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ABSTRACT
Email is the most popular communication tool of the in-
ternet. In this paper we investigate how email systems can
be enhanced to work as recipient recommendation systems,
i.e., suggesting who recipients of a message might be, while
the message is being composed, given its current contents
and given its previously-specified recipients. This can be a
valuable addition to email clients, particularly in large cor-
porations. It can be used to identify people in an organiza-
tion that are working in a similar topic or project, or to find
people with appropriate expertise or skills. Recipient recom-
mendation can also prevent a user from forgetting to add an
important collaborator or manager as recipient, preventing
costly misunderstandings and communication delays.

In this paper we present the first study of recipient rec-
ommendation in a real large-scale corporate email collection,
the Enron Email corpus. We begin by defining the problem
as a large multi-class multi-label classification task, where
each email can be addressed to multiple recipients in the
user’s address book (i.e., each class is equivalent to an email
address in the address book). We propose various baselines
to the problem, along with a classification-based reranking
scheme to combine two types of features: textual contents
and network information from the email headers. Experi-
ments indicate that the reranking scheme significantly out-
performs the baselines, and that the best scheme is accurate
enough to be useful in email clients. Results are encourag-
ing also because the proposed solution can be easily imple-
mented in any email client – with no changes in the email
server side.

Categories and Subject Descriptors
H.4.3 [Communications Applications]: Electronic mail
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1. INTRODUCTION
One important use of work-related email is negotiating

and delegating shared tasks and subtasks, and more gener-
ally, communication between task-oriented working groups.
Previously we have argued [9] that providing intelligent as-
sistance for this use of email is important because the cost
of errors in task management is high: for instance, dead-
lines can be missed or opportunities wasted because of such
errors.

Here we consider an automated technique, called recip-
ient recommendation, that is designed to avoid a specific
type of high-cost email error: errors that result when a mes-
sage is not sent to all intended recipients. An example of
such an error would be forgetting to CC an important col-
laborator, or manager, on a message to a working group:
such an omission could cause costly misunderstandings and
communication delays.

Specifically, recipient recommendation involves automat-
ically suggesting email recipients of messages being com-
posed. In this paper we experimentally evaluate techniques
that provide a ranked list of email addresses that are likely
to be intended as recipients of a given message. We formalize
this task as a large-scale multi-class classification problem,
and evaluate two baseline classification methods developed
in the information retrieval community. The most effective
baseline turns an extremely efficient method, which can be
applied even to very large message collections with many
potential recipients.

We then develop and evaluate extensions to this method
which substantially increase performance, while still being
efficient enough to be incorporated in most email clients.
Evaluating on 36 different users from the Enron Email Cor-
pus [14], these extensions improve performance (as measured
by mean average precision) by nearly 25% on average over
the baseline. While the effectiveness of the method varies
from user to user, our results suggest that it is accurate
enough to be useful in current email clients. For instance,
on the task of predicting secondary recipients of a message
(CC’d and BCC’d addresses) given the primary (TO) recip-
ient, the average recall at rank 10 is 59.82%, i.e., nearly 60%
of the intended recipients are listed in the top 10 guesses.

This paper is organized in the following way. In Section
2 we introduce the Enron data and the preprocessing steps
utilized in the experiments. In Section 3 we explain the
two main ideas of this report. Section 3.1 introduces some



baselines techniques and the problem definition; while Sec-
tion 3.2 presents the classification-based reranking scheme
used to accommodate network features to the problem. We
comment on the experiments in the Analysis (Section 4).
Related and future work is presented in Section 5. We fin-
ish with some concluding statements in Section 6.

2. PREPROCESSING OF ENRON CORPUS
Although email is ubiquitous, large, public and realistic

email corpora are not easy to find. The limited availability
is largely due to privacy issues. For instance, in most US
academic institutions, an email collection can only be dis-
tributed to researchers if all senders of the collection also
provided explicit written consent.

In all experiments of this paper we used the Enron Email
Corpus, a large collection of real email messages from man-
agers and employees of the Enron Corporation. This collec-
tion was originally made public by the Federal Energy Reg-
ulatory Commission during the investigation of the Enron
accounting fraud. We used the Enron collection to create a
number of simulated user email accounts and address books,
as described below, on which we conducted our experiments.

As expected, real email data have several inconsistencies.
To help mitigate some of these problems, we used the En-
ron dataset version compiled by Jitesh and Adibi [19], in
which a large number of repeated messages were removed.
This version contains 252,759 messages from 151 employees
distributed in approximately 3000 folders.

Another particularly important type of inconsistency in
the corpus is the fact that a single user may have multi-
ple email addresses. We addressed part of these inconsis-
tencies by mapping between 32 “raw” email address and
the normalized email address for some email users. This
mapping (author-normalized-author.txt) was produced by
Andres Corrada-Emmanuel, and is currently available from
the Enron Email webpage [8].

In this paper, we describe two possible settings for the
recipient prediction task1. The first setting is called the
TO+CC+BCC prediction, where we attempt to predict all
recipients of an email given its message contents. It relates
to a scenario where the message is composed, but no re-
cipients have been added to the recipient list. The second
setting is called CC+BCC prediction, in which message con-
tents as well as the TO-addresses were previously specified,
and the problem is recommending additional addresses in
the CC and BCC fields of the message.

