional forms that

ultimately depend on a set of at most five underlying constant

The Bayesian models we introduce here are hierarchicalrgiree models.
In this class of models the focus is on the hierarchy of pritisiib assumptions
about the parameters and the data. Classification andlasfedng tasks are then
two sides of the same coin, differing mostly in the amountadieled documents
available for initializing the inference, that is, for tneng parameters or initializ-
ing latent categories [5]. The parameterizations in terfrie&oM ) and(w, M, D)
account for the natural variability in the length of the stiut it is hard to posit a
set of natural prior distributions for then, in cases wheechave little or no infor-
mation about the parameters. Below we introduce an novalfaleparametrizing
contagious distributions and we discuss the propertiastls.

3.1 Sum/Ratio Parameterizations

The idea behind what we tersum/ratio parameterizations very intuitive; we
map a parameter vector R to a new parameter vector & x [0, 1]°~'. We do
this by introducing asumparameter, sum of the components in the original vector,
and additionafatio parameters, obtained dividing components of the origieat v
tor by the sum parametfer In the models of contagion we introduced above, for
each wordw:

Ow = chzl Hawes Twe = 27'%7
¢ = IOg(l + 5)7
C wc
§w = Zc:l Cwes Nwe = Zg‘il oo

2Note that the ratio parameters sum to one, so we only Gigedl of them.
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forc=1,...,C — 1, where the log transformatiap= log(1 + ad) serves the pur-
pose of dampening the heavy tails of the distribution efe explored in separate
studies [1]. This transformation is one possibility amorayyt more generally we
could usdog(1+ad), wherea is depends on the document length. The parameters
(Tw,c, Nw,c) are redundant. Further, we make the following assumptions:

(A1) the vectorgoy, Tw 1, -, Tw,C—1s&w, T, 1, - Thw,Cc—1) are independent across
words,

(A2) &, the vector(ny,1, ..., w,c—1) and the vectooy,, 7y 1, ..., Tw,c—1) are
independent from each other for each ward

This class of parameterizations has the major advantaggpafating the over-
all rate of occurrence from the way it's allocated to the @asi categories, indepen-
dently of whether they are observed or latent. This simglifad times, inference
calculations in complex language models. Further, it rdlyf leads to simple
analytic forms for the non-informative priors. In most cage possible to derive
an expression for the maximum likelihood estimators of then parameter, on
which we can condition on in the inference process, bothenctassification and
soft-clustering versions of our models, in order to impréiveo the data.

3.1.1 Natural Non-Informative Priors: Full Specification

The parameter vectdir,., ¢ € C'} and{n.., c € C'} both have support ifo, 1],

and we assume their values follow a symmetric Dirichletritigtion; this entails
the same expected rate of occurrenge,for the parameter$i,., c € C}. The
residual parameter,, is greater than zero. We rely on prior studies in order to pick
the functional form of the non-informative priors for thianameter [30, 12, 1]. In
summary, for frequent terms we propose:

(A3) (Tw,1, ..., Tw,c—1)|oc is symmetric Dirichlet with parametép; + (2 o,,),
(A4) o, has an impropet constant density,

(A5) (M1, .-, Mw,c—1) IS symmetric Dirichlet with parametéps),

3Briefly, we modeh according to a Dirichlet distribution. We argue this isatural choice since
alternative sampling schemes are equivalent, exactlyyonpiotically. For example, if we model the
components of the vector of ratgs,,, with independent Gamma distributions, themparameter
is Gamma and theatio parameter vector follows a Dirichlet distribution. See Ket al. (2000) for
details and similar results [23].

4An improper constant density is constant density over amitefisupport; it ismproperas it
does not integrate to 1.



(AB) &, is Gamma with paramete(gs, %).

When G, > 0 in (A3) the model encodes the notion that words that occur
often are a-priori less likely to be useful in discrimingtinategories. The higher
the overall occurrence of word (i.e., the highers,,) the higher the Dirichlet
parameter, and the lower the a-priori variability of thenedmts ofr,,.

