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Abstract

Wireless sensor networks (WSNs) have gained researchers’ attention in the last
several years. Small sensors powered by miniaturized microprocessors are capable
of supporting several applications for civil and military domains. Determining the
location of sensors is a basic and essential knowledge for most WSN algorithms and
protocols including data tagging, routing, node identification, among others. This
paper surveys the different algorithms that have been proposed to securely determine
the location of a sensor node. By “secure”, we mean that adversaries cannot easily
affect the accuracy of the localized sensors. In other words, the localization algorithm
must be robust under several attacks.

We provide a taxonomy for classifying different secure localization schemes and
describe possible attacks that can harm localization. In addition, we survey different
secure localization schemes and show how they map to the proposed taxonomy. We
also give a comparison between the different schemes, showing the attacks addressed
by each.

1 Introduction

In a matter of just few years, WSNs have gained attention from researchers in different
fields. A WSN consists of a large number of small sensors cooperating to achieve one goal.
This helps leveraging several military and civil applications. Since these micro-sensors have
limited power and computation, we need special algorithms with low power consumption.
WSNs are usually deployed in harsh environments (e.g. battlefields) and are operating
unattended. This makes them more vulnerable to adversary attacks.

Knowing a sensor’s location is essential for many sensor network applications including
surveillance networks and habitat monitoring. Equipping each sensor with a GPS device is
too expensive because the number of sensors in a WSN is usually in the order of thousands.
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There are several localization schemes [1] that allow sensors to determine their physical loca-
tions in absence of special hardware. Many localization schemes (anchor-based) assume that
some special sensors (anchors) know their true physical locations. Other sensors determine
an approximate relative location to anchors based on some measurements. However, there
are some other schemes (anchor-free) in which there are no anchor nodes (e.g. [2]). In these
schemes, sensors locations are calculated according to some virtual coordinates.

We expect that an adversary will try to prevent localization algorithms from working
correctly. An adversary may inject malicious data into the network in order to displace
sensor nodes. This means that when sensors estimate their locations, a displaced location is
calculated. In this paper we survey different algorithms that can fall under such adversary
attacks and still get a good estimate of sensors’ locations.

In the balance of this section, we introduce some terminology that we will use in the rest
of the paper and present the paper organization.

1.1 Terminology

Anchor : A node that knows its location without the aid of any other nodes. e.g. using
GPS.

Beacon: A message sent by an anchor node that helps other nodes to know their locations.
Prover (Claimant): A node that claims to be at some location. Other nodes in the

network try to know whether this claimed location is correct.
p: A legitimate prover.
pm: A malicious prover.

Verifier : A node among a group of nodes (verifiers) that tries to verify the location of
another node (prover).

v: A legitimate verifier.
vm: A malicious verifier.
V : A set of verifiers.

Location verification: The process in which a group of verifiers try to verify the location
of a prover.

Distance bounding : A protocol run by a verifier to get an upper bound of the distance
between it and a prover.

Base station: The gateway connecting the wireless sensor network to the operator.

1.2 Paper Organization

The paper is organized as follows. In Section 2, we provide a taxonomy for classifying
different secure localization algorithms. In Section 3, we discuss attack models on localization
schemes. In Section 4, different secure localization schemes are surveyed, then discussed in
Section 5. In Section 6, we conclude the paper and discuss open issues.
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Figure 1: Classifications of secure localization schemes

2 Taxonomy

In this section, we present different criteria that can be used to classify secure localization
algorithms in wireless sensor networks. This classification (Figure 1) reflects many design
choices for such algorithms. This taxonomy is used later to classify all the algorithms we
survey in this paper as shown in Table 1.

2.1 Objective

Secure localization algorithms can be classified into two main categories according to
their objective. The first category aims to verify location claims of nodes. This is important
because, usually, nodes are granted more services, privileges, trust or credibility when they
are closer to other nodes (e.g. access the gateway’s resources when within reach of it). So,
an adversary node probably would claim to be in a closer location to an authority node than
it actually is.

The second class of algorithms (location estimation) aims to assure that nodes can esti-
mate their own true locations with the help of other nodes, even when some of the nodes
are malicious. For example, if adversary nodes could deceive legitimate nodes, making them
estimate their locations inaccurately, adversary nodes can exploit location-based routing al-
gorithms to modify, repeat, or drop all messages passing through them. This is one reason
why robust own location estimation is an important problem to address.

2.2 Use of Encryption Keys

There are four types of encryption keys that are likely to co-exist in a wireless sensor
network [3]:

• An individual key shared with the base station

• A pairwise key shared with another node

• A cluster key shared with multiple neighboring nodes

• A group key shared by all the nodes in the network

Establishment of those keys in a network, and the usage of each are beyond the scope of this
survey, interested readers are referred to [3].
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There are three classes of secure localization algorithms in regard to the use of encryption
keys: First, algorithms that are based on encryption keys. Such algorithms cannot be
implemented unless encryption keys are set up in the network. Second, algorithms that can
make use of keys if they exist, but still can operate in their absence. Third, algorithms that
do not make use of keys, even if they happen to exist in the network.