For each Enron user, we considered two distinct sets of
messages: messages sent by the user (sent collection) and
messages received by the user (received collection). The
received collection contains all messages in which the user’s
email address was included in the TO, CC or BCC fields.
The sent collection was sorted chronologically and then
split into two parts: the oldest messages were placed into
sent train and most recent ones into sent test. The final
message counts for the 36 target Enron users are shown in
Table 1. This Table also shows their Address Book counts
(|AB|), i.e., the number of different recipients that were
addressed in the messages of the sent train collection.

More specifically, sent test collection was selected to
contain at least 20 “valid-CC” messages, i.e., at least 20

1Assuming at least one of the recipient fields — TO, CC (or
Carbon Copy) or BCC (or Blind Carbon Copy) — is valid.

messages with valid email addresses in both TO and CC
(or both TO and BCC) fields. This particular subset of
sent test, with approximately 20 “valid-CC” messages, is
called sent test∗. The TO+CC+BCC prediction task will
be tested on the entire sent test collection, whereas the
CC+BCC prediction task will be tested only in a subset
of it, the sent test∗ collection. This split was necessary
to guarantee a minimum number of test messages for
CC+BCC prediction task.

Enron |AB| received Sent
user train test test∗

campbell-l 386 901 505 86 21
derrick-j 179 951 539 224 21
dickson-s 36 1053 99 121 20
geaccone-t 147 648 281 159 21
germany-c 520 2435 3585 101 21
giron-d 179 146 591 519 20
grigsby-m 176 1738 758 157 21
hayslett-r 342 1666 759 26 20
horton-s 242 797 341 133 20
hyatt-k 218 1740 520 109 21
hyvl-d 241 1138 615 108 21
kaminski-v 311 1031 1066 153 20
kitchen-l 599 6568 1457 47 20
lavorato-j 106 1230 223 179 20
lokay-m 135 2633 568 76 20
rapp-b 58 295 105 58 21
ward-k 220 1194 803 146 21
bass-e 164 524 1233 406 21
beck-s 1262 3327 1479 112 20
blair-l 330 2004 1062 37 20
cash-m 407 1586 1138 73 20
clair-c 316 2009 1775 52 20
farmer-d 178 1876 587 390 21
fossum-d 320 774 1001 35 20
haedicke-m 496 2282 1049 70 20
jones-t 869 7849 4371 66 21
kean-s 546 6858 2203 75 21
love-p 447 1255 1490 83 21
perlingiere-d 509 1246 2405 144 21
presto-k 344 2577 996 83 21
sager-e 343 2559 1434 90 20
sanders-r 663 2575 1825 173 20
scott-s 720 1336 1413 409 20
shackleton-s 742 7938 4730 67 21
taylor-m 752 9885 2345 176 20
tycholiz-b 93 970 250 259 20
Average 377.6 2377.6 1266.7 144.5 20.5

Table 1: Number of Email Messages in the Different
Collections. |AB| is the number of addresses in the
Address Book. sent test∗ contains only messages
having valid addresses in both TO and CC fields.

This particular split was used to simulate a typical sce-
nario in a user’s desktop — where the user already has sev-
eral sent and received messages, and the goal is to predict
the recipients of the next sent messages. In order to make
the received collection consistent with this, we removed from
it all messages that were more recent than the most recent
message in sent train. The general time frames of the dif-
ferent email collections are pictured in Figure 1.

We also simulated each user’s address book: for each En-
ron user u, we build an address book set AB(u), which is
the list of all recipient addresses in the messages sent by user
u. In other words, the address book of a user u contains all
email addresses extracted from all recipients fields (TO,CC



Figure 1: Time frames of different email collections.

and BCC) in the sent train collection of that particular user
u.

In all our experiments we represented the content of the
messages as a “bag of words”, where the counts of all tokens
in a message were extracted and taken as feature weights.
In this process, a small set of stop words2 was removed from
the email body. In addition, self-addressed messages with
no other recipients were also disregarded.

3. METHODS
In this Section we develop different techniques for the CC

prediction problem based on the textual contents of the mes-
sages. The main idea here is to build a model of “recipient-
message” pairs, and then rank the most likely pairs in the
test collections according to some measure of confidence.
Perfect performance would result in all true recipients being
ranked ahead of non-recipients. To evaluate performance,
we use well known metrics such as average precision, accu-
racy and average recall versus rank curves [1]. We assume
that the actual recipients of a message are the intended ones.

In order to obtain labeled data, a straightforward pro-
cedure for this task is to remove one or more of the “true”
recipients from the original message, and then consider these
addresses as the classes to be predicted. More precisely, in
the CC+BCC prediction task, the classes to be predicted
are the “true” email addresses not in the TO field of the
message; while the TO+CC+BCC prediction task uses all
recipients as “true” classes to be predicted.

It is also important to notice that all methods in this
paper are developed “from a single user’s perspective”. The
only information available to construct prediction models
are the messages sent to and received by a particular user,
and no extra information is assumed. These methods can
be naturally extended if information from the email server is
taken into consideration, but this also raises several privacy
concerns. We will revisit this important issue in Section 4.