3.2 Inference and Parameter Estimation

The Bayesian models of contagion for frequent words andesbridan be used
for classification and soft-clustering tasks; here we preseme calculations that
relate to the classification task. To that extent, we assinere tareC' categories
and we predict the category of a new document by evaluatedptirodds of each
classe, i.e., f(znew,0,c) = log % The log-odds are function of the
parameterg6,,.} that need be learned from training documents. Our modeis pos
a hierarchy of probabilistic assumptions on the parameadeic Bayesian inference
is required to learn their values. Note that we posit a sépareodel for each
category, thus a new index appearsyhich runs fromt to C.

3.2.1 MAP Estimation

We first evaluated the log-odds at the mode of the posterstrilolition of the pa-
rameters given the data. We derived closed form expres$iorke first and sec-
ond derivatives of a quantity proportional to the postefior both our hierarchical
Bayesian models. We then used Newton-Raphson to perforrméxémization.

Note that the maximization may fail for fairly rare words,the matrix of second
derivatives corresponding to the Negative-Binomial madal/ vanish.

3.2.2 MCMC

As an alternative we evaluated the log-odds at the mean gidkterior distribu-

tion of the parameters given the data; this is theoreticaitye sound, but com-
putationally more expensive. For both models we used a Igeli®in Gibbs

sampler with Gaussian proposals. Briefly, an outer looptiezly samples one-
dimensional full conditionals (Gibbs) and an inner loop afled upon to sample
from those conditionals that are known up to a proportietpaonstant (Metropo-
lis) [35]. In the Dirichlet-Poisson model, for example, thesterior distributions
Of (Tw,1, -y Tw,C—1, 7) | Twac, €Ntails the following full conditionals.

IOg P(Tc|7—(—c)> g, xwdc) X — Z Wdc Te U_Z Wdc 7C U"‘(ﬁl +ﬁ2 U) log(Tc TC)
d d



foralle=1,...,C —1,andrc =1 - 3. ' ..

log P(0'|7_17 ceey TC—17$wdc) x = Zc Zd Wde Te 0 + ZC Zd Lde log(zd We Te U)
+ (B + B20) log([], 7) + log [ L2l

Similar derivations give the set of full conditionals to fsem inference in the
Dirichlet-Negative-Binomial model.

3.2.3 Full Bayes

The sets of constant®,, 32) and(54, . .., 5), underlying Poisson and Negative-
Binomial models respectively, need to be fixed. FollowingibyfBayesian ap-
proach, we did not estimate the underlying constants usimglata. Instead, we
relied on results from a prior study, on a separate data edtsalected 20 sets
of constants that lead to reasonable tails for the priors\[i¢ then evaluated the
cross-validated error rates corresponding to each setdsfrlying constants3, in
order to get a sense for how sensitive our predictions may be.errors reported
in Table 3 were obtained with = (2, 1)

3.3 A Note on Soft-Clustering

The reparameterization in section 3.1 partially maps tmarpaters of Poisson and
Negative-Binomial models to the simplex, thus allowing tmeombine into a hier-
archy of probabilistic assumptions the Dirichlet densityyatural non-informative
prior for frequent terms, with powerful contagious distitions, which introduce
an intutive notion of context. This is not only of interest fbe understanding of
the mathematical connections of our models with, for exaniple latent Dirichlet
allocation of Blei et al. (2003), but improves their anatgti tractability as well.
Specifically, separating the sum of the rafésfrom its split across classes allows
us to estimate directly from the data and condition other estimates on it—i
classification—and allows us to carry out variational iefeze conditionally on
it—in soft-clustering—leading to some closed formula atidnal EM updates.
Elsewhere, we posit fully generative models for soft-@usig that share the
same hierarchy of probabilistic assumptions about thenpeters as that of the
models for classification presented here [3]. The focuseBillyesian paradigm on
the set of probabilistic assumptions enables us to fit maltti useful contagious
distributions into complex language models. Briefly, thi-stustering version of
our models allow for a variational lower bound in closed fonve devise M-step
updates (in a variational EM algorithm) conditionally orrgzaeters that can be
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reliably estimated from the data, i.&:, as hinted above. Ultimately, our models
extract a richer set of categories than competing lateotation models.

