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Abstract 

Training a named entity recognizer (NER) 
has always been a difficult task due to the 
effort required to generate a significant 
amount of annotated training data. In this 
paper, we reduce or eliminate the effort 
required to create training data by auto-
matically converting other sources of data 
into annotated training data. The perform-
ance of this approach is tested on a gene-
protein name extractor by using the 
mouse and fly data obtained from the 
BioCreAtIvE challenge. Results show that 
our methods are effective and that our 
trained NER system outperforms all of 
our baseline results. 

1 Introduction 

Many prior research papers on biological text-
mining have developed machine-learned named 
entity recognition (NER) systems to identify sub-
strings in biomedical publications that correspond 
to gene and protein names, usually without distin-
guishing between them [4, 9, 11, 16]. These NER 
systems are often trained on large amounts of 
manually annotated training examples, consisting 
of documents with the position of every named 
entity marked. This training data is difficult to pro-
duce. 

Training data for gene-protein entities is espe-
cially difficult to produce because labeling docu-
ments requires expertise in biology. Although a 

number of corpora have been annotated, the docu-
ments in these corpora are drawn from specific 
sub-areas of biology.  Here we consider two such 
corpora: the YAPEX1 [10] training corpus, which 
consists of Medline abstracts selected as likely to 
contain information about protein-protein interac-
tions; and the GENIA2 [7] corpus, which contains 
abstracts likely to contain information about cell 
signaling in human blood cells. As we will show, 
extractors trained on these corpora appear to be 
distribution-specific (i.e. they do not transfer well 
to other sub-areas of biology, or different genres of 
text within the same sub-area). 

The distribution-specificity of learned NER sys-
tems makes it difficult to use them in certain types 
of text-mining systems. As an example, consider 
the SLIF system [23], which mines full-text bio-
medical publications for information about sub-
cellular localization of proteins. More specifically, 
SLIF finds figures containing images of a certain 
sort (fluorescence microscope images depicting 
protein localization), and then collects, analyzes 
and indexes these figures by the proteins depicted.  
For this application it is necessary to apply NER 
methods to figure captions; however, the majority 
of NER training sets are annotated abstracts. 

Motivated by such problems, this paper ex-
plores several approaches for training a gene-
protein NER system with data sources that are of-
ten easier to obtain. The first source is NER anno-
tations for a related, but slightly different corpus: 
this reflects the common practice of applying a 
learned NER system to documents that are drawn 

                                                 
1 Available from http://www.sics.se/humle/projects/prothalt 
2 Available from http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA 



Dataset  Mouse   Fly  
Data Eval. Weak-train Curated Eval. Weak-train Curated 

# of Abstracts 50 200 1000 51 57 1000 
Abstract IDs 100-149 1-99, 150-250 4000-4999 [1-298] [308-494] 4000-4999 

 

Table 1. Distribution of abstracts among various data for each of mouse and fly dataset. 
Numbers embraced by brackets indicate a subset of these numbers. 

from a slightly different distribution. The second 
source is a synonym list – a list of gene identifiers 
together with synonyms for each identifier. The 
third source is weak labels, which associate a 
document with identifiers for each gene-protein 
entity that appears in the document. Weak labels 
for text can often be automatically obtained by 
analyzing databases of information extracted from 
text. Specifically, weak labels are often obtainable 
for biomedical documents by analysis of manually-
curated biological knowledge bases such as Fly-
Base [1] and MGI [2].  

One prior experimental study that exploits 
synonym lists and weak labels is BioCreAtIvE task 
1B [14, 15], which collected common test-bed 
problems and a common evaluation framework for 
determining the database identifier of every gene 
mentioned in biomedical abstracts – a task closely 
related to NER, but distinct. Three separate test-
bed problems were developed, one for each of 
three model organisms: yeast, fly, and mouse. 