The use of encryption keys makes an algorithm more resilient to attacks. But this comes
with a price, that such algorithms are less feasible due to the computation overhead of
establishing encryption keys.

2.3 Signal Type

Two types of frequencies have traditionally been used in secure localization: ultrasound
and radio-frequency (RF). Ultrasound is considerably slower, which is good in the sense that
location estimation is not sensitive to errors in time estimation. But, being too slow (with
respect to RF) means that two (or more) adversaries may communicate using RF to shorten
the estimated distance. Ultrasound propagates in metals faster than in air, allowing for
some physically-present attacks [4]. RF signal is preferred because it moves through objects.
This is a desirable property, for larger coverage, especially when the network is deployed
randomly.

2.4 Use of Anchors

In anchor-based algorithms, a small percentage of nodes, namely “anchors”, know their
absolute locations, usually using a GPS receiver. The algorithm then tries to estimate the
absolute location of other nodes in the network, using the location information provided by
the anchors in beacon frames. In contrast, anchor-free algorithms try to estimate relative
locations of nodes in the network without making any assumptions about nodes’ absolute
locations. Anchors make calculations more accurate. On the other hand, anchor-free algo-
rithms are more scalable because they do not require special types of nodes. Note that a
virtual coordinate system constructed using an anchor-free algorithm can be mapped to an
absolute coordinate system by getting the locations of three non-colinear nodes in case of
2D (four in case of 3D).

2.5 Range estimation

Localization algorithms can be generally classified into range-based and range-free algo-
rithms [5]. Range-based algorithms use absolute point-to-point range estimates (e.g. distance
or angle) for estimating location [1]. Range-free algorithms employ other methods to ap-
proach the localization problems (e.g. using the hop-count between two nodes as an estimate
of the distance between them). Range-based algorithms are generally more accurate because
they use physical quantities in measuring distances more accurately.
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3 Attacks

Before getting into the details of each algorithm, it is useful to know what attacks could
harm the localization schemes in wireless sensor networks.

3.1 Distance fraud attack

A distance fraud attack is based on hacking the method of measuring distance between
two nodes. It consists of one malicious node trying to appear closer or further to another
legitimate node. This attack could take different forms:

• When a verifier node sends a signal to a prover node, the prover node is supposed to
send the response signal immediately after receiving the verifier’s signal. A malicious
prover could send the response even before receiving the verifier’s signal to appear
closer. A malicious prover could also introduce delay before sending the response to
appear further away from its actual location [6].

• Measuring signal strength is one of the methods of estimating distance between nodes.
All nodes are supposed to use the same power level for transmission. A malicious node,
however, could increase the power level for transmission so that a receiver measures a
stronger signal, indicating the malicious node is closer than it really is.

• Measuring signal strength can be used in another way: a verifier node sends out a
message with a particular signal strength, making the transmission range equal to the
desired distance. Only nodes within this distance can hear the message sent by the
verifier. A malicious prover still can increase its receiving range using a high gain or
directional antenna [7].

• When ultra-sound signals are being used to measure distance between nodes, physically
present attackers could place metallic objects between the two nodes (since the sound
travels faster in metals than in air). Hence, the two nodes would appear closer to each
other than they really are [7].

3.2 Mafia fraud attack

A Mafia fraud attack [8] is a man-in-the-middle attack [9]. It consists of a legitimate
prover p, a legitimate verifier v, a malicious prover pm, and a malicious verifier vm (see
Figure 2, based on [7]). When p is about to perform the verification protocol with vm, the
latter establishes a radio link with pm and sends any information transmitted by p straight
to pm, which in turn sends it to v. When v tries to verify the identity of pm, same thing
happens in reverse order [6]. This causes the distance between p and v to be calculated
incorrectly.
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Figure 2: Mafia fraud attack

3.3 Terrorist fraud attack

A terrorist fraud attack is similar to a mafia fraud attack, except that the prover is
maliciously collaborating with the intruder to fool the verifier. The dishonest prover uses
the intruder to convince the verifier that it is close [7].

3.4 Wormhole attack

In the wormhole attack, a malicious node records packets at one location in the wireless
sensor network, tunnels them to another malicious node at another location, and retransmits
them there to distant sensor nodes. This would make these sensor nodes estimate their
locations incorrectly [10]. Even when public-key encryption is used to authenticate nodes,
two malicious nodes could disclose their private keys to each other [7].

3.5 Sybil attack

In anchor-based localization schemes, if an adversary compromises an anchor node (which
is supposed to help other sensor nodes determine their locations) then the adversary can
pretend to be in two (or even more) different locations, confusing nearby sensor nodes [11].

3.6 Spoofing attack

A spoofing attack consists of an adversary setting up a malicious node to provide false
localization information by pretending to be a legitimate node in the network.

3.7 Jamming

An adversary broadcasts a high-energy signal to disrupt network operation [12].

3.8 Overshadowing

The original message appears as noise in the adversary’s much stronger signal [13].

3.9 Manipulation

An adversary modifies the content of messages that contain localization information.
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3.10 Replay

An adversary plays back a past legitimate localization message to same/other recipients.

