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Abstract

The task of computing approximate Nash equilibria
in large zero-sum extensive-form games has received
a tremendous amount of attention due mainly to the
Annual Computer Poker Competition. Immediately af-
ter its inception, two competing and seemingly dif-
ferent approaches emerged—one an application of no-
regret online learning, the other a sophisticated gradient
method applied to a convex-concave saddle-point for-
mulation. Since then, both approaches have grown in
relative isolation with advancements on one side not ef-
fecting the other. In this paper, we rectify this by dis-
secting and, in a sense, unify the two views.

Introduction
The first annual Computer Poker Competition was held in
2007 providing a testbed for adversarial decision-making
with imperfect information. Though incredible advance-
ments have been made since then, the solution of an abstract
game still remains a critical component of the top agents.
The strength of such a strategy correlates with how well the
abstract game models the intractably large full game. Al-
gorithmic improvements in equilibrium computation enable
teams to solve larger abstract games and thus improve the
overall strength of their agents.

The first agents used off-the-shelf linear programming
packages to solve the abstract games. Shortly after, two spe-
cialized equilibrium-finding techniques emerged drastically
reducing resource requirements by allowing implicit game
representations. One method, counterfactual regret mini-
mization (CFR), combines many simple no-regret learners
together to minimize overall regret and as a whole they con-
verge to an equilibrium (Zinkevich et al. 2008). The other,
an application of Nesterov’s excessive gap technique (EGT,
2005), is a gradient method that attacks the convex-concave
saddle-point formulation directly (Gilpin et al. 2007).

Currently, the two techniques are thought of as simply dif-
ferent and competing. Though both improved, the advance-
ments and the methods remained isolated. At this point, CFR
has more widespread adoption due to its simplicity and the
power of the sampling schemes available to it.
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In this paper we connect CFR and EGT. Specifically, both
define Bregman divergences with the same structure. This
viewpoint allows us to make important connections between
the two as well as current research on convex optimization
and no-regret learning. In particular, we show that CFR can
be thought of as smoothed fictitious play and its dual weights
are a function of the opponent’s average strategy; with the
appropriate step-size the primal iterate converges to the so-
lution (as opposed to the average); and that a convergence
rate of O(1/T ) can be achieved while sampling.

Zero-Sum Extensive-form Games
A extensive-form game is a tuple Γ = (N,H, p, σc, I, u)
(see, e.g., Osborne and Rubinstein). The game has N play-
ers, the set of which is [N ]. The set of histories, H, form
a tree rooted at φ, the empty history. For a history h ∈ H,
we denote the set of available actions by A(h). For any ac-
tion a ∈ A(h), the history ha ∈ H is a child of h. The
tree’s leaves, or terminal histories, are denoted by Z ⊆ H.
At a non-terminal history the player choice function, p :
H\Z → [N ]∪{c}, determines who is to act, either a player
or nature. Nature’s policy is denoted σc defines a distribution
over actions when it is to act σc(·|h) ∈ ∆A(h). The infor-
mation partition, I = ∪i∈[N ]Ii, is a partition the players’
histories. All histories in an information set are indistin-
guishable to the player to act. We have ∀I ∈ I, h, h′ ∈ I ,
that p(h) = p(h′) and A(h) = A(h′). Finally, at a termi-
nal history, z ∈ Z , the utility for player i, ui : Z → R,
determines the reward for player i reaching terminal z.

Each player plays the game by means of a behavioral
strategy. A behavioral strategy for player i, σi ∈ Σi, maps
histories to distributions over actions, σi(·|h) ∈ ∆A(h).
When the player is to act, their choice is drawn from this
distribution. A strategy must respect the information parti-
tion, ∀I ∈ Ii, h, h′ ∈ I, σi(·|h) = σi(·|h′). We call the
tuple of N strategies, (σ1, . . . , σN ), a strategy profile.

There are two additional properties we require of the
extensive-form games we examine. First, we consider two-
player zero-sum games. That is, N = 2 and u2(z) =
−u1(z); what one player wins the other loses.

