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Abstract

Many information extraction and knowledge base construc-
tion systems are addressing the challenge of deriving knowl-
edge from text. A key problem in constructing these knowl-
edge bases from sources like the web is overcoming the erro-
neous and incomplete information found in millions of can-
didate extractions. To solve this problem, we turn to seman-
tics – using ontological constraints between candidate facts
to eliminate errors. In this article, we represent the desired
knowledge base as a knowledge graph and introduce the prob-
lem of knowledge graph identification, collectively resolv-
ing the entities, labels, and relations present in the knowl-
edge graph. Knowledge graph identification requires reason-
ing jointly over millions of extractions simultaneously, posing
a scalability challenge to many approaches. We use proba-
bilistic soft logic (PSL), a recently-introduced statistical rela-
tional learning framework, to implement an efficient solution
to knowledge graph identification and present state-of-the-art
results for knowledge graph construction while performing
an order of magnitude faster than competing methods.

A growing body of research focuses on extracting knowl-
edge from text such as news reports, encyclopedic articles
and scholarly research in specialized domains. Much of this
data is freely available on the World Wide Web and harness-
ing the knowledge contained in millions of web documents
remains a problem of particular interest. The scale and di-
versity of this content poses a formidable challenge for sys-
tems designed to extract this knowledge. Many well-known
broad domain and open information extraction systems seek
to build knowledge bases from text, including the Never-
Ending Language Learning (NELL) project (Carlson et al.,
2010), OpenIE (Etzioni et al., 2008), DeepDive (Niu et al.,
2012), and efforts at Google (Pasca et al., 2006). Ultimately,
these information extraction systems produce a collection of
candidate facts, that include a set of entities, attributes of
these entities, and the relations between these entities.

Information extraction systems use a sophisticated collec-
tion of strategies to generate candidate facts from web doc-
uments, spanning the syntactic, lexical and structural fea-
tures of text (Weikum and Theobald, 2010; Wimalasuriya
and Dou, 2010). While these systems are capable of extract-
ing many candidate facts from the web, their output is of-
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ten hampered by noise. Documents contain inaccurate, out-
dated, incomplete, or hypothetical information, and infor-
mal and creative language used in web documents is often
difficult to interpret. As a result, the candidates produced
by information extraction systems often miss key facts and
include spurious outputs, compromising the usefulness of
the extractions. In an effort to combat such noise, informa-
tion extraction systems capture a vast array of features and
statistics, ranging from the characteristics of the webpages
used to generate extractions to the reliability of the particu-
lar patterns or techniques used to extract information. Using
this host of features and a modest amount of training data,
many information extraction systems employ heuristics or
learned prediction functions to assign a confidence score to
each candidate fact. These confidence scores capture the in-
herent uncertainty in the text from which the facts were ex-
tracted, and can ideally be used to improve the quality of the
knowledge base.

While many information extraction systems use features
derived from text to measure the quality of candidate facts,
few take advantage of the many semantic dependencies be-
tween these facts. For example, many categories, such as
“male” and “female” may be mutually exclusive, or re-
stricted to a subset of entities, such as living organisms.
Recently, the Semantic Web movement has developed stan-
dards and tools to express these dependencies through on-
tologies designed to capture the diverse information present
on the Internet. The problem of building domain-specific on-
tologies for expert users with Semantic Web tools is chal-
lenging and well-researched, with high-quality ontologies
for domains including bioinformatics, media such as music
and books, and governmental data. More general ontologies
have been developed for broad collections such as the on-
line encyclopedia Wikipedia. These semantic constraints are
valuable for improving the quality of knowledge bases, but
incorporating these dependencies into existing information
extraction systems is not straightforward.

The constraints imposed by an ontology are generally
constraints between facts. For example, candidate facts as-
signing a particular entity to the categories “male”, “fe-
male”, and “living organism” are interrelated. Hence, lever-
aging the dependencies between facts in a knowledge base
requires reasoning jointly about the extracted candidates.
Due to the large scale at which information extraction sys-



country	  

Kyrgyzstan	   Kyrgyz	  Republic	  

bird	  

Asia	  

R
el(lo

cated
In

) 

Extrac'on	  Graph	  

Kyrgyzstan	  
	  

Kyrgyz	  Republic	  

Asia	  

country	  

Rel(locatedIn) 