4 A survey of secure localization algorithms

The algorithms covered in our survey are grouped according to their objective, to make
it easier for the reader to understand the point of each algorithm. In Section 4.1 we survey
algorithms used by a group of sensor nodes to verify the location of another node. In
Section 4.2 we survey algorithms used by a sensor node to estimate its location correctly.

4.1 Verifying location claims

The protocols described under this category aim to verify location claims of nodes. This
is particularly important because, usually, nodes are granted more services, privileges, trust
or credibility when they are closer to other nodes. So, an adversary node would probably
try to claim a closer location to an authority node.

4.1.1 The distance-bounding protocol

By introducing this protocol, Brands and Chaum [6] do not solve the problem of verifying
location claims. Rather, they solve the closely related problem of a verifier that wants to
assure that a prover is within a certain distance. The distance-bounding protocol has been
extended in so many ways in wireless localization schemes [7, 10, 14, 15]. A verifier sends
out a single-bit challenge. A prover, immediately after receiving the challenge, sends out a
single-bit response. The verifier logs the round-trip time (the time it took the response to
reach the verifier after sending out the challenge). This process repeats K times (K being a
security parameter). After that, the verifier determines the upper-bound on the distance by
multiplying the maximum delay (i.e. the maximum round-trip time) by the known signal
propagation speed.

Brands and Chaum showed how this can prevent a mafia fraud attack described in Sec-
tion 3.2. Recall that the main players in a mafia fraud attack are: a legitimate prover p, a
legitimate verifier v, a malicious prover pm, and a malicious verifier vm [7]. The K challenges
and the K responses are chosen at random, and the rapid bit transfer is performed (i.e.
sending the K challenges and receiving the K responses). p signs, using its secret key, the
concatenation of all the 2k bits and sends the signature to v, which accepts it if and only if
the received signature is correct, and finds the upper bound on the distance using the rapid
bit transfer. There is a possibility that pm guesses the random responses of p. However, the
possibility decreases exponentially with increasing the value of K.

This leads to another question, away from the mafia fraud attack: what if the prover p
itself tricks a verifier v by sending its responses before receiving v’s challenges? The first
solution is for v to randomly select the time when to send its challenge bits so that p does
not know when exactly to send the corresponding response bits. When the verifier uses only
two different random times, the probability of a successful attack becomes 2−K . The second
solution suggests that response bits should be dependent on their respective challenge bits
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in one way or another. For example, the verifier may send a nonce with each challenge and
requires the prover to send it back with its response.

4.1.2 SPINE

In [16] Čapkun and Hubaux developed a system for verifying the location of a wireless
device in a network: Secure Positioning In sensor NEtworks (SPINE). Multiple nodes in
the network, verifiers, run the distance-bounding algorithm to get a verified distance to the
required node, claimant. These verified distances are collected at some node, authority. The
location of the claimant is estimated using Minimum Mean Square Error (MMSE) based on
bounded distances.

Since RF-based distance measuring techniques are based on EM (Electro Magnetic)
waves, which travels at the speed of light, an attacker cannot reduce a measured distance.
However, an attacker can still enlarge the distance. In order to detect distance enlarge-
ments, the claimant has to be located within the triangle formed by three or more verifiers.
To verify the claimant’s location, the authority node compares each bounded distance to
the corresponding estimated distance (i.e. distance between the MMSE estimated location
of the claimant and a verifier). If the difference between bounded and estimated distance is
more than a predefined threshold, the estimated location is rejected.

To find the correct location, when the estimated location is rejected, the authority node
performs the following computations. Verifiers are split into two sets: C: verifiers with
correctly measured bounds, and NC: verifiers whose bounds are suspicious. C is filled with
verifiers that form at least one verification triangle which contains u (the claimant) and
the estimated position of u is correct in this triangle. The correct position in a triangle is
calculated by trilateration using distance bounds of the head nodes. After that, new position
estimation is calculated using verifiers in C with MMSE.

4.1.3 Location verification using secure distance-bounding protocols

In this protocol, Singelee and Preneel [7] modify the distance-bounding protocol [6] to
be useful for authenticating users given their locations (rather than using passwords or
smartcards). Unlike SPINE, this protocol uses encryption and introduces the “broadcast
mode” of distance bounding algorithms (dicussed later in this section). To prevent the
distance fraud attack, many solutions are available. First, a verifier can send out a nonce
controlling its signal strength to achieve the desired transmission range. If the prover is
within this range, it can prove it by sending back the nonce. Note that a prover may use
a directional antenna to increase its sending or receiving ranges. So, this method is useful
only when provers are guaranteed to have a standard unmodified device.

A second solution is to use a challenge-response approach, as in the distance-bounding
protocol [6]. The response should be designed such that a prover cannot send it before
receiving the challenge, and also does not involve heavy computations. The prover should
use its private key somewhere in the scheme so that the verifier knows that the prover is
the one replying (yet, this does not prevent wormhole attacks (Section 3.4) in which two
attackers disclose their private keys to each other).

The distance-bounding protocol can solve the problem of mafia fraud attack, but not
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(a) Secure bounding protocol us-
ing 3 verifiers. Here we assume
that the three distances are mea-
sured exactly.