3.1 Baselines: Using Textual Content
In this section we develop baseline methods taking advan-

tage of the textual information inside email messages.

3.1.1 TfIdf-Centroid
We start by proposing a technique based on cosine simi-

larity between two TF-IDF (Term Frequency-Inverse Docu-
ment Frequency) vector-based representations of email mes-
sages [18].

During training, for all messages mu in the sent train col-
lection of user u, we derived the message’s TF-IDF vector

2about, all, am, an, and, are, as, at, be, been, but, by, can,
cannot, did, do, does, doing, done, for, from, had, has, have,
having, if, in, is, it, its, of, on, that, the, they, these, this,
those, to, too, want, wants, was, what, which, will, with,
would.

representation
→
mu from its textual contents and then nor-

malized the vector to length 1.0. We then built, for each
recipient ri in the Address Book AB(u), a TF-IDF centroid

vector
→

Centroid(ri) by summing up the normalized TF-IDF
vectors of all messages that were sent from u to ri. In other
words, the TF-IDF Centroid is given by:

→
Centroid(ri)=

X

mu|ri∈R(mu)

→
mu

where R(mu) = {r1, r2..r|R(mu)|} is the set of all recipients
of message mu.

When testing, for each test message we computed the co-
sine similarities between the message’s TF-IDF vector rep-
resentation and the |AB(u)| Centroid vectors. The |AB(u)|
recipients are then ranked according to these cosine simi-
larity scores3. We refer to this method as TfIdf-Centroid.
This method is based on the relevance feedback algorithm
originally proposed by Rocchio [17], and also known as the
TfIdf Classifier [13].

3.1.2 K-Nearest-Neighbors
The second method was based on the K-Nearest Neigh-

bors algorithm described by Yang & Liu [22]. Given a
message mu from user u addressed to a set of recipients
R(mu) = {r1, .., r|R(mu)|}, we found its 30 most similar mes-
sages in the training set. The notion of similarity here is
also defined as the cosine distance between the text of two
normalized TF-IDF vectors. With the top 30 most similar
messages selected from the training set, we then computed
the weight of each recipient ri in |AB(u)| according to the
sum of similarity scores of the messages (from the top 30
messages) in which ri was one of the recipients3. All recip-
ients are ranked according to this final weight. We refer to
this method as Knn-30.

3.1.3 Baseline Results
Results using the baseline methods are shown in the first

four columns of Tables 2 and 3. Table 2 tabulates the results
of the average precision for the TO+CC+BCC prediction
task on 36 Enron users. Table 2 shows average precision re-
sults on the CC+BCC prediction task for the same 36 users.
Additionally, in both Tables we included a random baseline
— it shows the performance when ranking of addresses is
chosen randomly from the address book, averaged over 20
trials.

The mean values of average precision over the 36 Enron
users are also indicated in Tables 2 and 3, along with their
standard errors. In both Tables, we performed Wilcoxon
Matched-Pairs Signed-Ranks Tests and the following con-
vention was adopted: the symbols + and ++ indicate that
the value on that particular column is statistically signif-
icant with p < 0.05 and p < 0.01, respectively, over the
result in the previous column.

Tables 2 and 3 are divided into two user-groups: the top
17 users and the bottom 19 users. In all experiments in this
paper, one of these groups was utilized during the develop-
ment of the methods and feature set, while the other user-
group was used as test after all methods were completely
developed.

3For obvious reasons, in the CC+BCC prediction task, a
post-processing step removes all TO-addresses from the final
rank.



Results clearly indicate that the random baseline performs
poorly — not surprisingly, both TfIdf-Centroid and Knn-30
significantly outperform the random baseline in both Ta-
bles. In the TO+CC+BCC prediction task, the difference
between TfIdf-Centroid and Knn-30 methods is not statis-
tically significant, whereas in the CC+BCC prediction task
Knn-30 seems to outperform TfIdf-Centroid significantly
(with p < 0.05).

Average precision numbers around 0.32 are encouraging
given a problem with so many (typically thousands) of
classes. In the next section, we will improve the Knn-30
results by taking advantage of network-like features such as
frequency, recency and co-occurrence of email addresses in
the training set.

It is worth noticing that, besides these two baseline meth-
ods, we also tried two (log)linear classification algorithms
to this problem (Logistic Regression and Voted-Perceptron
[11]) in a one-versus-all multiclass scheme. We did not ob-
serve any noticeable gain over Knn-30 results in preliminary
tests3. Moreover, these two linear methods were consider-
ably more expensive to train than the Centroid and Knn-30
methods because the number of classes to be learned in the
one-vs-all scheme was fairly large, i.e., the number of email
addresses in the address book. As a matter of fact, the
problem of efficient learning when the numbers of classes or
concepts abound is an interesting research problem in itself
[15].

3.2 Reranking Using Network Information

3.2.1 Crossvalidation
So far we have considered only the textual contents of

emails in both recipient prediction tasks. Yet, it is reason-
able to consider other features for these problems, such as
the number of received messages, number of sent messages,
number of times two recipients were copied in the same mes-
sage, etc. In this Section we describe how these “network”
features can be exploited to improve recipient recommenda-
tion performance.