Second, we will consider games of perfect recall—
neither player is forced forget any information they once
knew. Mathematically this requirement is that all histories in
an information set share the same sequence of information



sets and actions from the point-of-view of the acting player.
With these additional restrictions, we can conveniently

represent a game in its sequence form, Γ = (A,E, F ).
Following from perfect recall, any sequence of information
set/action pairs, henceforth simply sequence, is uniquely
identified by its final element. Consequently, we can rep-
resent behavioral strategies as vectors, called realization
plans, such that the expected utility of the game is a bilin-
ear product xTAy. In particular, a realization plan for the
row player is a non-negative vector x indexed by sequences
such that

∑
a∈A(I) x(I, a) = x(parent(I)) for all I ∈ Ii

and where x(φ) = 1. In words, the probability mass flowing
out of an information set equals the probability of playing
to reach that information set. The constraint on the empty
sequence, φ, normalizes the probability. We represent these
linear equality constraints with the matrix E, i.e., Ex = e1,
and thus Σ1 = {x | Ex = e, x ≥ 0}. For the column player,
we have corresponding concepts y, F , and Σ2. The matrix
A is the payoff matrix. Entry ai,j is the expected payoff to
the row player over all terminals reach by sequences i and j.

A pair of strategies, (x, y) is said to be an ε-Nash equi-
librium if neither player can benefit by more than ε by de-
viating to another strategy. In particular,

xTAy + ε ≥ x′Ay, and ∀x′ ∈ Σ1

−xTAy + ε ≥ −xTAy′. ∀y′ ∈ Σ2

Remarkably, a Nash equilibrium always exists and in our
case we can efficiently find ε-equilibria. In the next sections
we will discuss and relate large-scale methods to do so.

Counterfactual Regret Minimization

Online learning is a powerful framework for analyzing the
performance of adaptive algorithms. At time t ∈ [T ], an
online algorithm chooses a policy xt ∈ Σ and then receives
reward vector ut ∈ K. It aims to minimize external regret,

max
x∗∈Σ

T∑
t=1

ut · x∗ − ut · xt,

its utility relative to the best fixed policy in hindsight. An
algorithm is said to be no-regret if its regret grows sublinear
in T for any sequence of u’s from bounded set K. That is, if
the bound on its time-averaged regret approaches zero in the
worst-case (Cesa-Bianchi and Lugosi 2006).

There is an important connection between no-regret learn-
ing and zero-sum equilibrium computation. Two no-regret
algorithms in self-play converge to a Nash equilibrium. Op-
erationally, the row player gets reward ut = Ayt and the
column player ut = −ATxt.

Theorem 1. If two no-regret algorithms play a zero-sum
game against one and other for T iterations and have time-
averaged regret less than ε, then their average strategies
(x̄, ȳ) are a 2ε-Nash equilibrium. Here x̄ =

∑T
t=1 x

t/T .

Proof. For any x′ ∈ Σ1 and y′ ∈ Σ2,

1

T

T∑
t=1

x′ ·Ayt − xt ·Ayt ≤ ε, and

1

T

T∑
t=1

(−xt ·Ay′)− (−xt ·Ayt) ≤ ε

adding the two inequalities together

1

T

T∑
t=1

x′ ·Ayt − xt ·Ay′ ≤ 2ε

substituting in the definitions of x̄ and ȳ
x′ ·Aȳ − x̄ ·Ay′ ≤ 2ε

choosing y′ = ȳ, we get for all x′ ∈ Σ1

x′ ·Aȳ ≤ x̄ ·Aȳ + 2ε

Similarly, if instead we choose x′ = x̄, we get the second
inequality in the definition of a 2ε-Nash.

The space of mixed strategies, Σ1 and Σ2, though struc-
tured, is complicated. Zinkevich et al. overcome this and
describe a no-regret algorithm over the space of realization
plans. Their approach minimizes a new notion of regret—
counterfactual regret—at each information set using simple
no-regret algorithms for the probability simplex. They show
that counterfactual regret bounds external regret, thus their
approach computes an equilibrium in self-play.

The counterfactual utility for action a at information set
I is the expected utility given that the player tries to and
successfully plays action a. That is, we weight a terminal by
the total probability of the opponent and chance reaching it,
but only by the remaining probability for the acting player.
Computing counterfactual utilities is done by traversing the
game tree, or one sparse matrix-vector product.

There are numerous no-regret algorithms operating over
the probability simplex, Σ = ∆. Let us present two. The
first, regret-matching (Hart and Mas-Colell 2000), is also
known as the polynomially-weighted forecaster. It is the
most commonly used algorithm for zero-sum equilibrium
computation. Notationally, we call rt = ut − ut · xte the
instantaneous regret and Rt =

∑t
i=1 r

i the cumulative
regret at time t. Let L = supu∈K ‖u‖∞.