Lbl 

Knowledge	  Graph	  

Sta's'cs	  and	  Extrac'ons	  

[.75,	  .50]	  bird(Kyrgyzstan)	  
	  
[.60,	  .80]	  country(Kyrgyzstan)	  
	  
[.90,	  .55]	  country(Kyrgyz	  Republic)	  

	  
[.80,	  .65]	  locatedIn(Kyrgyz	  Republic,	  Asia)	  
	  

Adding	  Seman'c	  Dependencies	  

country	  

Kyrgyzstan	   Kyrgyz	  Republic	  

bird	  

Asia	  

Mut Dom 

Same 

R
el(lo

cated
In

) 

Figure 1: An illustration of (1) the conflicting candidate facts and statistics produced by an information extraction system,
(2) their representation as an uncertain extraction graph, (3) semantic dependencies between facts introduced by an ontology,
and (4) the final knowledge graph where errors have been removed by knowledge graph identification. Entities are shown
in rectangles, labels are shown in circles, dashed lines represent uncertain information, dotted lines are used for ontological
constraints and entity resolution, and solid lines represent the knowledge graph produced by knowledge graph identification.

tems operate, considering the dependencies between mil-
lions of candidates presents a scalability challenge. Logic-
based approaches to reasoning about these candidates, such
as automated theorem proving or constraint processing sys-
tems, are often impractical due to the uncertainty and errors
in the candidate facts(Hitzler and van Harmelen, 2010). We
describe a statistical relational learning(Getoor and Taskar,
2007) approach to the problem of constructing knowledge
bases, applying recently developed techniques that incorpo-
rate statistical information and logical dependencies at scale.

Our approach uses a lightweight representation that we
refer to as a knowledge graph. The knowledge graph con-
tains the facts in the knowledge base, similar to the ABox
in traditional knowledge representation approaches. In the
knowledge graph, entities are represented as nodes, the at-
tributes of each entity are node labels, and relationships be-
tween two or more entities are represented as edges. To build
the knowledge graph, we use as input the entities, labels,
and relationships produced by an information extraction sys-
tem, which can be represented as an extraction graph. Noise,
ambiguity, and errors limit the usefulness of the extraction
graph. In this article, we summarize work on knowledge
graph identification(Pujara et al., 2013), a process that infers

a knowledge graph from the extraction graph. In addition to
the statistical properties of the extraction graph, knowledge
graph identification incorporates semantics, in the form of an
ontology and ontological constraints defined over the facts
in the knowledge graph, to leverage dependencies between
facts. These ontological constraints correspond to the TBox
in knowledge representation terms. Figure 1 illustrates the
noisy extraction graph that serves as an input to knowledge
graph identification and the knowledge graph produced as
output.

Statistical relational learning approaches can capture both
the structure of the knowledge graph as well as the logi-
cal dependencies between the constituent facts. Unlike tra-
ditional reasoning systems, statistical relational learning ap-
proaches can treat ontological constraints as weighted rules,
using them as“hints” to find the correct facts in a knowl-
edge graph. For example, Jiang, Lowd, and Dou (2012) have
demonstrated the effectiveness of Markov logic networks
(MLNs) for jointly reasoning about the facts in a knowledge
base.

Although MLNs provide a powerful approach to pro-
ducing knowledge bases, their principal weakness is scal-
ability. Here, instead, we use probabilistic soft logic



(PSL)(Broecheler, Mihalkova, and Getoor, 2010), a re-
cently developed statistical relational learning approach.
PSL shares many attractive features of MLNs: models can
be specified using predicates and rules written in first-order
logic syntax and translated into a probabilistic graphical
model. In addition, PSL overcomes the scalability limita-
tions of MLNs. Each logical predicate in an MLN has a
Boolean truth value, and inference in these models is an in-
tractable combinatorial optimization. As a result, many ap-
proximate methods for optimizing such models rely on sam-
pling techniques for tractable inference. One of the key fea-
tures of PSL is that predicates take continuous values in the
[0, 1] range. By relaxing truth values to the continuous do-
main, PSL is able to solve inference tasks as an efficient con-
vex optimization. In addition to improving scalability, con-
tinuous truth values provide a more suitable representation
for statistical features, such as the confidence values of can-
didate facts. In this article, we show how implementing a
PSL model for knowledge graph identification allows us to
reason jointly over millions of facts efficiently, producing
new state-of-the-art results. In addition, the improved scala-
bility of our approach allows us to operate on datasets that
are intractable for competing approaches to joint inference,
such as MLNs.