In this paper, we utilize only the mouse and fly 
datasets, which were the two hardest for the Bio-
CreAtIvE participants, for training a gene-protein 
NER system. Performance on NER is evaluated by 
testing on a small subset of the BioCreAtivE test 
set that was manually annotated. We compare 
weakly-learned NER systems with results for four 
baseline systems. The first baseline is a dictionary-
based extractor, which soft-matches words from a 
synonym list to a corpus. The second, third, and 
fourth baselines are machine-learned NER systems 
trained on the GENIA dataset, the YAPEX dataset, 
and small corpora of conventionally-labeled 
documents from the BioCreAtive datasets.  

Experimentally, we show that no baseline sys-
tem performs well on the evaluation data – the best 
baseline F1 measures reach only 57% on the mouse 
data, and 41% on the fly data. We then present re-
sults for several alternative approaches that use 
weak labels, and demonstrate that much better per-

formance can be obtained with weakly-trained 
NER systems. 

Our approach for weak-label learning consists 
of four steps. First, we look up, for each abstract, 
its associated gene identifiers and we label all pos-
sible locations of synonyms associated with these 
identifiers in that same abstract. Second, we train 
extractors on these weakly labeled abstracts, using 
word features such as string similarity to synonyms 
[24]. We also investigated a pre-processing step, of 
removing from the training set sentences not con-
taining any weak labels; and a post-processing step 
that exploits inter-document repetition of names 
[20] by soft-matching every instance of an ex-
tracted name against the document in which it oc-
curs, and classifying every such soft-match as a 
protein name. To further evaluate our weak-label 
learning approach, we present also results for NER 
systems tuned for either precision or recall [21]. 
Our results show that the quality of a NER system 
can be improved through the use of readily avail-
able weakly-labeled data. 

We use datasets from BioCreAtIvE task 1B, 
specifically the mouse and fly datasets, which were 
drawn from MGI and FlyBase respectively. For 
each dataset, we constructed three corpora for our 
experiments: evaluation, weak-train, and curated. 
The evaluation and weak-train data are subsets of 
the BioCreAtIvE “devtest” set, and curated data is 
a subset of the “training” set. Table 1 summarizes, 
for both datasets, their size, and also lists the spe-
cific abstracts (by BioCreAtIvE ID) that were used 
to form the dataset. In curated, each abstract is as-
sociated with gene identifiers of all genes that are 
mentioned in the full text of the abstract. However, 
in weak-train, each abstract is only associated with 
identifiers of some genes mentioned in the abstract. 
Hence, curated is noisier than weak-train. We also 
utilize the synonym lists provided by the mouse 
and fly datasets, which contain associations be-
tween synonyms and unique gene identifiers. The 
list for the mouse dataset consists of 183,142 



synonyms for 52,594 identifiers, and for the fly 
dataset, 135,471 synonyms for 35,970 identifiers. 
To evaluate our NER systems, the abstracts in the 
evaluation data were manually annotated with 
gene-protein entity names. 

2 Baseline Methods 

2.1 Global Edit Distance 

In order to train a gene-protein NER system using 
a synonym list, we devise a feature that indicates 
how similar each word in the abstracts is to the 
most similar word in the entire (global) synonym 
list. The similarity measure incorporates Leven-
shtein Distance [19], and thus we call this the 
global edit distance (GED) feature. Elsewhere it 
has been shown that features of this sort can sub-
stantially improve NER performance [24]. 

More specifically, GED case-insensitively cal-
culates a similarity score between two strings, s 
and s’, as: 
 

))'(),(max(
)',(1)',(
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where LD(s, s’) is the Levenshtein Distance be-
tween string s and s’, and length(s) is the number 
of characters in s. We determine and assign simi-
larity scores to each word in the abstracts by trav-
ersing through each synonym in a given list. For 
each synonym s, we determine number of words n 
contained in s, and create sliding windows of size 
ranging from ⎡  to  on the abstract. For 
each string s’ contained within each sliding win-
dow, we assign SimScore(s, s’) to each word w in 
s’ unless one of the following conditions is met: a) 
w has higher similarity to some other s” in the 
synonym list, b) s or s’ has only one character, c) s 
or s’ case-insensitively matches any word in a list 
of common stop-words (see Appendix A), or d) the 
first and last characters of s are not identical to 
those of s’. 