Definition 1 (Regret-matching). Choose xt+1 ∝ (Rt)+.

Here, (x)+ = max{0, x}.
Theorem 2 (from (Hart and Mas-Colell 2000)). If xt’s are
chosen using regret-matching, then the external regret is no
more than L

√
NT .

The second algorithm is Hedge (Freund and Schapire
1997). It is also known as the exponentially-weighted fore-
caster, exponential weights, or weighted majority (Little-
stone and Warmuth 1994).
Definition 2 (Hedge). Choose xt+1 ∝ exp(ηRt).

Theorem 3 (from (Freund and Schapire 1997)). If xt’s are
chosen using Hedge with η =

√
2 log(N)/T/L, then the

external regret is no more than L
√

2T logN .



Algorithm 1 CFR Update with Hedge
function UPDATEREGRETI (R, g)

for a ∈ A(I) do
for I ′ ∈ child(I, a) do

u′, RI′ ← UPDATEREGRETI′ (RI′ , gI′ )
ga ← ga + u′

end for
end for
xa ∝ exp(RI,a)
for a ∈ A(I) do

RI,a ← RI,a + ga − g · x
end for
return g · x,R

end function
function UPDATEREGRET(R, g)

for I ∈ child(Φ) do
, RI ← UPDATEREGRETI′ (RI , gI )

end for
end function

For equilibrium-finding, the regret-matching algorithm of
Hart and Mas-Colell is common place. Though Hedge has
a slightly better theoretical bound than regret-matching, it
is computationally more expensive due to exp and choos-
ing η can be tricky in practice. As we will see, the use of
Hedge here leads to an insightful connection between the
two equilibrium-finding approaches in question. We show
the counterfactual regret update in Algorithm 1.

Connection to Convex Optimization
A different view from the no-regret learning approach is
simply to write the equilibrium computation as a non-
smooth minimization. This minimization is convex, as both
the objective and the set of realization plans are.

Theorem 4. Let f(x) = maxy∈Σ2
−xTAy then f is convex

on Σ1. Furthermore, if x∗ ∈ argminx∈Σ1
f(x) then x∗ is a

minimax optimal strategy for the row player.

Proof. First, let y′ ∈ argmaxy∈Σ2
−xTAy. Claim f ′(x) =

−Ay′ ∈ ∂f(x). For any x′ ∈ Σ1,

f(x′)− f(x) = max
y∈Σ2

−x′ ·Ay − max
y∈Σ2

−x ·Ay

≥ −x′ ·Ay′ − max
y∈Σ2

−x ·Ay

= −x′ ·Ay′ + x ·Ay′

= (−Ay′) · (x′ − x)

This is an instantiation of Danskin’s theorem (Bertsekas
1999). By the optimality of x∗, for any x̂ ∈ Σ1:

x∗ ·Ay∗ = −f(x∗) ≥ −f(x′) = x̂ ·Aŷ.

where y∗ maximizes−x∗ ·Ay and ŷ maximizes−x̂·Ay.

Note, the subgradient computation is precisely y’s best
response. The CFR-BR technique is exactly CFR applied to
this non-smooth optimization (Johanson et al. 2012).

As f is convex, and we can efficiently evaluate its subgra-
dient via a best response calculation, we can use any sub-
gradient method to find an ε-equilibrium strategy. Unfortu-
nately, the most basic approach, the projected subgradient
method, requires a complicated and costly projection onto
the set of realization plans. We can avoid this projection by
employing the proper Bregman divergence. In particular, if
h : D → R is a strongly convex such that we can quickly
solve the minimization

argmin
x∈D

g · x+ h(x) (1)

we say h fits D. In these cases, we can often use h in place
of the squared l2 distance and avoid any projections.

Hoda et al. (2010) describe a family of diverences, or dis-
tance generating functions, for the set of realization plans.
They construct their family of distance generating functions
inductively. One such h is as follows:

hI(x, y) =
∑

a∈A(I)

xI,a log xI,a+ ∀I ∈ Ii

∑
I′∈child(I,a)

xI,a [hI′(yI′/xI,a)]

h(x) =
∑

I∈child(φ)

hI(xI)

A few things worth noting. First, by child(x) we mean the
set of information sets that are immediate children of se-
quence x. Second, we slightly abuse of notation above in
that hI(x, y) depends on the immediate realization weights,
x, and all child weights y. We denote the child weights be-
longing to information set I ′ as yI′ . Second, due to perfect
recall, this recursion does bottom out; there are information
sets with no children and there are no cycles. At a termi-
nal information set, hI is the negative entropy function. The
recursion makes use of the dilation or perspective operator.