Knowledge Graph Identification: The Problem
The problem of jointly inferring the entities, labels, and re-
lations in a graph from uncertain data through the processes
of entity resolution, collective classification, and link pre-
diction is referred to as graph identification (Namata, Kok,
and Getoor, 2011). Similar to graph identification, knowl-
edge graph identification completes these three tasks to in-
fer the most probable knowledge graph from uncertain ex-
tractions. However, unlike graph identification, knowledge
graph identification incorporates ontological constraints be-
tween facts during inference. We motivate the challenges
presented by entity resolution, collective classification, and
link prediction in knowledge graphs, then demonstrate how
ontological information plays a vital role in each task. We
draw examples from the Never-ending Language Learner
(NELL), a large-scale information extraction system with a
rich ontology, but the problems we identify are widespread
in information extraction.

Entity extraction has a common problem: many textual
references that initially look different may refer to the same
real-world entity. For example, NELL’s knowledge base
contains candidate facts involving the entities “kyrghyzs-
tan”, “kyrgzstan”, “kyrgystan”, “kyrgyz republic”, “kyr-
gyzstan”, and “kyrgistan” which are all variants or mis-
spellings of the country Kyrgyzstan. In the extraction graph,
each of these entities incorrectly correspond to different
nodes. Our approach uses entity resolution to determine co-
referent entities in the knowledge graph, producing a consis-
tent set of labels and relations for each resolved node.

Another challenge in knowledge graph construction is in-
ferring labels consistently. For example, NELL’s extractions
assign Kyrgyzstan the labels “country” as well as “bird.”
Ontological information suggests that an entity is very un-
likely to be both a country and a bird simultaneously. More-

over, other extractions, for example that Bishkek is the capi-
tal of Kyrgyzstan, support the conclusion that Kyrgyzstan is
a country. Using the labels of related entities in the knowl-
edge graph can allow us to determine the correct label of
an entity. Our approach uses collective classification to la-
bel nodes in manner which takes into account ontological
information and neighboring labels.

A third problem commonly encountered in knowledge
graphs is determining the relationships between entities.
NELL also has many facts relating the location of Kyrgyzs-
tan to other entities. These candidate relations include state-
ments that Kyrgyzstan is located in Kazakhstan, Kyrgyzs-
tan is located in Russia, Kyrgyzstan is located in the former
Soviet Union, Kyrgyzstan is located in Asia, and that Kyr-
gyzstan is located in the US. Some of these possible rela-
tions are true, while others are clearly false and contradic-
tory. Our approach uses link prediction to predict edges in
a manner which takes into account ontological information
and the rest of the inferred structure.

Each of these tasks are extremely challenging when posed
as straightforward prediction tasks that do not use dependen-
cies, and using only features from the information extrac-
tion system can cause these tasks to be underconstrained. In-
corporating ontological constraints often resolves such diffi-
culties. For example, understanding that co-referent entities
such as “kyrgyzstan” and “kyrgyz republic” are the same en-
tity and, as a result, should have the same labels and relations
improves the quality of predicted labels and relations while
also resolving ambiguity about these entities.

Multiple ontological constraints work in concert to im-
prove the knowledge graph. NELL’s ontology includes the
constraint that the labels “bird” and “country” are mutually
exclusive. Ontological constraints also require the relation
“locatedIn” relation to be a mapping from a domain of coun-
tries to a range of continents. Combining these constraints
in knowledge graph identification produces dependencies
between the location of entities and their potential labels.
For example, the input to knowledge graph identification in-
cludes the erroneous extraction stating that “kyrgyzstan” has
label “bird”. By combining the extractions that “kyrgyz re-
public” is located in Asia, and hence has label “country”,
that “kyrgyz republic” and “kyrgyzstan” are co-referent, and
that “bird” and “country” are mutually exclusive, we are
able to remove the erroneous “bird” label. This complex set
of dependencies requires jointly reasoning about millions of
extractions simultaneously – a challenge we address in our
model for knowledge graph identification.