In order to combine textual and network features, we
used a classification-based reranking scheme. The idea is
to perform recipient prediction in two steps. In the first
step we calculate the textual similarity scores using a cross-
validation procedure in the training set. In the second step,
we extract the network features and then we learn a function
that combines those with the previously calculated textual
scores.

The textual scores are calculated in the following way.
We split the training set (sent train collection) in 10 parts.
Using a 10-fold cross-validation procedure: we compute the
score for the knn-30 on 90% of the training data and use it
to make predictions in the remaining 10%. Eventually, each
training set examples will have, associated with it, a list of
email addresses (from the top 30 messages selected by Knn-
30 ) and their predicted scores. Now we have, for each mes-
sage mu in user u’s training set, a score KnnScore(mu, ri)
associated with each recipient ri ∈ AB(u). These scores will
be used as features in the second step of the classification
procedure.

3.2.2 Network-Based Features
3Actually, Knn-30 typically outperformed both linear mod-
els in preliminary tests.

In addition to the textual scores, we used three different
sets of network features. The first set is based on the rela-
tive frequency of a recipient’s email address in the training
set. For each recipient we extracted three features: the nor-
malized sent frequency (i.e., the number of messages sent
to this recipient divided by the total number of messages
sent to all other recipients in this user u’s training set), the
normalized received frequency (i.e., the number of messages
received from this recipient divided by the total number of
messages received from all other users) and the normalized
sum of the previous two. We refer to these features as Fre-
quency features.

In the CC+BCC prediction task only, information in the
TO-addresses of a message can be exploited to improve re-
cipient prediction. This second set of network features is
defined in terms of the co-occurrence between TO-addresses
and CC(and BCC)-addresses in the training set. The in-
tuition behind this feature is that we expect related CC-
recipients to co-occur more frequently with the recipients
already addressed in the TO field of the email message.
Given a message with three TO-recipients to1, to2 and to3,
and a given CC candidate address cci, let the frequency of
co-occurrence between recipients cci and toj be F (toj , cci)
(i.e., the number of messages in the training set that had
toj as well as cci as recipients). Then, for a given message,
the Relative CC Frequency (or RCCF) of cci with the TO-
recipients will be:

RCCF (cci) =

P
j F (toj , cci)

F (cci)

where F (cci) is the number of messages sent to address cci

in the training set.
The second type of co-occurrence-based feature is called

Relative Joint Recipient Frequency (or RJRF). For a given
message with J TO-recipients, RJRF (cci) is defined as the
percentage from these TO-recipients that ever co-occurred
in the training set with cci. In other words, the percentage
of these TO-recipients that were at least once addressed in
the same message as cci. Obviously both RJRF and RCCF
features are used only when the number of addresses in the
TO field (i.e., J) is two or more. We refer to the RJRF and
RCCF features as the Cooccurrence features.

The last set of network-based features uses the informa-
tion in the latest messages sent by the user. Similar to the
Frequency features above, we extract the normalized sent
frequency of all users in the training set. But instead of
using the entire training set for the extraction, we only use
the last 20, last 50 and last 100 messages. We refer to these
features as the Recency features.

3.2.3 Reranking
In order to combine the textual scores KnnScore(mu, ri)

from the 10-fold crossvalidation procedure with the net-
work based features, we used a classification-based rerank-
ing scheme. More specifically, we use the confidence of a
classifier as ranking score — a scheme also know as Di-
rect Reranking by Classification [12]. This technique is also
closely related to the Stacked generalizations proposed by
Wolpert [21].

The learning proceeded in the following way. For each
training message mu with J recipients (TO+CC+BCC), we
created |AB(u)| new binary examples: J positive examples



Enron Random TfIdf Knn-30 Reranked Knn-30 Score ∆(%)
user Centroid +Frequency +Recency +All (From +All