Gordon (2006) introduces the same function in his supple-
mentary materials, but does not provide a closed-form solu-
tion to its minimization. The closed-form solution is shown
in Algorithm 2. Note that this algorithm is the same as a
best response calculation where we replace the max opera-
tor with the softmax operator. The normalization step after-
wards restores the sequence form constraints, i.e., converts
from a behavioral strategy to a realization plan.

The computational structure of Algorithm 1 and 2 are
identical. CFR, too, must normalize when computing an
equilibrium to properly average the strategies. Both use the
softmax operator to on the expected utility to define the cur-
rent policy. In particular, if R = 0, then the computation is
equivalent with the exception of the initial sign of g.

Dual Averaging
Nesterov’s dual averaging (2009) is a subgradient method,
and thus we can use to find equilibria. As we shall see, it has
close connections to counterfactual regret when equipped
with Hoda et al. distance function.

Dual averaging defines two sequences, xt, the query
points, and gt, the corresponding sequence of subgradients.
The averages x̄ and ḡ converge to a primal-dual solution.



Algorithm 2 Smoothed Best Response
function MINIMIZE hI (u)

for a ∈ A(I) do
for I ′ ∈ child(I, a) do

u′, xI′ ← MINIMIZE hI′ (uI′ )
uI,a ← uI,a + u′

end for
end for
xI,a ∝ exp(uI,a) . softmax instead of max
return uI · x, x

end function
function NORMALIZEI (x, Z)

for a ∈ A(I) do
xI,a ← xI,a/Z
for I ′ ∈ child(I, a) do

NORMALIZEI′ (xI′ , xI,a)
end for

end for
end function
function MINIMIZE h(g)

for I ∈ child(Φ) do
, xI ← MINIMIZE hI′ (−gI )

NORMALIZEI (x, 1)
end for
return x

end function

Definition 3. Let βt > 0 be a sequence of step sizes and h :
D → R be a strongly convex distance generating function.
The sequence xt is given by

xt+1 = argmin
x∈D

1

t

t∑
i=1

[
f(xi) + f ′(xi) · (x− xi)

]
+ βth(x)

= argmin
x∈D

ḡt · x+ βth(x) (2)

The method convergences for step sizes O(
√
t), or for an

appropriately chosen constant step size when the number if
iterations is known ahead of time.

Interestingly, Hedge and regret-matching over the simplex
are operationally equivalent to dual averaging.
Theorem 5. Hedge is equivalent to Dual Averaging over
the simplex with σ(x) =

∑n
i=1 xi log xi, βt = 1/(tη) and

gt = −ut.

Proof. The dual averaging minimization can be written as
the convex conjugate of the negative entropy (Boyd and Van-
denberghe 2004):

min
x∈∆

ḡt · x+ βt
n∑
i=1

xi log xi

= −βt max
x∈∆

−ḡt · x/βt −
n∑
i=1

xi log xi

= −βt log

n∑
i=1

exp
(
−ĝi/βt

)

The gradient of the conjugate minimizes the objec-
tive (Rockafeller 1970),

xt+1 ∝ exp
(
−ḡt/βt

)
= exp

(
−η

t∑
i=1

gt

)

∝ exp

(
η

t∑
i=1

ut − ut · xte

)
= exp

(
ηRt

)
The last step follows from exp(x) ∝ exp(b) exp(x) =
exp(be+ x) for any vector x and constant b.

In particular, note subtracting the expected utility in the
regret update does not at all alter the iterates. We need only
accumulate counterfactual utility when using Hedge.

Theorem 6. Regret-matching is equivalent to Dual Averag-
ing over the simplex with σ(x) = ‖x+‖22/2, βt = eTRt+/t
and gt = ut · xte− ut.

Proof. Consider the dual averaging minimization without
the normalization constraint:

xt+1 = argmin
x≥0

ḡt · x+ βt‖x+‖22/2

=
(−ḡt)+

βt
=
t( 1
t

∑t
i=1 u

i − ui · xie)+

eTRt+

=
Rt+
eTRt+

Note that by construction xt+1 sums to one, therefore the
normalization constraint holds. In order for dual averaging
to converge, we need 1/βt ∈ O(

√
T ). This follows from the

no-regret bound on regret-matching, eTRT+ ≤ L
√
NT .