Knowledge Graph Identification: The Solution
Knowledge graph identification requires combining two dis-
parate elements: the statistics output by an information ex-
traction and ontological constraints derived from the seman-
tics of the knowledge graph. In this section, we describe a
model for knowledge graph identification using rules writ-
ten in first-order logic syntax. We define predicates that cap-
ture candidate extractions, co-reference information and on-
tological knowledge and introduce rules that capture the re-
lationships between these elements and the facts contained
in the knowledge graph. However, since the inputs to this



model are uncertain values and statistics from an extraction
system, the logical atoms in the rules take values between 0
and 1. We combine the rules and statistical inputs in a prob-
abilistic graphical model to determine which facts to include
in the knowledge graph.

In order to implement knowledge graph identification, our
model uses probabilistic soft logic (PSL)(Broecheler, Mi-
halkova, and Getoor, 2010), a recently introduced frame-
work for specifying probabilistic graphical models over
continuously-valued random variables. PSL provides many
advantages: models are easily defined using declarative rules
with first-order logic syntax, continuously-valued variables
provide a convenient representation of uncertainty, weighted
rules and weight learning capture the importance of model
rules, and advanced features such as set-based aggregates
and hard constraints are supported. Using PSL, we can trans-
form the statistics and rules in our knowledge graph iden-
tification model into a probability distribution over knowl-
edge graphs, and then infer the most likely knowledge graph.
A significant obstacle to knowledge graph construction is
scale - reasoning jointly over the millions of facts found in
a knowledge graph is intractable in many models. However,
in PSL this joint optimization is formulated as a convex ob-
jective that is highly scalable allowing us to handle millions
of facts in minutes. After introducing each set of rules in our
knowledge graph identification model, we will show how
PSL transforms these rules into a probability distribution
over knowledge graphs.

Representation of Uncertain Extractions
Information extraction systems use a collection of tech-
niques that operate on document features such as the struc-
tural elements (e.g. tables) lexical patterns (e.g. the phrase
”president of”), or morphological features (e.g. capitaliza-
tion). Each extractor produces a different set of outputs, and
may assign each output a confidence value. The first step of
building a knowledge graph is combining features and ex-
tractions from different extractors.

For example, an extractor based on structural ele-
ments might produce the label bird(Kyrgyzstan) and
the relation locatedIn(Kyrgyz Republic, Asia)
while a pattern-based classifier might produce the label
country(Kyrghyzstan) as well as relations such as
hasCapital(Kyrgyz Republic, Bishkek). We use
a different predicate for the candidates generated by each
extractor. For a given extractor T, we introduce predicates
CANDRELT and CANDLBLT to represent the candidates
extracted by T. We relate these candidates to the unknown
facts that we wish to infer, LBL and REL using the follow-
ing rules:

wCR-T : CANDRELT (E1, E2, R) ⇒ REL(E1, E2, R)

wCL-T : CANDLBLT (E,L) ⇒ LBL(E,L)

We define weights wCR-T and wCL-T for the relations and
labels produced by extractor T, allowing us to compensate
for the differing reliability of each technique. Using training
data, we can use PSL to learn these weights. As a concrete
example, a grounding of the structural extractor’s candidate

bird(Kyrgyzstan) would produce the formula:

CANDLBLstruct(Kyrgyzstan,bird)

⇒ LBL(Kyrgyzstan,bird)

Since PSL uses soft logic, we can represent noisy
extractions by translating confidences into real-valued
truth assignments in the [0, 1] range. For example, if
the label extraction bird(Kyrgyzstan) has a con-
fidence value of 0.6, we would assign the predicate
CANDLBLstruct(Kyrgyzstan,bird) a soft-truth value of
0.6. While these simple rules associate uncertain inputs with
the facts in the knowledge graph, more complex rules allow
us to incorporate knowledge about co-referent entities.

Reasoning About Co-Referent Entities
Entity resolution identifies potentially co-referent entities
and assigns a similarity score for each pair of entities. In the
example above, many different variant forms for the country
Kyrgystan appear: Kyrgyzstan , Kyrghyzstan , and
Kyrgyz Republic. Knowledge graph identification em-
ploys entity resolution to pool information across these co-
referent entities. We introduce the following rules to con-
strain the labels and relations of these co-referent entities:

wEL : SAMEENT(E1, E2) ∧ LBL(E1, L)⇒ LBL(E2, L)

wER : SAMEENT(E1, E2) ∧ REL(E1, E,R)⇒ REL(E2, E,R)

wER : SAMEENT(E1, E2) ∧ REL(E,E1, R)⇒ REL(E,E2, R)

These rules define an equivalence class of entities, such that
all entities related by the SAMEENT predicate must have
the same labels and relations. The soft-truth value of the
SAMEENT, derived from our similarity function, mediates
the strength of these rules. When two entities are very simi-
lar, they will have a high truth value for SAMEENT, so any
label assigned to the first entity will also be assigned to the
second entity. On the other hand, if the similarity score for
two entities is low, the truth values of their respective labels
and relations will not be strongly constrained.