Features Features Features to Knn-30)
only only

campbell-l 0.037 0.346 0.329 0.348 0.351 0.354 7.599
derrick-j 0.017 0.177 0.234 0.321 0.327 0.318 35.897
dickson-s 0.003 0.313 0.303 0.353 0.339 0.339 11.881
geaccone-t 0.014 0.191 0.220 0.262 0.276 0.263 19.545
germany-c 0.050 0.464 0.537 0.524 0.556 0.518 -3.538
giron-d 0.017 0.142 0.108 0.194 0.195 0.183 69.444
grigsby-m 0.017 0.388 0.467 0.584 0.656 0.606 29.764
hayslett-r 0.033 0.310 0.303 0.345 0.331 0.324 6.931
horton-s 0.023 0.106 0.091 0.118 0.139 0.137 50.549
hyatt-k 0.021 0.269 0.360 0.486 0.475 0.472 31.111
hyvl-d 0.030 0.231 0.218 0.336 0.344 0.336 54.128
kaminski-v 0.057 0.497 0.561 0.674 0.701 0.688 22.638
kitchen-l 0.010 0.429 0.315 0.428 0.440 0.452 43.492
lavorato-j 0.014 0.211 0.260 0.382 0.405 0.378 45.385
lokay-m 0.005 0.854 0.813 0.805 0.810 0.810 -0.369
rapp-b 0.020 0.264 0.297 0.389 0.335 0.328 10.438
ward-k 0.015 0.380 0.444 0.507 0.521 0.514 15.766
bass-e 0.016 0.352 0.407 0.473 0.461 0.478 17.445
beck-s 0.120 0.101 0.237 0.235 0.329 0.314 32.489
blair-l 0.037 0.446 0.485 0.504 0.567 0.568 17.113
cash-m 0.031 0.333 0.237 0.270 0.285 0.287 21.097
clair-c 0.039 0.430 0.338 0.386 0.387 0.385 13.905
farmer-d 0.030 0.427 0.402 0.375 0.406 0.397 -1.244
fossum-d 0.017 0.084 0.058 0.086 0.123 0.121 108.621
haedicke-m 0.033 0.295 0.302 0.448 0.332 0.299 -0.993
jones-t 0.045 0.384 0.398 0.430 0.408 0.403 1.256
kean-s 0.088 0.359 0.366 0.388 0.423 0.421 15.027
love-p 0.054 0.491 0.399 0.388 0.399 0.367 -8.020
perlingiere-d 0.042 0.253 0.339 0.353 0.367 0.371 9.440
presto-k 0.046 0.422 0.295 0.343 0.331 0.295 0.000
sager-e 0.030 0.228 0.184 0.237 0.299 0.295 60.326
sanders-r 0.063 0.268 0.276 0.414 0.425 0.441 59.783
scott-s 0.067 0.455 0.412 0.383 0.531 0.536 30.097
shackleton-s 0.072 0.275 0.373 0.362 0.438 0.331 -11.260
taylor-m 0.073 0.210 0.222 0.290 0.279 0.264 18.919
tycholiz-b 0.009 0.324 0.292 0.313 0.384 0.386 32.192
Mean 0.036 0.325++ 0.330 0.381** 0.399** 0.388** 24.079
StdError 0.004 0.024 0.023 0.023 0.023 0.023 4.193

Table 2: TO+CC+BCC Prediction: Average Precision. The symbol ∗∗ indicates statistical significance
significance (p < 0.01) over the result in the Knn-30 column, while ++ indicates statistical significance (p < 0.01)
over the values in the immediately previous column.

associated with the true recipients and |AB(u)|−J negative
examples with the features associated with all other non-
recipients addresses in the Address Book AB(u). There-
fore, each message mu originated |AB(u)| binary examples4;
and each binary example is related to an email address ri

from the address book. These binary example contains the
following features: the score KnnScore(mu, ri), Frequency
features of ri, Recency features of ri and, in case of the
CC+BCC prediction task, Co-occurrence features associ-
ated with recipient ri in the message.

By doing this transformation, the recipient prediction
tasks became a binary classification problem, where the
final ranking score will be determined by the classifier’s
confidence5.

4In practice, instead of using all |AB(u)|−J negative exam-
ples, we used only a random selection of 20% of them. This
provided an effective speed up in training time and did not
seem to affect performance.
5Similar to previous methods, a post-processing step re-
moves all TO-addresses from the final rank in the CC+BCC
prediction task.

We used the Voted Perceptron [11] as learning algorithm6,
as an example of a learning method known to be robust
and effective in various tasks [6], yet efficient enough to be
plausibly embedded in an email client and scale well to very
large datasets. In our experiments, it was trained using five
passes through the same training data.

3.2.4 Results
Once again, experimental results using the network fea-

tures are illustrated in Tables 2 and 3. The last four columns
of Table 2 display the average precision test results for 36
different Enron users in the TO+CC+BCC prediction task;
while the last five columns of Table 3 show the average pre-
cision for the CC+BCC preditions.

In both Tables 2 and 3, we performed Wilcoxon Matched-
Pairs Signed-Ranks Tests and the following convention was
adopted: the symbols ∗ and ∗∗ indicate values that are sta-
tistically significant with p < 0.05 and p < 0.01, respectively,
over the result in the Knn-30 column.

6To be precise, the “average (unnormalized)” version of the
algorithm.



Enron Random TfIdf Knn-30 Reranked Knn-30 Score ∆(%)
user Centroid +Frequency +Cooccur +Recency +All (From +All