⎤ ⎦n5.0 ⎣ n5.1

2.2 Soft Matching 

Biological scientists often use novel variations of 
existing gene names in their papers; thus, in order 
to match these names from abstracts to the syno-
nym list, we incorporate an approximate string 
matching technique called soft matching, which 

identifies strings that are similar but not necessar-
ily identical. This method has been proven to be 
useful [13]; however, our method is on the charac-
ter-level instead of word-level. Our soft matching 
is performed as follows: First, we assign similarity 
scores to words in given abstracts using a given 
synonym list, as described in 2.1. We then label all 
the longest consecutive sequences of words that 
have similarity scores above a given similarity 
threshold as a gene-protein entity name. 

2.3 NER on YAPEX & GENIA 

We use an off-the-shelf machine learning system 
for NER called Minorthird [6] for training our 
gene-protein NER system on the YAPEX and 
GENIA corpora. We used Minorthird’s default 
feature set, which contains basic features such as 
word identity and capitalization patterns. In addi-
tion, we used Minorthird’s implementation of VP-
HMM – a voted-perceptron based training scheme 
for HMMs due to Collins [8]. VP-HMM is gener-
ally competitive with conditional random field 
(CRF) learning methods, but converges more 
quickly. More specifically, as we configured this 
learner, NER is reduced to the problem of classify-
ing each token as the beginning or continuation of 
a multi-token gene-protein name; or as outside of 
any gene-protein name. We configured the extrac-
tor to make 20 passes (epochs) over the training 
data using a window size of three words. 

The YAPEX dataset consists of a training cor-
pus of 99 Medline abstracts and a testing corpus of 
101 Medline abstracts. These documents deal pri-
marily with protein-protein interactions, and are 
annotated for gene-protein entities. We trained a 
VP-HMM extractor on the training corpus of 
YAPEX using Minorthird’s default features. The 
GENIA dataset consists of a training corpus of 500 
Medline abstracts and a testing corpus of 300 Med-
line abstracts, mostly concerning cell signaling for 
human cells. We trained a VP-HMM extractor on 
the training corpus of GENIA using default fea-
tures, plus protein-specific features described 
elsewhere [18]. 

2.4 Single Document Repetition 

When a substring is identified as a named entity in 
a document, it is highly possible that all other oc-
currences of that substring in the same document 
are also named entities. Repetition of names in text 



 Mouse Fly 
 Entity F1 ∆ Baseline ∆ Complete Entity F1 ∆ Baseline ∆ Complete 
Best Baseline 57.64 - -19.28% 45.75 - -26.09% 
Complete System 71.41 23.89% - 61.90 35.30% - 
Complete - Weak-train 71.12 23.39% -0.41% 63.02 37.75% 1.81% 
Complete - Filter 70.29 21.95% -1.57% 63.54 38.89% 2.65% 
Complete - SDR 67.45 17.02% -5.55% 65.39 42.93% 5.64% 
Complete - GED 66.67 15.67% -6.64% 57.14 24.90% -7.69% 
Best System 1: (Complete) 71.41 23.89% - 61.90 35.30% - 
Best System 2: (Complete -  
Weak-train - Filter - SDR) 60.39 4.77% -15.43% 66.41 45.16% 7.29% 

 

Table 2.  Summary of the performance of our best baseline system and various configurations of our 
complete system for each of mouse and fly dataset. Configurations are derived by subtracting various 
components from the complete system. Detailed results are presented in Table 3 for the mouse and Table 
4 for the fly. 

has proven useful on many occasions [3, 17, 20, 
25]. We incorporate a post-processing step that 
exploits repetition of entity names within a single 
document using the gene-protein names extracted 
by our trained NER systems. More specifically, for 
each abstract, it collects all the extracted names 
from that abstract, and soft-matches these names 
against the words in the same abstract, using a con-
stant threshold of 0.5 throughout our experiments; 
we refer to this as single document repetition 
(SDR) labeling. 