Incorporating Ontological Information
Although entity resolution allows us to relate extractions that
refer to the same entity, knowledge graphs can employ on-
tological information to specify rich relationships between
many facts. Our ontological constraints are based on the log-
ical formulation proposed in (Jiang, Lowd, and Dou, 2012).
Each type of ontological relation is represented as a predi-
cate, and these predicates represent ontological knowledge
of the relationships between labels and relations. For exam-
ple, the domain and range constraints DOM(locatedIn,
country) and RNG(locatedIn, continent) specify
that the relation locatedIn is a mapping from entities
with label country to entities with label continent.
The mutual exclusion constraint MUT(country, bird)
specifies that the labels country and bird; are mutu-
ally exclusive, so that an entity cannot have both the la-
bels country and bird. We similarly use constraints for
subsumption of labels (SUB) and inversely-related functions
(INV). To use this ontological knowledge, we introduce rules



relating each ontological relation to the predicates represent-
ing our knowledge graph. We specify seven types of onto-
logical constraints in our experiments:

wO : DOM(R,L) ∧ REL(E1, E2, R) ⇒ LBL(E1, L)

wO : RNG(R,L) ∧ REL(E1, E2, R) ⇒ LBL(E2, L)

wO : INV(R,S) ∧ REL(E1, E2, R) ⇒ REL(E2, E1, S)

wO : SUB(L,P ) ∧ LBL(E,L) ⇒ LBL(E,P )

wO : RSUB(R,S) ∧ REL(E1, E2, R) ⇒ REL(E1, E2, S)

wO : MUT(L1, L2) ∧ LBL(E,L1) ⇒ ¬LBL(E,L2)

wO : RMUT(R,S) ∧ REL(E1, E2, R) ⇒ ¬REL(E1, E2, S)

Putting It All Together
Constructing a knowledge graph is challenging because of
the many interactions between uncertain extractions, co-
references, ontological information, and facts in the knowl-
edge graph. To capture the complex set of dependencies
in the knowledge graph, we formulate the problem as a
probabilistic graphical model. Figure 2 illustrates a small
portion of the graphical model associated with the exam-
ple in this section. Each possible fact in the in the knowl-
edge graph is a variable in the model. Dependencies be-
tween variables derived are from rules. These dependen-
cies are shown as factors between variables, shown us-
ing φ labels. Each φ is a function of the variable values
that measures a distance to satisfaction of the variables’
truth values relative to the rules, where a high distance
to satisfaction indicates a violated rule or constraint. For
example, if the variables LBL(Kyrgyzstan,bird) and
LBL(Kyrgyzstan,country) both had high truth values,
the factor φ5 representing a mutual exclusion constraint be-
tween these variables would have a high distance to satisfac-
tion. Similarly, the factor φ3 will have a low distance to satis-
faction for co-referent entities Kyrgyzstan and Kyrgyz
Republic when both have the same label, country.

To determine the value of each variable in the model,
we use PSL to define a joint probability distribution over
the different possible knowledge graphs. The universally-
quantified rules described above form a PSL model and pro-
vide the basis for defining this probability distribution. In
a PSL program, Π, this model is grounded by substituting
values from the extractions and ontology into the rule tem-
plates. Unlike Boolean logic where each grounding would
have a binary truth value, our choice of soft-logic requires
a different definition of truth value. We relax truth values
in the knowledge graph G to the [0, 1] interval and use a
logically-consistent interpretation to determine the truth val-
ues of ground logical formulas. With this definition, we can
assign a truth value Tr(G) to each grounding r ∈ R and
define a distance to satisfaction, φr(G) = (1 − Tr(G))

2

for each grounding. The probability distribution over knowl-
edge graphs, PΠ(G) can now be defined in terms of the
weighted combination of the distances to satisfaction of
ground rules in the PSL program:

PΠ(G) =
1

Z
exp

[
−
∑
r∈R

wrφr(G)

]

Given this distribution, the task of most probable explana-
tion (MPE) inference corresponds to finding the soft-truth
values of every fact in the knowledge graph G that maxi-
mize the value of this probability distribution. The soft-truth
values of variables can be interpreted as confidences. In our
work, we choose a soft-truth threshold and determine the
true entities, labels and relations by using those atoms whose
truth value exceeds the threshold. By using a small valida-
tion set to choose this threshold, we can balance precision
and recall of the resulting knowledge graph as required by a
particular application.