Features Features Features Features to Knn-30)
only only only

campbell-l 0.036 0.282 0.304 0.305 0.327 0.308 0.310 1.974
derrick-j 0.017 0.262 0.368 0.384 0.408 0.401 0.378 2.717
dickson-s 0.001 0.329 0.319 0.332 0.331 0.324 0.316 -0.940
geaccone-t 0.014 0.149 0.218 0.242 0.247 0.223 0.235 7.798
germany-c 0.032 0.438 0.533 0.519 0.537 0.545 0.524 -1.689
giron-d 0.015 0.111 0.095 0.115 0.109 0.123 0.133 40.000
grigsby-m 0.017 0.331 0.373 0.515 0.521 0.545 0.550 47.453
hayslett-r 0.033 0.147 0.132 0.189 0.183 0.171 0.164 24.242
horton-s 0.020 0.083 0.078 0.087 0.081 0.129 0.090 15.385
hyatt-k 0.026 0.279 0.498 0.689 0.646 0.661 0.595 19.478
hyvl-d 0.020 0.230 0.302 0.340 0.326 0.353 0.370 22.517
kaminski-v 0.238 0.540 0.730 0.705 0.727 0.735 0.751 2.877
kitchen-l 0.057 0.257 0.137 0.201 0.190 0.184 0.206 50.365
lavorato-j 0.010 0.207 0.235 0.264 0.245 0.276 0.242 2.979
lokay-m 0.013 0.770 0.765 0.764 0.770 0.767 0.769 0.523
rapp-b 0.006 0.192 0.168 0.143 0.194 0.173 0.200 19.048
ward-k 0.019 0.393 0.543 0.592 0.575 0.650 0.642 18.232
bass-e 0.015 0.366 0.452 0.446 0.454 0.448 0.432 -4.425
beck-s 0.102 0.118 0.226 0.221 0.167 0.327 0.257 13.717
blair-l 0.031 0.300 0.450 0.454 0.322 0.504 0.391 -13.111
cash-m 0.039 0.269 0.176 0.205 0.225 0.236 0.255 44.886
clair-c 0.030 0.432 0.333 0.330 0.356 0.320 0.345 3.604
farmer-d 0.017 0.367 0.327 0.270 0.276 0.319 0.278 -14.985
fossum-d 0.030 0.083 0.069 0.069 0.101 0.103 0.098 42.029
haedicke-m 0.047 0.261 0.196 0.256 0.183 0.172 0.113 -42.347
jones-t 0.059 0.140 0.282 0.359 0.278 0.333 0.319 13.121
kean-s 0.052 0.268 0.410 0.412 0.483 0.447 0.478 16.585
love-p 0.043 0.481 0.406 0.400 0.431 0.401 0.394 -2.956
perlingiere-d 0.020 0.138 0.334 0.342 0.340 0.355 0.356 6.587
presto-k 0.033 0.321 0.244 0.284 0.271 0.261 0.244 0.000
sager-e 0.033 0.264 0.245 0.306 0.212 0.346 0.351 43.265
sanders-r 0.050 0.209 0.249 0.405 0.294 0.400 0.388 55.823
scott-s 0.069 0.442 0.442 0.331 0.408 0.529 0.390 -11.765
shackleton-s 0.080 0.198 0.334 0.368 0.393 0.426 0.408 22.156
taylor-m 0.034 0.323 0.350 0.342 0.367 0.328 0.325 -7.143
tycholiz-b 0.009 0.355 0.312 0.311 0.349 0.453 0.453 45.192
Mean 0.038 0.287++ 0.323+ 0.347** 0.342** 0.369** 0.354** 13.422
StdError 0.007 0.024 0.027 0.027 0.028 0.028 0.028 3.652

Table 3: CC+BCC Prediction: Average Precision of 36 Enron Users. The symbol ∗∗ indicate statistical
significance significance (p < 0.01) over the result in the Knn-30 column. The symbols + and ++ indicate
statistical significance with p < 0.05 and p < 0.01, respectively, over the result in the immediately previous
column.

In the TO+CC+BCC prediction task, there are signifi-
cant improvements when the proposed reranking scheme is
combined with the Frequency features. The Recency fea-
tures significantly improve average precision values over the
Knn-30 baseline. Likewise, a combination of Frequency
and Recency features (the “+All” column) in the rerank-
ing scheme also shows significantly better results over the
baseline. Even though the reranking scheme deteriorated
the performance for some Enron users, on average results in
Table 2 clearly indicate that the proposed method is very
effective to predict recipient addresses. The best setting of
features obtained almost 0.4 in mean average precision over
the 36 Enron users.

A similar observation is valid for the CC+BCC prediction
task in Table 3. Statistically significant gains in average pre-
cision can be observed when the Frequency features are used
in the reranking scheme. Likewise, both Co-occurrence fea-
tures as well as the Recency features independently provide
significant gains in performance over the Knn-30 baseline.
When all three types of features are combined in the rerank-

ing scheme, again, significant gains in performance are ob-
served.

In both Tables 2 and 3, the last column shows the relative
gain in average precision over the Knn-30 baseline when all
network-based features are used. On average, gains of more
than 24% were observed in TO+CC+BCC predictions, and
gains of about 13% for the CC+BCC prediction task. A
more comprehensive analysis of Tables 2 and 3 results will
be presented in Section 4.

The overall performance for the 36 Enron users on both
recipient prediction tasks is illustrated in the top-half of
Table 4. This table displays the overall results of both
TO+CC+BCC and CC+BCC prediction tasks averaged
over the 36 Enron users in terms of three metrics: Average
Precision, Accuracy7 and an alternative metric that we will
call “Pr(hit top K)”.

7Accuracy is defined as the percentage of test messages in
which the first guess of the learning algorithm was correct,
i.e., the percentage of test messages having a “true” recipient
on the top of the prediction ranking.