3 Approach 

3.1 Grounding Weak Labels 

In the BioCreAtIvE challenge, one unique charac-
teristic of the datasets is that there are synonym 
lists and weak labels. Therefore, for each abstract, 
we can approximately locate gene names by soft-
matching synonyms of identifiers associated with 
that abstract against the words in the same ab-
stracts. For this process, we used the fixed similar-
ity threshold of 0.5 for both the mouse and the fly 
datasets; we will refer to this process as grounding 
the weak labels. The result of grounding is a set of 
documents that are noisily annotated; a preliminary 
evaluation of our grounding method on the evalua-
tion data shows that grounding gives an entity-
level precision of 81%, recall of 65%, and F1 of 
72% for the mouse dataset, and precision of 73%, 
recall of 70%, and F1 of 71% for the fly dataset. 

3.2 Sentence Filtering 

Often genes that are mentioned but not associated 
with new results are not curated. Sections of a 
document that discuss these genes will become 
false negatives in our training set – i.e., they con-
tain substrings that should be annotated as protein 
names, but are not. One method for eliminating 
(some of) these false negatives is to filter out por-
tions of the document that are likely to contain 
false negatives. We thus incorporate a pre-
processing step of filtering training examples: spe-
cifically, we split abstracts into sentences (using a 
regular expression), and then remove sentences in 
the training data that do not contain any grounded 
gene-protein synonyms. We call this the sentence 
filtering process. Recently, the same sentence fil-
tering technique was independently described by 
Vlachos and Gasperin [26]. 

Sentence-filtering will also remove many true 
negative examples; hence, one might expect that 
sentence-filtering would lead to an over-general 
extractor, and hence increase recall at the expense 
of precision.  Section 5 discusses methods to com-
pensate for this bias. 

4 Experiments 

4.1 Settings 

We trained a VP-HMM extractor on each of the 
following three datasets: weak-train, curated, and a 
combined set, merged, which is the union of cu-



    -SDR   +SDR  
   Entity Prec. Entity Recall Entity F1 Entity Prec. Entity Recall Entity F1 
  YAPEX 68.36 27.56 39.29 69.28 48.29 56.91 
  GENIA 66.46 24.37 35.67 67.45 39.18 49.57 
  Dictionary 50.34 67.43 57.64 47.56 66.51 55.46 
 C.V. -GED 54.81 29.84 38.64 49.28 38.95 43.51 
 Eval. +GED 59.05 53.53 56.15 54.75 60.36 57.42 
         
 -GED 82.39 26.65 40.28 78.76 34.62 48.10 
 

Weak- 
train +GED 78.47 48.97 60.31 75.58 59.23 66.41 

-Filter 90.82 20.27 33.15 90.96 34.40 49.92 -GED +Filter 74.67 38.27 50.60 71.97 60.82 65.93 
-Filter 87.83 46.01 60.39 83.59 61.50 70.87 

C
ur

at
ed

 

+GED +Filter 80.91 56.95 66.84 76.10 66.74 71.12 
-Filter 90.35 23.46 37.25 78.63 41.91 54.68 -GED +Filter* 78.30 41.91 54.60 73.10 61.28 66.67 
-Filter 87.40 50.57 64.07 84.13 60.36 70.29 

M
er

ge
d 

+GED +Filter* 79.57 58.54 67.45 75.90 67.43 71.41 
 

Table 3.  Performance of the four baselines (YAPEX, GENIA, Dictionary, and C.V. Eval.) and our NER 
systems (Weak-train, Curated, Merged) at entity-level tested on the mouse evaluation data. Bold F1 
scores represent scores that are higher than any corresponding baseline. Extractors denoted by * will be 
tuned in section 5. 

rated and weak-train. Each of these datasets is 
weakly-labeled with grounded gene-protein syno-
nyms, using the approach described in 3.1. Each 
trained extractor is evaluated with various combi-
nations of sentence filtering, SDR labeling, and 
GED features. These extractors are evaluated on 
the evaluation data at the entity-level (i.e., no par-
tial credit is given for nearly-correct entity bounda-
ries).  