The myriad dependencies in the knowledge graph identifi-
cation model are a formidable scalability challenge. In PSL,
MPE inference can be formulated as convex optimization.
Solving this convex optimization using the Alternating Di-
rection Method of Multipliers (ADMM), Bach et al. (2012)
have shown performance that scales linearly with the num-
ber of ground rules in the PSL program. In practice, this
allows our model implementing knowledge graph identifi-
cation to jointly infer the values of millions of variables in
the knowledge graph in just hours – a result we detail in the
next section.

Evaluation
We highlight the effectiveness of knowledge graph identifi-
cation with results for building a knowledge graph with data
from NELL, a large-scale information extraction system op-
erating on text from the WWW. Our experiments contrast
two very different evaluation settings. The first, used in prior
work, restricts knowledge graph inference to a small subset
of variables and excludes some contradictory values. Our re-
sults in this simpler setting improve on the state-of-the-art
results while completing the inference task in just seconds.
In the second evaluation setting, we apply knowledge graph
identification to infer the complete knowledge graph, oper-
ating over the space of all possible knowledge graphs and
handling millions of variables and tens of millions of depen-
dencies. Despite the magnitude of this inference task, our
implementation of knowledge graph identification requires
just over two hours to complete and improves on the perfor-
mance of the existing NELL system. Data and code for these
experiments are available on GitHub1.

NELL Dataset The Never-ending Language Learner is a
system that seeks to iteratively create a knowledge base by
constantly improving its ability to process text and extract
information. In each iteration, NELL uses facts learned from
the previous iteration and a corpus of web pages to generate
a new set of candidate facts. Our experimental results are
on data from the 165th iteration of NELL, using the candi-
date facts, previously promoted facts and ontological rela-
tionships that NELL used during that iteration. We summa-
rize the important statistics of this dataset in Table 1. NELL
uses diverse extraction techniques, and we use distinct predi-
cates for the most prominent sources, while averaging values
across extractors that do not contribute a significant num-
ber of facts. In addition to these candidate facts, NELL uses

1https://github.com/linqs/KnowledgeGraphIdentification
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Figure 2: A subset of the probabilistic graphical model defined by the rules in PSL in our example. Each potential fact in the
knowledge graph is a variable, and factors (φ) represent a distance to satisfaction capturing dependencies between variables.

a heuristic formula to selectively “promote” candidates in
each iteration of the system into a knowledge base, however
these promotions are often noisy so the system assigns each
promotion a confidence value. We represent these promoted
candidates from previous iterations as an additional source
with corresponding candidate predicates.

Entity Coreference Knowledge graph identification also
incorporates entity co-references, a feature missing from
the NELL data. We derive entity co-reference by using the
YAGO database(Suchanek, Kasneci, and Weikum, 2007) as
part of our entity resolution approach. The YAGO database
contains entities which correspond to Wikipedia articles,
variant spellings and abbreviations of these entities, and
associated WordNet categories. We match entity names in
NELL with YAGO entities. We perform selective stemming
on the NELL entities, employ blocking on candidate la-
bels, and use a case-insensitive string match to find corre-
sponding YAGO entities. Once we find a matching set of
YAGO entities, we can generate a set of Wikipedia URLs
that map to the corresponding NELL entities. Our model
uses a SAMEENT predicate to capture the similarity of two
entities. We then define a similarity function on the article
URLs and use the computed similarity as the soft-truth value
of the SAMEENT predicate. For our similarity score we use
the Jaccard index, the ratio of the size of the set intersection
and the size of the set union.

