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Abstract

Email usage has become ubiquitous in re-
cent times bringing with it new problems.
In this paper we revisit two such problems,
namely information leak detection and recip-
ient recommendation, and study the impact
of previously proposed solutions on real email
users. Previous work addressing these prob-
lems showed a lot of promise on static email
corpora tests. In this paper, we implement
these solutions in an integrated interface as
an extension to Mozilla Thunderbird, a
popular open source email client. By captur-
ing data about the usage patterns in the ex-
tension, we evaluate the performance of the
proposed algorithms against baseline meth-
ods and address issues related to user inter-
face design and implementation. Preliminary
results from a user study show promising us-
age patterns, indicating that these features
can benefit a large number of email users.

1 Introduction

The network of contacts maintained via email has been
growing steadily over the years. Until relatively re-
cently, email was used primarily for work-related con-
tacts by most people. Now email is used for many
contact with many overlapping social circles, includ-
ing friends, neighbors, and relatives, as well as social
circles associated with various on-line communities.
Moreover, the number of people with multiple email
addresses (eg separate work and personal emails) has
grown. All of these changes make it harder for users
to choose the right place to send a message they have
composed.

In past work, several techniques have been proposed
for aiding email users in selecting the right recipi-
ents of a message. Carvalho and Cohen (2007) con-

sidered the problem of email leaks, where the prob-
lem of detecting and preventing messages from being
sent to unintended recipients was addressed. A sim-
ilar problem was also addressed by Boufaden et al.
[Boufaden et al., 2005]. [Boufaden et al., 2005] pro-
posed a privacy enforcement system in which infor-
mation extraction techniques and domain knowledge
were combined to monitor specific privacy breaches
via email in a university environment. They were par-
ticularly concerned with the following types of entity
breaches: student names, student grades and student
IDs. Using 205 manually labeled emails and tailored
ontologies, they were able to correctly predict leaks
with an F-score of 69.3%. Similar techniques could
be used in conjunction with the methods described
here to detect email leaks that are particularly harm-
ful from a privacy point of view.

[Lieberman and Miller, 2007] introduced Facemail, an
extension to a webmail system that tries to prevent
information leaks by automatically displaying pictures
of the selected recipients in a peripheral display while
the message is under composition. Several alterna-
tives for displaying these pictures were considered,
and preliminary results from a user study suggested
that showing faces could “significantly improve users’
ability to detect misdirected emails with only a brief
glance”[Lieberman and Miller, 2007].

An attempt to detect email leaks in fi-
nancial institutions was recently proposed
[Kalyan and Chandrasekaran, 2007]. Using mostly
non-textual features such as the time in which the
message was sent, the type of attachment files (i.e.,
doc, pdf, etc.), size of the message, presence of
company or personal addresses in the CC field, etc.,
the authors claimed to have correctly predicted 92%
of the email leaks in a dataset with 554 messages
and 70 leaks. Unfortunately, details on the dataset
such as how the leaks were found, what exactly was
considered to be a leak or who labeled it, were not
provided.



Another task considered by Carvalho and Co-
hen [Carvalho and Cohen, 2008], Pal and Mc-
Callum [Pal and McCallum, 2006] and others
[Dom et al., 2003] is recipient recommendation,
where the task consists of finding persons who are
potential recipients for a message under composition
given its current contents. Recipient recommendation
is related to the problem of address autocompletion.
Leak detection and recipient recommendation share a
common goal in trying to find the best set of recipi-
ents for a message. While recipient recommendation
attempts to increase the recall of the list of recipients,
leak detection focuses on improving the precision.

Prior work on these tasks has evaluated the effective-
ness of various algorithms in experiments with static
email corpora. Such studies cannot address a number
of crucial issues. For instance, what is the best way
to present predictions to the end users (e.g., the pre-
diction that an outgoing email address is a ”leak”)?
How accurate do predictions need to be in order to be
considered helpful to users? Are learning methods for
these tasks efficient enough to be used in current email
clients? How do the tasks of recipient recommendation
and leak detection interact?”