4 Feature Selection withA?2

Using more expressive classes of distributions to repteserd frequency can
cause overfitting. Here we propose a distribution-basetlifeaelection strategy,
which tests for feature relevance according to a specifidvii@guency model,
e.g., Poisson. The test also produces a well-defined p-veduhat feature selec-
tion over many features can be performed in a principled wayding standard
methods for combining multiple statistical tests, suchhasRalse Discovery Rate
[37].

Let X4 denote the number of times theh word in the dictionary appears
in the dth document belonging to theh class, and lefz,,q : d =1, ..., D1} and
{2wao : d = 1,..., Dy} denote the observed counts in the texts. We defidor
word w as follows.

2
D D
9 <zd:11 Twdl — Zd:21 xwd2)
Aw = D1 Do : (1)
Zdzl Twdl + zdzl Twd2

We use theA? statistic to test the null hypothesis: “woudis irrelevant to the ex-
tent of discriminating between documents in categoriesamagwo.” Specifically,
we assume a contagious frequency model for word (z,,|6,,), and test whether
0.1 = Bw2. The p-value will provide a probabilistic assessments oathr word
w occurred in the two categorielifferently enougho discard the hypothesis that
such differences are the outcome of pure chance, i.e., thatavis irrelevant for
discrimination.

In order to perform the test of irrelevance for a word, we Ginpute the ob-
served value of the statistie?, , (i) use the estimators in sections 2.1 and 2.2 to
estimate the paramet&nsnderlying the word-frequency modél,, and (iii) com-
pute the p-value, i.e., we evaluate the following integia((A2, > Agbsyewl =
Owo = 0y).

The naive solution is that of sampling the distributionRfA2|d,,) in step
(ii). This may be expensive, especially for rare words.effiatively, we approxi-
mate analytically the distribution ak? under the Poisson and Negative-Binomial

SWe estimate one set of parameters corresponding to thetiolieof documents. It is possible
to use document labels to weight the parameter estimatessponding to different classes.
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models and compute the p-value using the approximate geff&@tious calcula-
tions lead to the following normal approximations, cor@sging to expansions at
different orders:

A2 ~ N 1,2+w%) 2-nd

2 1 14pw(25+2pw(114-8uw))
A ~ N 1-— m’ 8;1%13 ) 3-I’d

for the case ofX ~ Pois(wp) andY ~ Pois(wp), X andY independent.

Similar approximations for the Negative-Binomial are éalale. We extend
the A? statistics for wordw to multiple categories, e.g., by iteratively computing
the p-values for a class versus all the others and keepingnh#est p-value.

5 Experiments

We compared the cross-validated accuracies of naivedroissl Negative-Binomial
and that of the Bayesian Dirichlet-Poisson to the baseljimagtinomial and mul-
tivariate Bernoulli) on eleven data sets.

5.1 Data Sets

In the Newsgroupgproblem we want to classify newsgroups’ posts according to
their topic [29]. In theReutersproblem we abandon the typical breakdown into
very narrow categories, a scenario where low frequency &eysvdrive the clas-
sification, and create our own high level categoridédeney Crops andNatural
Resources-in order for medium frequency, weakly topical words to dritie clas-
sification [24]. In theFraud detectiomproblem we want to find messages that con-
tain fraudulent intent [4]. In the thre@pinion Extractionproblems we want to
categorize the overall opinion expressed in online newslest(courtesy of In-
fonic.com) as beindPositive Neutral or Negative[2]. In the Spamproblem we
want to classify emails asasy HamHard Ham andSpam where ham is the term
that indicates legitimate emdilsin the Web-Masteproblem the task is to classify
web site update requests/add Change or Delete[13]. In theReagan’s Datdhe
problem is that of attributing authorship to text of Ronakbigan’s radio addresses
broadcasted over the years 1975-1979 [1]. InMuwie Reviewproblem we want