(b) Secure bounding protocol
when each distance is prolonged
with the same value d. The
lengths of the three arrows are the
same value (d). The dark area is
the expected region of the prover.

Figure 3: Geometric properties of broadcast mode [7]

terrorist fraud attacks, (Section 3) because in the latter, the in-the-middle node can perform
the rapid bit-transfer and then send the response bits used to the prover so as to do the
signing (which requires its private key) without sending the private key itself to the intruder
node. The authors modified the distance-bounding protocol by engaging the private key in
the rapid bit-transfer.

To know the exact location of the prover in a plane, we need three collaborating verifiers.
The prover performs a distance bounding protocol with each of the three verifiers. If the dis-
tances found are exact, we can easily calculate the exact location of the prover (Figure 3(a)).
If there is a delay, which is typical, the intersection of the three circles around the three
verifiers (each having a radius equal to the verified upper bounded distance) will form an
area where the prover is guaranteed to exist (Figure 3(b)). The verifiers may not accept the
location claim if the area is too large because a malicious prover who wants to appear in a
different location than its original location may delay the responses.

An attacker can pretend to be at a different location that is further away from all three
verifiers. This can be achieved by carefully selecting the delay when performing the secure
distance bounding protocol with each of the three verifiers. This is possible because the
three instances of the secure distance bounding protocol are executed independently. In the
“broadcast mode”, only one instance of the secure distance bounding algorithm is used with
the three verifiers simultaneously making sure that the intended (carefully calculated) delay
is equal for all the three verifiers. The resulting area can be reduced to a point because
the distance between the prover and the three segments of the area is the same (since the
area was originally a point and kept expanding due to the delay, the expansion is equal at
the three directions opposite to the three verifiers). In Figure 3(b), note that lengths of the
three arrows are equal. This geometric property can be expressed analytically to solve for
the exact location of the prover. Note that broadcast mode requires that all three verifiers
are synchronized.
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Figure 4: Combining the ROA for individual verifiers, the total coverage of the region of
interest (R) increases [4].

4.1.4 Secure verification of location claims

In this protocol, Sastry et al [4] provide a solution for a set of verifiers (V ) that want to
make sure a prover (p) exists somewhere in a region R. It assumes that many trusted verifier
nodes have secure communication between them. Note that any node within the region R
is considered legitimate (regarding what we need to verify). More than one malicious prover
may coexist with a secure RF communication between them, as well as sound generation
and detection capabilities.

With a single verifier (v) and a prover (p), p sends its location to v. v responds with a
nonce using an RF signal, and registers the time of transmission. p, after processing time
(≤ ∆t), responds with the same nonce using ultra sound. v registers the time of receiving
this signal. v accepts the location claim l iff l ∈ R and elapsed time ≤ (d(v, l)−∆)/(c̄+ s̄)1.
Assuming the area R is a circle centered at v with radius r, the region of acceptance (ROA)
(i.e. the area in which the verifier node v is sure that it can correctly verify claims for a
prover) is a circle centered at v with a radius equal to (d(v, l)−∆). Transmission time should
also be taken into consideration as an overhead (i.e. added to the value of ∆t).

Figure 4 shows that using multiple verifiers, the ROA becomes more flexible and more
probable to cover the region of interest (R). Moreover, if there exists pre-shared keys between
the verifier and the prover, a challenge response mechanism replaces the nonce sending and
receiving.

Note that a malicious prover would not add intended delay, since it will make the verifier
think the prover is further than it is, which results in less services, privileges, trust or
credibility. Yet, a malicious prover can exploit the difference in propagation speed of sound
in different media. This allows an adversary to spread some metals in the field which causes
sound to propagate faster, and hence, distances to be measured shorter. That is why it
is advisable to measure the on-site propagation speed when the verifier is surrounded with
metals. More than one verifier will do a better job verifying this location, but the attack is
still possible though.

1∆ = ∆t.(c̄ + s̄), c̄ = speed of RF signal, s̄ = speed of sound.
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4.1.5 SLA

Anjum et al proposed the SLA algorithm in [17] which is used to determine the location
of a node. This algorithm is based on the ability of anchor nodes to vary their transmission
power. This results in different transmission ranges for each anchor node. The intersections of
these different transmission ranges divide the Area Of Interest (AOI) into different subregions
(Figure 5).

First, a key k is generated for each node. All anchor nodes are able to receive the keys
securely, yet generating and distributing keys is not discussed in the paper. Each anchor
node sends a set of nonces at different power levels using this session key. A sensor node
to be localized should reply back the set of heard nonces for each anchor. Collecting this
data at a sink node allows for determining the subregion at which the node under test lies.
The sink node determines the location of nodes either using geometric properties (for the
idealized case) or using a “message map” created beforehand which contains information
about the set of messages that can be received at each location in the AOI (see Figure 5).

The accuracy of this algorithm is analyzed by calculating the average area of a subregion.
It is calculated by dividing the AOI over the number of subregions. The average area of a
subregion is found to decrease as the number of different power levels increases.