Evaluation Scenarios In our experiments using NELL,
we consider two scenarios. The first is similar to exper-
imental setup in (Jiang, Lowd, and Dou, 2012) where
rule weights are learned using training data and pre-
dictions are made on a limited 2-hop neighborhood of
the test set. The neighborhood used in this previous
work attempts to improve scalability by generating a
grounding of the rules using atoms in the test set and

only including additional atoms that are not trivially
satisfied in this grounding. In practice, this produces a
neighborhood that is distorted by omitting atoms that may
contradict those in the test set. For example, if ontolog-
ical relationships such as SUB(country,location)
and MUT(country, city) are present, the
test set atom LBL(Kyrgyzstan,country)
would not introduce LBL(Kyrgyzstan,city) or
LBL(Kyrgyzstan,location) into the neighborhood,
even if contradictory data were present in the input candi-
dates. By removing the ability to reason about contradictory
information, we believe this evaluation setting diminishes
the true difficulty of the problem. We validate our approach
on this setting, but also present results from a more realistic
setting. In the second scenario we perform inference inde-
pendently of the test set, lazily generating target variables
for atoms supported by the input data, using a soft-truth
value threshold of .01. This second setting allows us to
infer a complete knowledge graph with truth values for all
possible variables, including those that may contradict the
atoms in the test set.

Knowledge Graph Identification Results for NELL
Comparison to Previous Work We compare our method
against previously reported results on a manually-labeled
evaluation set of 4,500 facts (Jiang, Lowd, and Dou, 2012).
A summary of these results is shown in Table 2, where
the best-performing method is shown in boldface. The first
method we compare to is a baseline where candidates are
given a soft-truth value equal to the extractor confidence (av-
eraged across extractors when appropriate). Results are re-
ported at a soft-truth threshold of .45 which maximizes F1.

We also compare the default strategy used by the NELL
project to choose candidate facts to include in the knowledge
base. Their method uses the ontology to check the consis-



Table 1: Summary of dataset statistics for NELL, including
the number of candidate facts in input data, the distinct rela-
tions and labels present, and the number of ontological rela-
tionships defined between these relations and labels

Cand. Label 1.2M
Cand. Rel 100K

Promotions 440K

Unique Labels 235
Unique Rels 221

DOM 418
RNG 418
INV 418
MUT 17.4K

RMUT 48.5K
SUB 288

RSUB 461

tency of each proposed candidate with previously promoted
facts already in the knowledge base. Candidates that do not
contradict previous knowledge are ranked using a heuristic
rule based on the confidence scores of the extractors, and
the top candidates are chosen for promotion subject to score
and rank thresholds. Note that the NELL method includes
judgments for all input facts, not just those in the test set.

The third method we compare against is the best-
performing MLN model from Jiang, Lowd, and Dou (2012),
that expresses ontological constraints, and candidate and
promoted facts through logical rules similar to those in our
model. The MLN uses additional predicates that have con-
fidence values taken from a logistic regression classifier
trained using manually labeled data. The MLN uses hard
ontological constraints, learns rule weights considering rules
independently and using logistic regression, scales weights
by the extractor confidences, and uses MCMC with a re-
stricted set of atoms to perform approximate inference, re-
porting output at a .5 marginal probability cutoff, which
maximizes the F1 score. The MLN method only generates
predictions for a 2-hop neighborhood generated by condi-
tioning on the values of the query set, as described earlier.

Our method, PSL-KGI, implements the KGI model in
PSL using weighted rules for ontological constraints, en-
tity resolution, and candidate and promoted facts as well
as incorporating a prior. We also incorporate the predicates
generated for the MLN method for a more equal compari-
son. We learn weights for all rules, including the prior, us-
ing a voted perceptron learning method. The weight learn-
ing method generates a set of target values by running infer-
ence and conditioning on the training data, and then chooses
weights that maximize the agreement with these targets in
absence of training data. Since we represent extractor confi-
dence values as soft-truth values, we do not scale the weights
of these rules. Using the learned weights, we perform infer-
ence on the same neighborhood defined by the query set that
is used by the MLN method. We report these results, using
a soft-truth threshold of .55 to maximize F1, as PSL-KGI.

Table 2: Comparing against previous work on the NELL
dataset, knowledge graph identification using PSL demon-
strates a substantive improvement. The best-performing
method is shown in boldface.

Method AUC F1

Baseline 0.873 0.828
NELL 0.765 0.673
MLN 0.899 0.836

PSL-KGI 0.904 0.853

Table 3: Comparing variants of PSL graph identification
show the importance of ontological information, but the
best performance is achieved when all of the components
of knowledge graph identification are combined.