to associate a positive or negative sentiment with each enmaviiew [32]. In the
Medical Data: the task is to classify whether a patient has a certain disgiasn
outcomes of different tests.

5The SpamAssassin corpus is available online at http:/\spawnassassin.org/.
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Dataset Class Selectionl Naive Bayes Poisson Neg-Bin Dir-Pgjis
ReagansDam | 2 Bs0%  781% 695 650
0, 0, 0

wovereiows | 2 IS | 305w 7N w27
. 0 0 0 0
MedialData | 25 | 10gmi 7013 oawe 595
Opinions: M&A | 3 'AGQ *30.33% gi:ggfﬁ 27.33% 24.83%
* 0, 0, 0, (V)

Web-Master 3 IAG2 11.17%  9.97% 8.93% 7_16%/? (]

Table 3: The prediction errors refer to words selected by infornragain; we used in-
ternal five-fold cross-validation to select how many. Whamehe best accuracy was ob-
tained using all words there is no selection involved. Thsebae is naive Bayes with
P(Twd|bw) x (0,)%4. The estimates of,, were corrected for the different lengths of
documents. Further, naive Bayes is sometimes improveddiing the counts with TFIDF
weights [33]. To provide a stronger baseline, we give the hesuracy between TFIDF-
scaled and unscaled naive Bayes. (Accuracies for scalee Bayes are marked with a *).
The errors in the central columns refer to our parametéoafor Poisson and Negative-
Binomial models, as given in Sections 2.1 and 2.2. The efmrthe DiP model were
obtained with3 = (2, 1).

5.2 Results

To allow for a fair comparison we corrected the parametémases for the baseline
models to account for different length of documents andsfaamed the word
counts with TFIDF. In fact, naive Bayes is sometimes imptbby scaling the
counts with TFIDF weights [33]. The tables report the bestuagcy between
TFIDF-scaled and unscaled naive Bdyes/e compared the accuracies on sets of
words selected by information gain afd for different values ofx and different
number of words to make results comparable.

The experiments suggest that the Poisson and Negativeritahonodels fit
textual data better, and lead to log-odds consistentlyeeseme than multinomial.
This need not lead to better accuracy, as in the case of thi Eraad data set.
The statisticA? favors words that occur often, and leads to higher accusahin

"Accuracies for scaled naive Bayes are marked with a *.
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information gain on our classification problems. An advgataf choosing words
that occur often is that a small set of them may be sufficientpoesent the whole
collection of documents, promoting insights into the pesbland interpretability
of the results.

6 Conclusions

We have described a simple, principled extension to thely#deed multinomial
model for text. The extension allows better modeling of frexaf words by replac-
ing the widely-used multinomial distribution with simpledntagious” distribu-
tions, that is, by relaxing the assumption of independeifchfferent occurrences
of the same word across the text. Using eleven data sets, avetbiat the model
generally leads to better classification accuracy, sonestito substantially bet-
ter. The experiments presented here have been with simalee'mnd hierachical
Bayes” models for classification; however, an importantatizge of the proposed
extension is that is easy to combine with more complex moafdiext, e.g., mix-
tures and hierarchical mixture models.

In the current paper we also developed tractable non-irdowa priors for
the models, for use in settings for which a fully Bayesian mp#&ical Bayesian
approach is appropriate. Elsewhere, we have successfylgited the proposed
hierarchy of probabilistic assumptions on the parameteisutld soft-clustering
counterparts of our models [3].
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