To address these questions, we built an extension -
CutOnce1 that adds intelligent recipient recommenda-
tion and email-leak detection capabilities to Mozilla
Thunderbird, a popular and open source email client.
The extension is designed to elicit the impact of the
proposed algorithms by toggling between baseline pre-
dictions and predictions using the algorithms on a per
user basis. All aspects of the usage of the extension
are logged and periodically emailed (if express permis-
sion is given by the user) to us enabling us to study
the impact of the algorithms on users who use email
as a part of their day to day activities.

The paper is organized as follows. We introduce both
message addressing problems, and explain the choice
of email client in the next section followed by a sec-
tion with the details of the proposed algorithms. We
then discuss the issues with implementation in Mozilla
Thunderbird, followed by a section that explains the
logging scheme. We end by describing our learnings
from the analysis of user logs and finally presenting
our conclusions.

1Derived from a quote in Neuromancer by William Gib-
son where Case says ”Easy, mon. Measure twice, cut once,
wise man put it ... ”

2 Recipient Recommendation and
Leak Detection

The widespread use of email has raised serious pri-
vacy concerns. A critical issue is how to prevent email
information leaks, i.e., when a message is accidentally
addressed to non-desired recipients. This is an increas-
ingly common problem that can severely harm individ-
uals and corporations — for instance, a single email
leak can potentially cause expensive law suits, brand
reputation damage, negotiation setbacks and severe fi-
nancial losses.

Another important message addressing problem is re-
cipient recommendation, i.e., recommending persons
who are potential recipients for a message under com-
position given its current contents, its previously-
specified recipients or a few initial letters of the in-
tended recipient contact. This task can be a valuable
addition to email clients, particularly in large corpo-
rations, where negotiations are frequently handled via
email and the cost of errors in task management is very
high. A system with intelligent message addressing
can prevent a user from forgetting to add an impor-
tant collaborator or manager as recipient, preventing
costly misunderstandings, communication delays and
missed opportunities.

In this paper, recipient recommendation is achieved
by displaying a ranked list with all recipients from the
user’s address book. As described below, different al-
gorithms can be used to rank recipients.

The same algorithms can also be used to provide email
leak prevention. However, instead of ranking all en-
tries in the address book, only the already-specified
recipients of a message under composition need to be
ranked (with the least likely address on the top).

3 Email Clients

Selecting an email client in which the recipient rec-
ommendation and leak detection algorithms could be
implemented depended on several factors such as the
ease with which it could be modified to incorporate
new features, popularity of the client, whether or not
the client is open/source, ease with which the modi-
fications can be distributed to other users, operating
system interoperability etc.

The options we considered included Mozilla Thunder-
bird, a new standalone email client which we would
have to develop from scratch, GMail etc. Develop-
ing a new email client had the disadvantage that it
would take a long time for it to be used widely if
at all. Morever considerable effort would have to be
put into engineering efforts which was peripheral to



Figure 1: The recipient recommendation dialog window

the issue at hand. GMail has the advantage of be-
ing widely used especially in the academic community,
however the API offered by GMail was inadequate for
our needs. Mozilla Thunderbird on the other hand
is very popular, has a well established mechanism to
add extensions and is open source which makes it an
excellent platform to implement new features on. Ex-
tensions that we develop can be distributed easily in
a zip-based format and installed using Thunderbird’s
Extension Manager.

Mozilla Thunderbird extensions are developed primar-
ily in Javascript. User interfaces are specified using a
Mozilla specific XML based file format called XUL.

4 Algorithms

The algorithms chosen for implementation in the
Mozilla Thunderbird extension have to be computa-
tionally inexpensive since Javascript is a slow inter-
preted language. Expensive operations in Javascript
tend to bog down the email client and make it virtu-
ally unusable.

4.1 Recency and Frequency based ranking

Recency ranking ranks candidate recipients by ranking
recipients to whom messages were sent more recently
higher using an exponential decay function.

recency(r) =
∑

doc∈D(r)

e
−timerank(doc)

τ (1)

timerank(doc) is the chronological rank of doc with
timerank(doc) being 1 for the most recently sent mes-

sage.
D(r) is the set of messages in the Sent folder that were
sent to the recipient r. Based on preliminary tests, τ
is set to 0.01 in CutOnce, highlighting the importance
of the 100 most recent messages.