We compare our NER system’s performance to 
four baselines: a) an extractor trained on YAPEX, 
b) another trained on GENIA, c) 10-fold cross 
validation on the evaluation data, and d) a global 
dictionary soft-matcher which soft-matches every 
synonym from an entire synonym list to the 
evaluation data (exact-matching was found to per-
form worse). The similarity thresholds3 of the soft-
matcher were pre-determined to optimize F1 meas-
ure on the evaluation data, so they are optimistic 
assessments of the performance of this sort of 
technique. In addition to the four baseline perform-
ances, we present our NER systems performance at 
the entity-level in Table 3 and 4. 

                                                 
3 Specifically, they are 0.85 for mouse and 0.95 for fly dataset 

4.2 Results 

None of the baseline methods is competitive with 
the complete system (including GED features, 
SDR, and sentence filtering) trained on the largest 
weakly-labeled dataset (merged). Table 2 shows a 
summary of our experimental results. For mouse, 
the complete system obtains an F1 of 71.4% and 
the best baseline (soft-match to the dictionary) ob-
tains an F1 of 57.6%; for fly, the complete system 
obtains an F1 of 61.9%, and the best baseline (a 
YAPEX-trained system) obtains F1 of only 45.8%.  
Table 2 also shows the relative improvement in F1 
between the complete systems and the best base-
line – the improvement is nearly 24% for mouse, 
and more than 35% for fly. 

Table 2 also shows the results for training on 
only the curated data (in the row labeled “Com-
plete - Weak-train”); for training without sentence-
filtering (row “Complete - Filter”); for training 
without SDR; and for training without the GED 
features. Each of these ablations performs worse 
on the mouse data, although the effects are small 
for “Complete - Filter” and “Complete - Weak-
train”. For fly, the trends are less clear: removing 
the GED features clearly leads to lower perform-
ance, but removing SDR results in noticeably 
higher performance, and removing sentence-



    -SDR   +SDR  
   Entity Prec. Entity Recall Entity F1 Entity Prec. Entity Recall Entity F1 
  YAPEX 66.00 23.32 34.46 68.79 34.28 45.75 
  GENIA 44.16 12.01 18.89 59.06 26.50 36.59 
  Dictionary 28.92 70.32 40.99 27.75 70.32 39.80 
 C.V. -GED 39.13 9.54 15.34 46.38 22.61 30.40 
 Eval. +GED 37.59 36.40 36.98 35.68 46.64 40.43 
         
 -GED 37.50 3.18 5.86 38.46 7.07 11.94 
 

Weak- 
train +GED 51.89 38.87 44.44 56.79 57.60 57.19 

-Filter 78.43 28.27 41.56 75.71 47.35 58.26 -GED +Filter 63.64 44.52 52.39 55.25 57.60 56.40 
-Filter 73.19 60.78 66.41 64.31 64.31 64.31 

C
ur

at
ed

 

+GED +Filter 65.73 66.43 66.08 57.82 69.26 63.02 
-Filter 78.26 31.80 45.23 74.30 47.00 57.58 -GED +Filter* 64.47 44.88 52.92 55.70 58.66 57.14 
-Filter 70.76 59.01 64.35 62.46 64.66 63.54 

M
er

ge
d 

+GED +Filter* 64.38 66.43 65.39 56.20 68.90 61.90 
 

Table 4.  Performance of the four baselines (YAPEX, GENIA, Dictionary, and C.V. Eval.) and our NER 
systems (Weak-train, Curated, Merged) at entity-level tested on the fly evaluation data. Bold F1 scores 
represent scores that are higher than any corresponding baseline. Extractors denoted by * will be tuned in 
section 5. 

filtering or the (57 document) weak-train dataset 
also leads to slight improvements in performance.    

The last two rows of Table 2 report perform-
ance of the system that uses the best combination 
of techniques, as suggested by these ablation stud-
ies. For mouse, this is the complete system; for fly, 
it is the system trained on the curated data only, 
with GED features, but without SDR and sentence 
filtering. This system achieves a 45% improvement 
over the best baseline. 