Following from Theorem 6, we see that CFR with regret-
matching is dual averaging with a Hoda et al.-style diver-
gence built on ‖x+‖22. Note that the step sizes must be cho-
sen appropriately to avoid projection. That is, this diver-
gence may not be appropriate for other gradient methods that
rely on more stringent step size choices.

Let us explicitly instantiate dual averaging for solving the
convex-concave equilibrium saddle-point optimization.

xt+1 = argmin
x∈Σ1

1

t

t∑
i=1

−Ayi + βth(x),

= argmin
x∈Σ1

−Aȳt + βth(x),

yt+1 = argmin
y∈Σ2

1

t

t∑
i=1

ATxi + βth(y).

= argmin
y∈Σ2

AT x̄t + βth(y).

In words, dual averaging applied to the saddle-point problem
can be thought of as fictitious play with a smoothed best re-
sponse as opposed to an actual best response (Brown 1951).

Dual averaging and Hedge are operationally equivalent at
terminal information sets, that is, ones where all sequences



have no children. At a non-terminal information set, dual av-
eraging responds as if its current policy is played against the
opponent’s average strategy in future decisions. Counterfac-
tual regret minimization, on the other hand, plays against the
opponent’s current policy. The no-regret property of the al-
gorithm guarantees that these two quantities remain close.
In rough mathematical terms, we have

∑T
t=1 x

t · Ayt ≈
xT ·

∑T
t=1Ay

t within O(
√
T ). Conceptually, we can con-

clude that counterfactual regret minimization, too, is roughly
equivalent to smoothed fictitious play.

Operationally, the difference is counterfactual regret min-
imization propagates and accumulates the expected utilities
from the child information sets in the regrets. Dual averag-
ing, in spirit, is lazy and re-propagates these utilities on each
iteration. We note that this re-propagation is not algorith-
mically necessary when we have sparse stochastic updates
as the expected value of an information set only changes if
play goes through it. That is, we can memoize and update
this value in a sparse fashion.

This understanding of CFR hints at why it outperforms its
bound in practice and why unprincipled speedups may in-
deed be reasonable. In particular, we can achieve faster rates
of convergence, O(L/T ) as opposed to O(L/

√
T ), when

minimizing smooth functions with gradient descent and the
appropriate step size. Two no-regret learners in self-play are
essentially smoothing the non-smooth objective for one and
other. The smooth objective itself is changing from iteration
to iteration, but this suggests we can choose more aggres-
sive step sizes than necessary. Further evidence of this is that
the convergence behavior for CFR-BR, a minimization of a
known non-smooth objective, is exhibits more volatile be-
havior that is closer to the true CFR regret bound.

Dual averaging with the Hoda et al. divergence is itself
a no-regret learner over the set of realization plans (Xiao
2010). The regret bound itself is a function of the strong
convexity parameter of the distance function. The bound on
which appears to be quite loose. The above analysis sug-
gests that it should be similar, or perhaps in some cases bet-
ter, than the counterfactual regret bound on external regret.
This is not shocking as counterfactual regret minimization is
agnostic to no-regret algorithm in use.

Initialization with a Prior
When computing an equilibrium or in an online setting, typ-
ically the initial strategy is uniformly random. Though the
initial error does drop quite rapidly, it is often the case that
we have available good priors available. Particularly in an
online setting, it is preferable start with a good strategy in-
stead of essentially learning both how to play the game and
how to exploit an opponent at the same time. From the opti-
mization perspective, we now discuss sound approaches.

First, let us investigate how to initialize the dual
weights—the cumulative counterfactual regrets. In dual av-
eraging, the dual weights to x, ḡ = Aȳ, is the utilities to x
of the opponent’s optimal strategy. If we have guesses at x∗
and y∗, we can use those to initialize the dual weights. This
view of the dual weights is a simplification what is being
done by Brown and Sandholm (2014), where counterfactual

regret minimization is started from a known good solution.
From the convex optimization view-point this is immediate.

An appealing property of this is that the representation of
the opponent’s policy need not be known. That is, so long as
we can play against it we can estimate the dual weights. In
some cases, the variance of this estimate may be quite poor.
With more structured representations, or domain knowledge
it may be possible to greatly improve the variance.