Method AUC F1

PSL-NoSrcs 0.900 0.852
PSL-NoER 0.899 0.853

PSL-NoOnto 0.887 0.826
PSL-KGI 0.904 0.853

In Table 2 we report area under the precision-recall curve
(AUC) and F1 measure, the harmonic mean of the precision
and recall. Our implementation of knowledge graph identifi-
cation improves on the baseline, the NELL promotion strat-
egy, and the previous state-of-the-art results using MLNs,
with a modest improvement in AUC and a substantial im-
provement in the F1 measure.

Analyzing Variations of Knowledge Graph Identification
To better understand the contributions of various compo-
nents of our knowledge graph identification model, we ex-
plore variants that omit one aspect of the model: capturing
different extraction sources, using entity co-reference infor-
mation, and the ontological constraints between facts. We
compare the results for each of these treatments in Table
3. PSL-NoSrcs removes predicates CANDLBLT and CAN-
DRELT for different candidate sources, replacing them with
a single predicate using the average confidence value across
sources. PSL-NoER removes rules used to reason about
co-referent entities, easing the constraint that co-referent
entities share the same labels and relations. PSL-NoOnto
removes rules for using ontological relationships to con-
strain the knowledge graph, removing many of the depen-
dencies necessary for consistency. Removing source infor-
mation and entity resolution each reduce the performance of
our model slightly, but the large drop in AUC and F1 mea-
sure when ontological information is removed suggests that
the ontology is the principal contributor to the success of
knowledge graph identification.

One drawback of our comparisons to previous work is the
restriction of the model to a small set of inference targets.
The construction of this set obscures some of the challenges
presented in real-world data, such as conflicting evidence.
To assess the performance of our method in a setting where
inference targets do not restrict potentially contradictory in-



Table 4: Producing a complete knowledge graph reduces
performance on the test set, suggesting that the true com-
plexity of the problem is masked when generating a limited
set of inferences.

Method AUC F1

NELL 0.765 0.673
PSL-KGI 0.904 0.853

PSL-KGI-Complete 0.892 0.848

ferences, we also ran knowledge graph identification using
the same learned weights but with no predefined set of tar-
gets, allowing lazy inference to produce a complete knowl-
edge graph. The resulting inference produces a total of 4.9M
facts, which subsumes the test set. We report results of this
process in table 4 as PSL-KGI-Complete, using the same
evaluation set as previous experiments. Allowing the model
to optimize on the full knowledge graph instead of just the
test set reduced the performance on the test set, suggest-
ing that the noise introduced by conflicting evidence does
have an impact on results. Despite the difficulties of infer-
ence in this more complex setting, running inference on the
full knowledge graph improves AUC and F1 relative to the
heuristics NELL uses to produce its knowledge base.

Scalability One advantage of using PSL for knowledge
graph identification is the ability to frame complex joint rea-
soning as a convex optimization. Knowledge graph identifi-
cation implemented in PSL can handle problems from real-
world datasets like NELL, which include millions of can-
didate facts. Inference when an explicit query set of 70K
facts is given (PSL-KGI) requires a mere 10 seconds. The
MLN method we compare against takes a few minutes to
an hour to run for the same setting. When inferring a com-
plete knowledge graph without known query targets, as in
the last NELL experiment, inference with MLNs is infeasi-
ble. In contrast, knowledge graph identification on the NELL
dataset can produce the complete knowledge graph contain-
ing 4.9M facts in only 130 minutes. The ability to produce
complete knowledge graphs in these realistic settings is an
important feature of our implementation of knowledge graph
identification.

Conclusion
Successfully combining statistical features and semantic re-
lationships is a common theme in artificial intelligence re-
search. In this article, we describe a statistical relational
learning approach for combining these two disparate sources
of knowledge. Specifically, we show how the noisy can-
didate facts and statistical features produced by an infor-
mation extraction system can be combined with semantic
constraints derived from an ontology to produce a knowl-
edge base. Using the knowledge graph representation for
the knowledge base, we describe the problem of knowledge
graph identification: jointly inferring the most likely knowl-
edge graph. Our model for knowledge graph identification
defines a probability distribution over possible knowledge
graphs using a series of logical formulas. Scalability is a

key concern for inference in joint models, however using
probabilistic soft logic allows us to solve the MPE inference
problem through an efficient convex optimization. In our re-
sults on data from the NELL project, we demonstrate that
knowledge graph identification is capable of producing su-
perior knowledge graphs while scaling to problems that are
intractable for competing models. In future work, we plan to
extend knowledge graph identification to address constantly
growing and changing web data.
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