Tables 3 and 4 also show the result of every 
combined system. In the mouse dataset, the 
weakly-trained NER systems outperform the best 
baseline whenever they are trained with GED, or 
whenever it included sentence-filtering and SDR. 
For the fly dataset, our NER systems almost al-
ways outperform all baselines. For the mouse data-
set, filtering, SDR, and GED always improve F1, 
and the maximum F1 measure of 71.4% is obtained 
when all three methods are combined. For the fly 
dataset, only GED is always effective, and SDR is 
effective only when not combined with GED. We 
conjecture that when precision is high and recall is 
low, SDR is more likely to label false negatives 
than true negatives as gene-protein names.  

The maximum F1 score on the fly dataset was 
obtained on the unfiltered curated data; however, 
the performance of the nearly-complete system 

(with GED and filtering) trained on the largest 
(merged) dataset is similar (65.4%).  We conjec-
ture that for future weak-training problems com-
petitive performance can be obtained by either the 
complete system, or the complete system without 
SDR. 

5 Extractor Tuning 

5.1 Method 

The sentence-filtering method described above 
increases recall at the expense of precision, which 
may not be appropriate for all text-mining applica-
tions. In general, one would like for it to be possi-
ble to adjust the recall-precision tradeoff of an 
NER system to suite the user’s need; for instance, 
curators of biological databases might prefer a 
high-recall gene-protein name extractor to assist 
them in identifying most gene-protein candidate 
names. To create such an extractor we tune or 
tweak [21] the threshold term of some of our 
trained extractors (those marked with * in Table 3 
and 4) on the word-level recall of the tuning data 
weak-train (which is less noisy than curated).  We 
pick the threshold term to optimize a user-chosen β 
value in the complete F-measure formula: 
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Here P is word-level precision and R is word-level 
recall. A β value of greater than 1 assigns higher 
importance to recall; for instance, F2 weights recall 
twice as much as precision. These tweaked extrac-
tors are then evaluated on the evaluation data. 

Word-level precision measures the fraction of 
words (tokens) that are part of a predicted entity 
name, relative to the number of words that are part 
of an actual entity name. Use of word-level preci-
sion and recall rather than entity-level precision 
and recall gives some credit to nearly-correct entity 
boundaries – for instance, an extractor that extends 
slightly past an entity boundary will receive credit 
for word recall, but be penalized for word preci-
sion. 

5.2 Results 

In Figure 1 (mouse) and 2 (fly), each shows two 
precision-recall curves at the word-level; one is a 
curve of tweaked extractors trained without GED 
features and the other with GED features. Each 
data point on a line represents an extractor tweaked 
for a different β value (0.1, 0.2, …, 0.9, 1, 2, …, 10) 
trained on filtered examples and has extractions 
SDR labeled. 

As comparisons, we also show the four base-
lines: a YAPEX-trained NER system, a GENIA-
trained NER system, soft matching using diction-
ary, and 10-fold cross validation (with and without 
GED features). As expected, the higher the β 
value, the higher the word-level recall of the result-
ing tweaked extractor. Interestingly, while includ-
ing the GED features always improves F1, it also 
appears to limit the degree to which precision can 
be traded off for recall.  We were able to generate a 
high-recall and medium-precision extractor, 
tweaked for β = 3 without GED features, that has a 
word-level precision, recall, and F1 of about 58%, 
87%, and 70% respectively for the mouse dataset 
and 48%, 78%, and 59% respectively for the fly 
dataset. 

6 Related Work 

The identification of gene-protein names has re-
ceived substantial attention in the bioinformatics 
community. Some prior research involves training 
an extractor on weakly-labeled gene-protein syno-
nyms; for instance, Hachey et al. [12] automati-
cally labeled gene text fragments by identifying 
potential genes using regular expression fuzzy 
matching, and then trained a tagger for each organ-
ism. The most closely related prior work is that of 
Morgan et al. [22] perform pattern matching to 

Extractor Tweaking on Mouse Dataset

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Word-Level Recall

W
or

d-
Le

ve
l P

re
ci

si
on

Merged-GED

Merged+GED

YAPEX

GENIA

Soft Dict.