TfIdf Knn-30 Reranked Knn-30 Scores
Centroid +Frequency +Cooccur +Recency +All

Features Features Features Features
only only only

Avg. Precision 0.325 0.330 0.381 N/A 0.399 0.388
Accuracy 0.354 0.392 0.378 N/A 0.415 0.383

TO+CC+BCC Pr(hit top 3) 0.558 0.608 0.591 N/A 0.637 0.611
Pr(hit top 5) 0.642 0.684 0.680 N/A 0.692 0.692
Pr(hit top 10) 0.770 0.771 0.789 N/A 0.787 0.785
Avg. Precision 0.287 0.323 0.347 0.342 0.369 0.354
Accuracy 0.214 0.272 0.272 0.266 0.298 0.270

CC+BCC Pr(hit top 3) 0.398 0.451 0.459 0.430 0.481 0.461
Pr(hit top 5) 0.484 0.539 0.534 0.507 0.556 0.511
Pr(hit top 10) 0.612 0.626 0.633 0.622 0.659 0.641

Avg. Precision 0.335 0.340 0.392 N/A 0.411 0.400
Accuracy 0.364 0.403 0.389 N/A 0.426 0.394

TO+CC+BCC Pr(hit top 3) 0.574 0.625 0.607 N/A 0.655 0.628
(cleaned) Pr(hit top 5) 0.660 0.703 0.699 N/A 0.712 0.712

Pr(hit top 10) 0.791 0.792 0.811 N/A 0.809 0.806
Avg. Precision 0.313 0.353 0.380 0.371 0.401 0.385
Accuracy 0.233 0.296 0.296 0.289 0.324 0.294

CC+BCC Pr(hit top 3) 0.434 0.491 0.500 0.468 0.524 0.501
(cleaned) Pr(hit top 5) 0.527 0.587 0.581 0.552 0.605 0.556

Pr(hit top 10) 0.667 0.681 0.689 0.677 0.717 0.698

Table 4: Overall Recipient Prediction Performance.

Pr(hit top K) is the Probability of a ’hit’ in the top K
entries of the rank. In other words, it is the probability of
having “recall at rank K” larger than zero; or the probability
of having at least one correct guess in the top K entries of the
rank. For instance, Pr(hit top 5) quantifies the percentages
of test messages that had at least one correct prediction up
to rank 5. We use this metric in this paper to provide some
ground for comparison with this previous work, as detailed
in Section 5.

3.2.5 Unseen Recipients
A closer look in the results revealed that some of test

messages consistently extremely low performance values. A
careful analysis revealed that these messages contained re-
cipients that were never addressed in the training set. Be-
cause these email addresses would not be found in the user’s
Address Book, they could never be predicted by any algo-
rithm.

In order to circumvent this problem, we redid the experi-
ments with a small modification in the evaluation: we disre-
garded all test messages in which all recipients were unseen.
Therefore, if the test message had at least one recipient in
the Address Book, it would not be disregarded. This mod-
ification is indicated with the keyword (cleaned) in Table
4.

The overall results for both tasks are shown in Table 4.
As expected, performance was improved for all methods and
feature settings after the test set evaluation is “cleaned”.
Generally speaking, the same qualitative observations on
the top half results of Table 4 can be made about the top
bottom.

One particular difference is that the improvements in per-
formance were more pronounced in the CC+BCC prediction
task than in the TO+CC+BCC one. This can be explained
by the smaller number of test messages in CC+BCC pre-

dictions. Disregarding the messages with unseen recipients,
the best configuration was able to correctly guess recipi-
ents with accuracies of 0.426 and 0.324, respectively, for the
TO+CC+BCC and CC+BCC tasks.

Figure 2 shows the Average Recall versus Rank curves for
all 36 Enron users. Those curves display values of average
recall from rank 1 to rank 1262 (the largest Address Book
size). A closer look in the top ten rank positions of the same
curves is depicted in Figure 3.

Figures 2 and 3 displays the avgerage recall performance
for the TfIdf-Centroid baseline, the Knn-30 baseline and all
possible variants of the the reranking scheme. All plots in
those Figures clearly show that the reranking scheme typi-
cally outperforms the textual-only baselines. In particular,
the difference between the reranking-based methods and the
textual baselines is more pronounced in the TO+CC+BCC
curves than in the CC+BCC curves.

Another interesting observation from Figures 2 and 3 is
the behavior of the Knn-30 baseline. It consistently out-
perform the TfIdf baseline in the top of the rank, but then
between rank 20 and 30 the Knn-30 performance seriously
deteriorates and its average recall values are considerably
worse than the TfIdf baseline. This behavior is explained by
the fact that Knn-30 utilizes only the top 30 most similar
training messages for predictions — completely disregarding
the other messages.

It is also interesting that the CC+BCC prediction
presents higher average recall values than the TO+CC+BCC
task from rank 1 to 10. Results were very encouraging,
average recalls at rank 10 were nearly 60% for the CC+BCC
task and approximately 53% on the TO+CC+BCC one.

4. ANALYSIS
Generally speaking, the reranking scheme was shown to

be significantly more effective than any of the textual base-
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Figure 3: Average Recall vs Rank Curves: From
Rank 1 to 10.

lines. Also, the best possible results were not reached by
using all possible features. Instead, using Recency features
(only) seem to be the most effective setting for this problem,
outperforming all other configurations in most of the tests.
This indicates how important these features are.