Another baseline is based on the frequency to whom
previously sent messages were addressed. Frequency
ranking orders candidate recipients by the number of
messages addressed to them in the sent folder, i.e.,

frequency(r) =
∑

doc∈D(r)

1 (2)

4.2 TFIDF method

We can treat recipient recommendation as a multi-
class classification problem and use the TFIDF classi-
fier using the Rocchio algorithm as described elsewhere
[Joachims, 1997, Carvalho and Cohen, 2007]. The
centroids for each recipient, represented as TFIDF vec-
tor over terms, is first computed by iterating through
the Sent folder in the email client.

centroid(r) =
1

|D(r)|
∑

doc∈D(r)

tfidf(doc) (3)

For a new message new doc that is being composed,
we compute its cosine distance with each recipient cen-
troid and rank the recipients according to this dis-
tance.

4.3 Aggregating Rankings with Data Fusion

The ranks obtained by the recency, frequency
and TFIDF methods can be combined using data



Figure 2: The information leak and recipient recommendation dialog window; displayed when Send button is
pressed.

fusion techniques based on the Mean Recipro-
cal Rank (MRR) [Aslam and Montague, 2001,
Macdonald and Ounis, 2006,
Ogilvie and Callan, 2003] of the baseline rank-
ings. Results from [Carvalho and Cohen, 2008]
showed that MRR ranking works better than a pure
TFIDF ranking for tests using several users from the
Enron email collection. The MRR ranking score can
be expressed as:

mrr(r) =
α

recency rank(r)
(4)

+
β

frequency rank(r)
+

γ

tfidf rank(r)

, i.e., the final aggregated ranking of a recipient is a
function of the ranking of this recipient on the base
rankings (TFIDF, frequency and recency).

Based on preliminary tests, we set α and β to 1.0 and

γ to 2.0 by default.

5 Implementing the Training in
Thunderbird

Since the algorithms are implemented in Javascript,
scalability and computation time are significant fac-
tors. The memory available to the extension is also
limited since computation occurs on client machines.
Keeping this in mind, steps were taken to keep the
training time in check to limit the impact on user ex-
perience. Firstly, all words with a document frequency
lower than a fixed threshold (set at 5) were eliminated
from the TFIDF representation. Secondly centroids
for recipients to whom the number of messages sent
was below a threshold (set at 5), were not calculated.
The procedure used to compute the centroids is de-
scribed in Algorithm 1. After the model is trained, the
parameter values are stored in a text file on the user’s
computer. When the client is restarted, this model



file is read in thus preventing the need to retrain the
system each time the client is started.

Algorithm 1 Training procedure
for all doc in Sent folder do

for recipients r of doc do
centroid(r) = centroid(r) + tfidf(doc)
n(r) = n(r) + 1

end for
end for
for all recipients r do
centroid(r) = centroid(r) /n(r)

end for

6 Prediction

The runtime components of CutOnce are triggered
using two mechanisms

i) When users send a message, a dialog box pops up
with potential leaks and a list of recommended recipi-
ents. Items on the list can be clicked on to add recipi-
ents from the recommendation list or to remove them
from the recipient list for the leak list. This dialog box
has a countdown timer that sends the message after 10
seconds if the user does not take any action thus en-
suring that no additional action is needed to send a
message. (See Figure 2 for screenshot)

ii) The compose window has a Recommend recipients
button that pops up a window with a list of recom-
mended recipients for the message being composed.
Recipients can be added to the message by clicking
on the suggested recipients just as in the Send dialog.
(See Figure 1 for screenshot)

7 Extensions to support
experimentation

Experimenting with algorithms on real users presents
unique challenges. Privacy issues prevent very detailed
personal information from being saved or transmit-
ted. There is also a practical difficulty in providing
users with different variants of algorithms for compar-
ative evaluation. CutOnce deals with the privacy issue
by logging only non personal information (See Table
1). Users are prompted to send this information every
week. If the user acquiesces, the information is sent
back via plain-text email messages. Users are also en-
couraged to send in comments in a designated area in
this email. (See Figure 4). CutOnce is also setup so
that different users get different algorithms (baseline
predictions for instance). The logs reflect the variant

used which enables the evaluation of the proposed al-
gorithms.