It is quite common when considering convex optimization
problems to recenter the problem. In particular, note that
dual averaging starts with the policy x0 = argminx∈D h(x).
By instead choosing h′(x) = ∇h(x)−∇h(x′) · x, we shift
the starting policy to x′. In the case of the negative en-
tropy over the simplex, this is equivalent to instead using
a Kullback-Leibler divergence. Note, the step size schedule
is an important practical factor that needs to be considered
more carefully. In particular, smaller step sizes keep iterates
closer to the initial policy.

Convergence of the Current Policy
Some work has considered using CFR’s final policy as op-
posed to the average policy. Experimentally, it is shown that
the current policy works quite well in practice despite the
lack of bounds on its performance.

A large assortment of recent work on stochastic convex
optimization has considered this problem in depth exploring
different averaging and step size selection schemes. When
we view the problem from the convex optimization view-
point these results transfer without modification. In particu-
lar, it has been shown that using a step size decreasing like
1/
√
t will lead to convergence of the current iterate for non-

smooth optimization. That is, if the opponent plays a best
response, like in CFR-BR, we need not store the average
policy reducing the memory requirement by 50%.

Acceleration and Stochastic Gradients
An important reason that no-regret algorithms have emerged
as the dominant approach for large-scale equilibrium com-
putation is their amenability to a various forms of gradient
sampling (i.e., estimating utilities by sampling opponent and
chance actions). At a high level, by introducing stochastic-
ity we can drastically reduce the computation on each iter-
ation by introducing different types of sparsity while only
marginally increasing the number of necessary iterations.

Theorem 7 (from (Cesa-Bianchi and Lugosi 2006)). Let the
sequence xt be chosen according to a no-regret algorithm
with regret bound

√
CT and let x̃t ∼ xt. For all δ ∈ (0, 1),

with probability at least 1 − δ the regret of the sequence x̃t

is bounded by
√
CT +

√
T/2 log 1/δ.

By sampling ỹ from y, now we choose ut+1 = Aỹt.
That is, ỹt is a standard basis vector and ut+1 is just a col-
umn of A (Lanctot et al. 2009). This has a number of im-
portant computational consequences. First, we no longer re-
quire a matrix-vector multiplication reducing the complex-
ity of each iteration to linear from quadratic. In addition to
the asymptotic reduction in complexity, we improve the con-
stants since selecting a column of A requires no arithmetic



operations. In fact, we may not even need to store ut+1 if we
can index directly into A.

A second important computational improvement is we
can now often use integral numbers in place of floating-
point numbers (Gibson 2013). In particular, note that rt =
ut−ut ·x̃te is integral so long as ut is. Furthermore, x̄ can be
represented as a vector of counts–the number of times each
action is sampled. By using regret-matching, even comput-
ing xt can be done completely with integers as no floating-
point math is required to convert RT to xt+1.

Another form of sampling is possible when nature par-
ticipates in the game (Zinkevich et al. 2008). For example,
imagine that A =

∑p
i=1Ai and we can implicitly access

each Ai. This is the case when nature rolls a die or draws
a card from a shuffled deck. Instead of explicitly forming
and storing A, or examining each Ai on every iteration,
we can choose one randomly. That is, Ãt = pAit , where
it ∼ Uniform([p]). When we cannot store A this form
of sampling reduces each iteration’s asymptotic complexity
from linear in p to constant.

Nesterov’s excessive gap technique (2005) cannot handle
stochastic gradients. This is the primary reason that it is less
popular for equilibrium computation. As we note here, the
divergence itself has nothing to do with the inability to han-
dle stochasticity. It is a power tool enabling us to consider
a wide variety of gradient methods. The stochastic mirror
prox (SMP) algorithm of Juditsky, Nemirovski, and Tau-
vel (2011) is an extension of the extra-gradient method that
achieves a rate of O(L/T + σ/

√
T ) on saddle-point prob-

lems like ours. Here, σ is the variance of the gradient. This
rate is optimal. Specifically, it enables us to trade off be-
tween the variance of the sampling technique and the slower
1/
√
T rate that CFR achieves. Current sampling procedures

favors low computation with sparse updates. It is unlikely
that using them along side SMP will work well out-of-the-
box. Further investigation is needed to determine if a suc-
cessful compromise can practically improve performance.
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