C.V.-GED

C.V.+GED

 
 

Figure 1. Tweaking extractors trained on the mouse 
dataset for β values from 0.1 to 10 on the word-
level recall of weak-train data. The four baselines 
are also shown. Merged was filtered, and all extrac-
tions were SDR labeled. 

Extractor Tweaking on Fly Dataset
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Figure 2.  Tweaking extractors trained on the fly 
dataset for β values from 0.1 to 10 on the word-
level recall of weak-train data. The four baselines 
are also shown. Merged was filtered, and all extrac-
tions were SDR labeled. 



find candidate mentions in FlyBase abstracts using 
synonym lists and trained a HMM-based tagger on 
these noisy training data, achieving a F1 of 67% 
with 522,825 tokens of training data and a F1 of 
75% with 1,342,039 tokens of training data. 

There are several additional contributions of 
this work. Unlike Morgan et al, we study the gen-
erality of weak-labeling methods (our system is the 
same for FlyBase and MGI).  We also study the 
use of intra-document repetition, and its effect on 
weakly-trained NER systems, alone and in combi-
nation with other methods. We also study the ef-
fect of sentence filtering, and the effect of GED 
(dictionary) features on the range of points reach-
able on a recall-precision curve. Our F1 perform-
ance for the fly data with 1057 abstracts is 
comparable to that obtained by Morgan et al. with 
522,825 tokens (approximately 2000-2500 ab-
stracts). However, Morgan et al exploited ortho-
graphic preprocessing steps that we did not use, 
and the effect of using much larger training sets. 
(Unfortunately we cannot compare directly on the 
same test set, due to technical issues involving to-
kenization.) 

Some other prior related research involves un-
supervised identification of gene-protein names. 
Wellner [27] incorporates part-of-speech as factors 
for proposing gene phrases and performs exact 
matching from a synonym list to abstracts for an-
notating candidate gene-protein synonyms. Cohen 
[5] generates orthographic variants of gene-protein 
entities, separates out regular English words by 
using English word dictionaries, and matches the 
remaining variants against biomedical abstracts. 

The contribution of this paper is to explore and 
systematically evaluate several different techniques, 
in isolation and in combination, for the gene-
protein NER task: sentence filtering, GED features 
[24], SDR labeling [20], training on weakly-
labeled examples [22], and tuning trained extrac-
tors [21]. We also contribute to the community, for 
each of fly and mouse organism, two organism-
specific gene-protein name extractors 4 ; one has 
high precision but medium recall and the other 
high recall but medium precision. 

                                                 
4 Available from http://rcwang.com/pub/GeneNER.tar.gz 

7 Conclusions 

Manually annotated training data has always been 
difficult to produce. This is especially true for 
biomedical data, because expertise in biology is 
required to annotate gene-protein names. In this 
paper, we trained a gene-protein NER system, 
without manually annotating any documents, by 
utilizing the mouse and fly dataset from BioCreA-
tIvE task 1B. We presented an automatic approach 
for creating training corpora by soft matching gene 
synonyms into abstracts. We illustrated that the 
NER systems trained on these annotated abstracts, 
combined with sentence filtering, SDR labeling, 
and/or GED features, can outperform all baselines. 
Furthermore, we also demonstrated the possibility 
of converting a gene-protein NER system with de-
cent performance into a high-recall gene-protein 
name extractor. Our results demonstrate that the 
quality of named entity recognition systems can be 
significantly improved through the use of readily 
available data and thus avoiding the difficult proc-
ess of manually annotating training sets. 
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Appendix A. Stop-Words 
 
List of common English words that are used as 
stop-words in our system: all, an, and, are, as, at, 
between, but, by, can, for, from, has, in, into, is, it, 
less, likely, more, most, much, not, of, on, or, per, 
such, that, the, through, to, via, was, we, were, 
whereas, whole, with. 
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