8 User study

8.1 Description

Here we describe a user study based on the CutOnce
currently in progress at Carnegie Mellon University.
Mozilla Thunderbird users from the Pittsburgh area
were recruited on the web and via newsgroups for a
four-week long study. These participants were told
that the goal was to study how to improve the way
people address email messages based on the intelligent
addressing techniques [Carvalho and Cohen, 2007,
Carvalho and Cohen, 2008].

We required the participants to be Mozilla Thunder-
bird users, writing email using Thunderbird on a daily
basis, and being at least 18 years-old. The recruitment
message also indicated that the task would be simple,
with minimum or no interruptions at all.

After contacting the study researchers indicating their
interest, participants would then be instructed to in-
stall CutOnce, train it on their sent folder, and keep
on using Thunderbird as usual.

After successfully installing and training CutOnce,
participants received a message explaining exactly
what the extension does and what was expected to
happen by the end of their first week using CutOnce.
This message contained the instruction:

Every time you compose a message, we
collect statistics (timers and counters only,
never private information) of your usage of
the extension. In about a week from to-
day, the extension will open a composition
window for you, and we expect you to hit
“send”. This message is addressed to us at
email.research.cmu@gmail.com and will con-
tain the information we are collecting (coun-
ters and timers) associated with your usage
of the extension. After receiving that mes-
sage, we’ll let you know about the next steps
in the study.

Figure 4 illustrates the automatically composed mes-
sage addressed to the researchers. Participants can
read all contents of this message, before eventually al-
lowing it to be sent. After this message is received and
analyzed, qualified participants2 are partially compen-

2Qualification for the invitation to participate is based
on how long a user has been using Thunderbird, the lan-
guages that most messages are written, how frequently he
or she uses Thunderbird and general patterns of email use.



Figure 3: Adoption statistics

Table 1: Information stored in the logs
whether the use used the explicit Send button or let the timer countdown
whether the user deleted a recipient (possibly due to a potential leak)
rank of the deleted recipient in the potential leak list
the MRR score of the recipient deleted
the amount of time elapsed before the recipient was deleted
whether recipients were added from the recommendation list
rank of the added recipient in the recommendation list
time elapsed before recipient was added
the MRR score of recipient added

sated (20% of total compensation) and invited partic-
ipate in the second phase of this user study.

In the second phase of the study, participants will be
compensated with the remaining 80% of the total com-
pensation after three more weeks using CutOnce and
completing a final questionnaire.

The questionnaire is concerned with the general Cu-
tOnce experience, quality of predictions, reactions of
the participant and suggestions for improvement. We
believe it can be a valuable source of information for
improving CutOnce or designing these features for
large scale email systems. The final questionnaire is
detailed below.

1. What is your general impression of the exten-
sion (likert 5(excellent) 4(good) 3 (neutral) 2(bad)
1(very bad))?

2. Where could it be improved? (open question)

3. How would you grade your overall experience (lik-
ert 5(excellent) 4(good) 3 (neutral) 2(bad) 1(very
bad))?

4. Would you recommend it? (yes or no)

5. Did the extension catch any email leak? (yes or
no) If so, please tell us about it.

6. How often did you use the suggestions?
(5(always) 4(frequently) 3(sometimes) 2(rarely)
1(never))?

7. In your opinion, what was the quality of the sug-
gested rank? (likert 5(excellent) 4(good) 3 (neu-
tral) 2(bad) 1(very bad))?

8. Were the suggestions helpful? (likert 5(very help-
ful) 4(helpful) 3 (”kind of”) 2(marginally) 1(not
at all))?

9. Were the suggestions annoying? (1(always) 2(fre-
quently) 3(sometimes) 4(rarely) 5(never))?

10. Did the extension change the way you compose
messages? (yes or no) If so, please tell us about
it.

11. Would you keep on using this extension after this
study? (yes or no)

12. Would you you recommend it (to your friends,
etc.)? (yes or no)

13. What did you like and dislike the most?

14. Any suggestions or comments?



Figure 4: Log message

8.2 Analysis and Results

The user study is currently in progress and here we
report results obtained from the logging messages ob-
tained so far.