After that, the robustness of this algorithm against attacks is discussed. The threat model
assumes that the sink node as well as anchor nodes are trusted and cannot be overtaken by
an adversary. Only sensor nodes to be localized could be malicious. Malicious nodes are
assumed to be normal nodes. This means they cannot move, cooperate with each other or
have any specialized hardware like directional antennas. Under these constraints, a malicious
node may only drop a set of nonces received, instead of replying back all received nonces.
This allows a malicious node to claim that it is in another nearby subregion. For example,
in Figure 5, a node in subregion 1 may claim it is in subregion 2 by dropping the first
nonce received from AP2. The authors proposed three techniques to limit such an attack.
First, anchor nodes could use more power levels which will result in an increased number of
subregions. Second, anchor nodes may send nonces at random. This makes it harder for the
malicious node to know the power level of each nonce. Third, more anchor nodes may be
deployed such that each point is covered by more that three anchor nodes.

Simulations showed that using a large number of power levels result in higher accuracy
and robustness. The authors also compared using uniform power levels to non-uniform power
levels. Uniform power levels mean that transmission ranges are r, 2r, ..., kr; kr = R, where
k is the number of different power levels and R is the maximum transmission range. Results
of simulations show that using non-uniform power levels is better in terms of robustness and
accuracy.

Authors of the SLA algorithm showed, in a later publication, how to apply the same idea
for verifying locations of static users in a WLAN [18].

4.1.6 Summary

We talked about verifying the location of a claimant. At its simplest form, the distance-
bounding protocol [6] manages to put an upper bound on the distance between the verifier
and the claimant. This allows to detect mafia fraud attacks.
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(a) Architecture of the proposed localiza-
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(b) The concept of AOI and (c) Test locations and AP configu-

Figure 5: Message map when 5 transmission power levels are used by each AP. The regions
marked 1, 2, 3 and 4 are different locations in the map [18].

As an extension to it, SPINE [16] uses the verifiable multilateration algorithm to verify lo-
cation claims. In this algorithm different verifiers independently perform distance-bounding
with the claimant. The bounded distances are then combined using MMSE and false bounds
are detected and filtered out.

In [7] a more secure version of distance-bounding protocol is used by involving the private
key in the rapid-bit-transfer. This allows to detect the terrorist fraud attack in which the
claimant is maliciously collaborating with the intruder to fool the verifier. However, it is
assumed in the attack model that the claimant is keeping its private key from the intruder;
actually, this is not realistic. A broadcast mode of the distance-bounding protocol was used
in which the algorithm is executed once and all the verifiers get their upper bounds. In this
case, the error is the same in all bounded distances hence the region is reduced to a point.

In [4] RF is combined with ultra sound to get the distance between a claimant and the
verifiers. This allows the verifiers to make sure that the claimant is within some specified
region R.

In SLA [17] a node is localized by a set of anchor nodes. Anchor nodes send different
messages with different power levels. The node replies back the set of nonces received and
the sink can determine its region given the set of messages heared.

Table 1 gives a classification for the discussed algorithms.

4.2 Robust location estimation

The protocols described under this category aim to assure that nodes can estimate their
own true locations accurately, with the help of other nodes. This is important to secure other
algorithms such as routing. For example, if adversary nodes could deceive legitimate nodes,
making them declare false locations for themselves, adversary nodes can exploit location-
based routing algorithms to modify, repeat, or drop all messages passing through them.

4.2.1 SeRLoc

In [11], Lazos and Poovendran discuss Secure Range-Independent Localization Scheme
(SeRLoc). SeRLoc is a two-tier localization scheme for WSNs. The network consists of
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sensors of unknown positions and locators aware of their positions (e.g. using GPS receivers).
Sensors antennas are omni-directional while locators antennas are directed. Communication
ranges of sensors and locators are well known before network deployment.

The basic idea of localization in SeRLoc is simple. A sensor receives location information
from near locators. Based on this information, a sensor can define an intersection region in
which it resides. Its location is estimated to be the centroid of the intersection region. To
secure this simple localization method, authors identified three attacks (wormhole attack,
sybil attack, and compromised entities) and showed how to address each of them.

Wormhole attack: An adversary can use the wormhole attack to tunnel beacons sent
from one locator to a far sensor. This would cause this sensor to estimate its location
incorrectly. To detect a wormhole there are two methods.

1. Single message per locator/sector property: If the sensor lies within the communication
range of the tunneled locator, it will receive multiple messages from the same locator.
Hence, a wormhole attack can be detected.

2. Communication range constraint property: Since a sensor may receive a beacon mes-
sage from locators within a specified range, messages tunneled from a far locator can be
detected. Assuming locator-to-sensor communication range R, the maximum distance
between two locators sending to the same sensor is 2R. When a sensor receives two
messages from locators more than 2R apart, it detects a wormhole attack.

To recover from a wormhole attack, an algorithm called ACLA (Attach to Closer Locator
Algorithm) is used. Simply, the sensor assumes that the first locator to reply is the closest
and hence not tunneled. Any locator with a sector not intersecting with the first one is
discarded.