In reality, we used the Recency features as an approxima-
tion for the notion of email threads. Threading information
is expected to be a very important piece of evidence for this
task8, but unfortunately we could not exploit it directly be-
cause the available Enron dataset does not contain standard
message threading information.

Our training/test split is not ideal because the later test
messages have less accurate estimates of Recency informa-
tion (as well of other features). Possibly, the best test con-
ditions for this problem would be a setting where, on each
test message prediction, the classifier uses information from
all messages seen so far, including previous messages in the
same email thread. In this paper we approximated this de-
sirable setting using the train/test splits described in Section
2. In future works we plan to implement this desirable set-
ting possibly by taking advantage of fast, and still effective

8The importance of email thread information to CC predic-
tion has also been suggested by Pal & McCallum [16].

effective, online learning algorithms [6].
With the exception of the Frequency features, no other

feature or method in this study exploited information from
the received emails (the received collection). We found it
largely unnecessary because of two major reasons. First,
preliminary tests indicated that there was no significant gain
in using information from the received set. Secondly, by us-
ing all messages and recipients from the received collection,
training times and memory requirements of the learning al-
gorithms were substantially increased.

Indeed, one of the main advantages of the proposed
methods are their efficiency and applicability in large-scale
systems. Both textual baselines, as well as in the Voted
Perceptron-based reranking method, are very efficient to
train and easy to implement.

5. RELATED WORK
The CC Prediction problem was initially described by Pal

& McCallum [16], where Naive Bayes and Factor Graphs
models were used to predict recipients. In their short pa-
per, performance was evaluated in terms of what we called
“Pr(hit top 5)” performance measure. They report perfor-
mance values around 44% for the Pr(hit top 5) measure on a
collection of one researcher’s personal email — however their
version of this computation is substantively different from
ours, as they assume that all recipients but one are given
and the task is to predict the missing recipient, whereas we
assume only the primary recipients are known. For compar-
ison, our best system achieves a value of “Pr(hit top 5)” of
more than 60% when averaged over the 36 Enron users.

The email recipient prediction problem is closely related
to the Expert Finding task in Email. The goal of this task
is explicitly finding expertise using only the email messages
exchanged inside an organization, as described by Dom
et al.[10], Balog et al.[2], Campbell et al.[5] and Sihn an
Heeren[20]. This area of research has received considerable
attention from the TREC community and an expert-finding
task has been run under the TREC Enterprise track since
2005.

Though apparently similar, the Expert Finding task and
the email recipient prediction task have some fundamental
differences. First, the latter is focused on a single email user,
while the former is typically focused in an organization or
group. The former is explicitly trying to find expertise in
(typically) very narrow areas of knowledge, while the lat-
ter is not necessarily trying to find expertise — instead, it
is trying to recommend users related to an indiscriminate
topic.

The recipient prediction task is also related to the Email
Leak Prediction task [7]. The goal of this task is preventing
information leaks by detecting when a message is acciden-
tally addressed to non-desired recipients. In some sense, the
recipient prediction task can be seen as the negative counter-
part of the email leak prediction task: in the former, we want
to find the intended recipients of email messages, whereas
in the latter we want to find the unintended recipients or
email-leaks.

Another important area of work obviously related to this
problem is collaborative filtering or recommending systems
[4, 3]. The CC Prediction problem can be seen as a special
type of recommendation system where email recipients are
recommended based on the current message being composed
and the previous messages exchanged among users.



6. CONCLUSION
With the widespread adoption of email, users are increas-

ingly required to handle large numbers of messages in short
periods of time. To help users cope with this “email storm”,
machine learning techniques have been applied to different
email-related tasks. In this work we addressed the email
recipient prediction problem, that is, recommending recipi-
ents of email messages being composed. This task can be a
valuable addition to email clients, particularly in large cor-
porations — it can prevent a user from forgetting to add
an important collaborator or manager as recipient, prevent-
ing costly misunderstandings and communication delays. In
addition, it can potentially be used to identify people in an
organization that are working (or have worked) in a simi-
lar topic or project, or that have an expertise in a specific
subject.

We addressed the problem as a multi-class multi-label
classification task, in which every email address in the user’s
address book is a possible class to be assigned to the cur-
rent message. We started by proposing two different effec-
tive techniques as baselines. Then we developed extensions
(based on the Voted Perceptron algorithm) over these base-
lines to combine the two types of features in this problem:
textual contents of messages and network information from
the email headers.

All evaluations were carried out using 36 different users of
the Enron Email Corpus. Experiments clearly showed that
the proposed extensions significantly outperform the base-
lines and that it is accurate enough to become a valuable
feature in email clients. For instance, on the task of predict-
ing all email recipients, our methods reached almost 40% of
average precision and more than 41% of accuracy.

Another advantage of this approach is that it can be easily
implemented in any email client, not requiring changes in
the email server side. Indeed, both the baselines, as well as
in the Voted Perceptron-based reranking method, are very
efficient to train and easy to be implemented in a large-scale
systems, especially over an email client that already includes
traditional IR search over messages.
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Figure 2: Average Recall vs Rank Curves: Complete Rank.