We were expecting that approximately 50% of the
logged users would use TFIDF as ranking algorithm,
and 50% using the MRR ranking scheme. However,
approximately 72% of the users who submitted logging
messages so far had their rankings based on TFIDF,
while 28% based on MRR3. Proportionally also, the
majority of the accepted leak predictions and recipi-
ent recommendations originated from TFIDF-ranked
participants.

Although preliminary, this is an indication that users
may be more satisfied with pure textual-based recom-
mendations, or even that recommending the same fre-
quently and/or recently addressed recipients may in
fact annoy participants.

3This can be explained by the fact that anyone can
download CutOnce from the web, and participants can eas-
ily uninstall the extension (or disallow logging messages to
be sent) at anytime.

By the time this paper was submitted, 23 users had
agreed to participate, but only 13 were qualified for
the second stage of the study so far. Some users have
not completed their first stage, and therefore cannot be
considered for the next step on the user study. Other
users were not qualified because either they did not
have enough recipients (small address book), or they
were not using Thunderbird on a daily basis.

Preliminary results on these 13 users (u1...u13) are
shown in Table 2. In this Table, |AB| is the size of
the user’s address book (number of email addresses
in the address book), |train| is the number of sent
messages used for training the leak prediction and re-
cipient recommendation algorithms (see Section Algo-
rithms), |test| is the number of sent messages where
predictions were displayed to the user (reported in the
logging message), |leaks| is the number of times a user
removed a leak predicted by CutOnce from his recip-
ient list, and |recs| is the number of times the user
accepted a recipient recommendation provided by Cu-
tOnce.

Table 2 suggests that most users utilized leak predic-
tions at least once. Recipient recommendation was



Table 2: User Study Prelimary Results
User |AB| |train| |test| |leaks| |recs|
u1 69 2181 15 1 0
u2 64 81 18 0 1
u3 78 1485 4 2 10
u4 12 87 9 1 3
u5 545 9728 25 6 0
u6 16 183 22 2 0
u7 15 516 24 1 2
u8 46 1048 50 1 0
u9 476 9262 4 2 0
u10 38 492 17 1 1
u11 86 1124 22 0 0
u12 47 471 4 0 0
u13 57 731 37 1 0

also used by 5 qualified participants on the study. Al-
though most data in Table 2 was collected from the
first week of CutOnce usage — when some users may
be still experimenting with the extension — we believe
these are promising numbers and indicate that both
intelligent message addressing techniques can poten-
tially be adopted by a large number of email users.

This adoption will certainly depend on various factors,
many not even addressed here, such as user interface,
implementation speed and rank quality. Still, we be-
lieve the continuation of this user study can make key
contributions to better understanding and design of
intelligent message addressing systems.

8.3 Adoption

The Thunderbird extension developed was submit-
ted to the Mozilla Addons webpage. At the time
of writing this paper, there were 52 daily users
of the extension (See Figure 3). More statistics
are available at https://addons.mozilla.org/en-
US/thunderbird/statistics/addon/6392. The
official CutOnce website and links to the
user study described above can be visited at
http://www.cs.cmu.edu/˜vitor/cutonce/cutOnce.html.

9 Conclusions

This paper introduced CutOnce, an extension of the
open source email client Mozilla Thunderbird that pro-
vides email leak prediction as well as recipient recom-
mendations for messages under composition. These
techniques are desirable additions to email clients, par-
ticularly if the user is susceptible to high-cost errors
such as accidentally addressing non-intended recipi-
ents (email leaks) or frequently forgetting to address
intended recipients.

CutOnce implements several algorithms for these tasks,
including Recency and Frequency baselines, a Rocchio
TFIDF classifier and a rank-based data fusion tech-
nique [Carvalho and Cohen, 2007, Carvalho and Cohen, 2008].
Because it had to be written in Javascript, careful de-
sign decisions were necessary to optimize memory and
processing resources on client machines.

We also described a user study based on CutOnce
hosted at Carnegie Mellon University. Preliminary re-
sults indicate that leak prediction and recipient rec-
ommendation can potentially be adopted by a large
number of email users. Although the various factors
affecting the widespread adoption of these functionali-
ties are still under investigation, we believe this study
can provide important contributions to intelligent ad-
dressing systems.
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