Sybil attack: If an adversary managed to reveal locator IDs and keys, it can duplicate
existing locators. However, it cannot add new locators since the sensors are preloaded with
valid locator IDs. For the sybil attack to displace a sensor, it must clone a number of locators
more than the valid ones in the communication range of this sensor. In this case, the sensor
detects that the number of locators is too large compared to locator density (ρL) previously
loaded to all sensors. When a sybil attack is detected, ACLA is used to resolve it.

Compromised network entities: When a locator is compromised it can displace
nearby nodes. ACLA cannot solve this because, when a sensor node finds itself under attack
and executes ACLA, the compromised locator might be the closest and the location may be
displaced. In this case ELRA (Enhanced Location Resolution Algorithm) is used instead of
ACLA.

For this scheme to be robust against such attacks, first, an authentication mechanism is
used for sensor-locator communication. There is a pairwise key KLi

s between a locator Li

and a sensor s. These keys are preloaded at sensors and can be generated at locators.
The idea is that locators authorize themselves before sending beacon information to sen-

sor. Since locators know their true position, it is easy for them to check when a compromised
locator tries to cheat its location.
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4.2.2 HiRLoc

As an improvement to the SeRLoc, Lazos and Poovendran introduced High-resolution
Robust Localization for WSNs (HiRLoc) [19]. This algorithm is more accurate as each locator
sends more information over time. Like SeRLoc, the locators antennas are directional. Unlike
SeRLoc, communication range of locators is variable. Each locator sends beacon information
multiple times (AKA rounds). In each round the locator may change either its antenna
direction, its communication range or both. This allows the location determination process
to be more accurate and robust.

The algorithm works as follows. First, sensor s determines the locators of interest LHs

as the locators heard by s and it determines an initial estimate for its location. Then, it
collects beacon information from locators in rounds. In these rounds, a locator may vary
its direction, communication range or both. After that, a region of intersection (ROI) is
calculated from the range estimates sent by all locators.

Defense against attacks is very similar to SeRLoc. However, range variation in HiRLoc is
a challenge. When there is a worm hole attack and the range variation technique is applied,
the detection mechanism used in SeRLoc cannot be used. To overcome this problem, ROI is
calculated at the initial round. Then, any ROI of a later round that does not intersect with
the initial one is assumed to be under attack.

Sybil attack: In antenna orientation variation, the same technique used in SeRLoc
manages to detect the Sybil attack. In communication range variation, the same technique
used with wormhole attack is used.

Compromised network entity: The same detection mechanism used in SeRLoc is
used in HiRLoc.

As a conclusion HiRLoc is more accurate than SeRLoc but it incurs more communication
and computation overhead.

4.2.3 Attack-resistant location estimation in sensor networks

In [20] Donggang et al present two algorithms to calculate a node’s location using dis-
tances to other nodes. It is assumed that there is some method to calculate a distance
between two nodes. Each node collects distances to other nodes. Some of these distances
may be invalid due to an attack. Any of the two algorithms can be used to filter out invalid
distances and calculate the location using benign ones. The algorithms used to detect invalid
distances are Attack-Resistant minimum mean square estimation and Voting-based location
estimation.

Attack-Resistant minimum mean square estimation
The idea of this algorithm is that invalid distances introduced among benign distance will

introduce some inconsistency. Authors suggest that inconsistent distances are the malicious
ones. To detect inconsistent distances, first, MMSE is used to calculate location estimation.
Then, mean square error is calculated. If the error is above some threshold, an inconsistency
is detected. Inconsistent distances are removed and the process is repeated.

Each anchor node located at (xi, yi) sends a location reference 〈xi, yi, δi〉 where δi is the
distance measured from its beacon signal. When a set of location references are found to be
inconsistent the algorithm tries to remove each single location from this set until a consistent
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subset is found. If all subsets are found to be inconsistent, the algorithm chooses the one with
the minimum mean square error. After removing a suspected distance, the whole process is
repeated.

Voting-based location estimation
Imagine that a node is “lost” and other nodes are trying to guess where it is. The search

space is divided into a grid of small cells. A voting is made on each cell to determine its
goodness to be the location of the lost node. The centroid of the cells with the highest votes
is used as an estimate location. After calculating this estimate, location references that are
too far from this estimate are detected as malicious and removed.

The search space is divided into square cells with a fixed side length L. L could be a
parameter to the system that determines the accuracy of the process. Each cell holds a
vote counter initially set to 0. For each location reference 〈xi, yi, δi〉 (which means that the
node at (xi, yi) thinks that the lost node is δi away), a candidate ring is defined as the ring
centered at (xi, yi) with inner radius of max {δi − ε, 0} and outer radius of δi + ε, where ε is
the distance calculation error. Each cell that intersects with a candidate ring has its vote
counter incremented. At the end, the centroid of the cells with the maximum vote counter
is used as a location estimate.

Since this algorithm runs on sensor nodes with limited computation and power, authors
developed a fast method to determine whether a cell intersects with a ring or not [21].

4.2.4 SecNav

SecNav [13] consists of a set of stations forming a navigation infrastructure which provides
radio signals that enable devices to determine their location and to obtain an accurate
time reference. Infrastructure stations are synchronized and carefully placed to cover a
certain region (each point is within the range of at least four infrastructure stations). It is
a broadcasting protocol that does not require the navigation devices (which want to locate
themselves) to transmit any messages.

An attacker can relay or delay transmitted messages. But she cannot disable the channel
(e.g. using a Faraday Cage [13]). She can eavesdrop, insert messages, or send jamming
signals.

SecNav (Secure Broadcast Localization and Time Synchronization in Wireless Networks)
assumes that infrastructure stations are secure against adversary compromises. The main
idea of SecNav, as illustrated by Rasmussen et al, is to encode navigation signals using
integrity-codes. To ensure the message will contain an equal number of ones and zeros,
Manchester encoding is applied. Then, on-off keying is applied such that 1 corresponds to
a random waveform, while 0 corresponds to silence. Note that an attacker cannot turn a 1
into 0 (since this requires removing the random signal from the channel). Figure 6 illustrates
the integrity codes.

Jam, overshadow, forgery, manipulation, and replay attacks can be detected because an
attacker may not alter a one into a zero. If she tries to alter a zero into a one, the ratio
between ones and zeros shows that there is an attack. Overshadowing is detected because:
for the receivers to detect symbols 0 and 1 on the channel, receivers measure strengths of
the received signals (as opposed to their signal-to-noise ratio). An adversary may also set
up a malicious infrastructure station that provides false location and time information. To
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a) Original navigation signal

b) Applying Manchester encoding

c) Applying on-off keying

Figure 6: SecNav navigation message encoding [13].

avoid this, legitimate infrastructure stations should keep the channel busy by either sending
valid navigation messages in an uninterrupted sequence or by transmitting I-coded (integrity
codes) sequences.

4.2.5 ROPE

Lazos et al proposed ROPE (Robust Position Estimation in Wireless Sensor Networks) [14],
which assumes a two-tier network topology consisting of:

• Sensors: randomly deployed with density σs each with an omnidirectional antenna for
sensor-sensor communication with range equal to r.

• Locators: randomly deployed with density σL << σs. Each is equipped with M direc-
tional antennas of beamwidth 2Π/M for locator-to-sensor communication with range
R > r. Sensor-to-locator communication range rsL is larger than r due to the antenna
directivity gain of the locators antennas. Each locator knows its location and orien-
tation (e.g. using GPS). Each sensor shares a pairwise key with each of the locators
(Ks

Li)

A sensor broadcasts its id (Ids) and a random nonce (Ns). Any locator that can com-
municate bi-directionally with s performs distance bounding with s. This assures that:

• The sensor is within the vicinity of the locator

• The sensor can define the LDBs set as

LDBs = {Li : distance(Li, s) < rsL}
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Figure 7: DBIR(s) is the intersection of all Dis.

If |LDBs| > 3, and s lies inside a triangle formed by three locators Li ∈ LDBs, s computes
its location using verifiable multilateration. s sends a termination notification to Li’s that
can hear it. Else, for each Li in LDBs, s computes the disc Di according to the distance
bound and given the orientation and antenna direction of each Li. s then computes the
Distance Bounding Intersection Region DBIR(s) as the intersection of all Dis (see Figure 7).
If locator Li in LDBs has not received a termination notification, it re-broadcasts the initial
sensor message and its own IdLi. This broadcast covers all locators at distance ≤ R from
s. Each locator Lj that hears this re-broadcast will transmit at each sector (i.e. on each
directional antennas) a message and its MAC (using its pairwise key with s). The message
contains the locator Id, its location and orientation, and the original nonce sent by s (Ns) to
guarantee freshness. s receives the latter transmission from a set of locators LHs. s defines
ROI (region of interest) as the region in DBIR(s) where most sectors of LHs intersect.

Location Verification is simply done between s and any (one or more) locators close
enough (i.e. ‖Lis‖ < rsLi), using distance bounding.

4.2.6 DRBTS

In this work, Srinivasan et al tries to answer the question “Given a network of anchors and
sensors, how to exclude malicious anchors that provide sensors with incorrect location infor-
mation?” Distributed Reputation-based Beacon Trust System (DRBTS) uses the concept
of reputation for excluding anchor nodes [22]. Every anchor node maintains a Neighbor-
Reputation-Table (NRT). An anchor node monitors its 1-hop neighborhood for misbehaving
anchor nodes, and update its NRT accordingly. Then, it publishes the NRT enabling other
anchor nodes to update their own NRTs, and enabling nearby sensor nodes to determine
whether or not to use a given anchor’s location information.
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The authors discussed a number of assumptions, most importantly:

• Location information is broadcast to the requesting sensor node by the anchors.

• Location information is encrypted using a networkwide group key.

• The majority of anchors are honest.

To initialize an anchor’s reputation, when an anchor hears another anchor responding for
the first time, it sets the new anchor’s reputation to 0 before evaluating the transmission.
The drawback of this sort of initialization is that no one trusts anyone at the beginning;
disabling the whole localization capability of anchors. To bootstrap the system, each anchor
is given a small number of fake IDs to distinguish itself as a sensor node and request location
information, triggering responses from nearby anchors; allowing reputation to build up. To
speed up building of anchor reputations, neighboring anchors are allowed to share their
experiences. Publishing reputation information is associated with dissemination of location
information, mapping the publish-rate to the rate at which reputation changes.

Each anchor node waits for location inqueries from sensor nodes in its range, and responds
with its location, as do all other anchor nodes within the range of the requesting node. In
addition to the location, an anchor node also responds with its reputation values for each
of its neighboring anchors. Other anchors within the 1-hop neighborhood will evaluate this
response in light of their own locations and NRTs using a deviation test. Meanwhile, the
sensors will also receive the anchors’ responses, and use them to decide whether or not to
use a given anchor’s location information, based on a simple majority voting scheme. If one
anchor responds showing it trusts another anchor, the sensor counts that as a positive vote
from the first anchor to the second. For an anchor to be trusted by a sensor, it must have
votes of trust from at least half of the anchors in the common neighborhood.

Note that One could view DRBTS as an algorithm that allows a sensor to ignore location
information from malicious anchors, enabling robust estimation of its location. But it could
be also viewed as an algorithm that validates location claims of a particular anchor.

4.2.7 Summary

We surveyed schemes used for robust location estimation. In [11] a sensor node receives
location information from a set of locators. Some resolution algorithms, such as ACLA, are
used to detect attacks.

As an improvement, [19] achieves better accuracy for the location at the cost of more com-
munication and computation. It is assumed that locators are able to vary their transmission
ranges and transmission directions.

In [20] a node collects distances to a set of locators. After that, one of two methods
may be used to filter out malicious locators. One method is attack-resistant MMSE which
filters out locators according to the squared error they contribute to the mean square error.
Another method is voting based location estimation, in which the search space is divided
into a grid. Then, a voting is made on each grid cell to determine its goodness as a location
estimate. The centroid of the cells with the highest vote is used as an estimate.

In [13] special integrity-codes are used to encode messages broadcasted by locators. These
integrity codes allow nodes to easily detect many attacks.
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In [14] locators are assumed to have a directional antenna. If a sensor lies in a triangle
formed by three locators and each can do distance bounding with the sensor, verifiable
multilateration is used to estimate its location. Otherwise, given the location of each nearby
locator, the sensor calculates the region of interest as the intersection of two regions. First,
is discs formed by transmission beam of nearby locators. Second, region determined by
distance bounds obtained in the earlier phase.

DRBTS [22] uses the concept of reputation to eliminate the malicious anchors. Each
anchor node maintains a Neighbor-Reputation-Table (NRT) and a sensor node will use the
location information of an anchor B only if the majority of anchors in the vicinity trust B.

5 Discussion

Algorithm
Classification

Objective Encryption
keys

Signal fre-
quency

Use of
Anchors

Range
based/free

Distance bounding protocol [6] Verify claims Used RF Free Based
Secure verification of location
claims [4]

Verify claims Optional Both
RF& ul-
trasound

Free Based

Secure positioning of wireless de-
vices [16]

Verify claims Used RF Free Based

SLA [17] Verify claims Used RF Based Based
Location verification using secure
distance-bounding protocol [7]

Verify claims Used RF Free Based

A low-cost robust localization
scheme for WLAN [18]

Verify claims Used RF Based Based

SecNav [13] Own localiza-
tion

Not used RF Based Free

SeRLoc [11] Own localiza-
tion

Used RF Based Based

HiRLoc [19] Own localiza-
tion

Used RF Based Based

Attack-resistant location estima-
tion in sensor networks [20]

Own localiza-
tion

Not used RF Free Free

ROPE [14] Own localiza-
tion

Used RF Based Based

DRBTS [22] Own localiza-
tion

Used RF Based Based

Table 1: Applying the classification to secure localization algorithms

Table 1 gives a comparison between the secure localization algorithms discussed in the
paper. Although the two objectives “verify location claims” and “robust location estimation”
are not contradicting, none of the discussed algorithms gives a framework that handles both
objectives. All protocols in this survey make use of RF signals. RF signals disallow an
adversary to shorten measured distances because it propagates at the speed of light. However,
it needs very accurate calculations and measurements because small errors in calculations
produce large distance errors. Only “Secure verification of location claims” also makes use
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Distance bounding protocol [6]
Secure verification of location
claims [4]
Secure positioning of wireless de-
vices [16]
SecNav [13]
SLA [17]
SeRLoc [11]
HiRLoc [19]
Location verification using secure
distance-bounding protocol [7]
A low-cost robust localization
scheme for WLAN [18]
Attack-resistant location estima-
tion in sensor networks [20]
ROPE [14]
DRBTS [14]

Table 2: Summary of security attacks addressed by each algorithm

of ultra-sound, which makes it vulnerable to physically present attacks. Ultrasound is better
in that it can give accurate results when there is an error in measurements. All protocols
under “robust location estimation” are anchor-based, except for “Attack-resistant location
estimation in sensor networks” in which each node collects distances to other nodes. When
there are anchors in the network, they allow for more accurate results because their locations
are found using GPS. Also some algorithms assume that anchors are protected from forgery.
This allows for easier algorithms and simpler systems designs.

Verification of location claims is done at three granularities: “distance-bounding” verifies
a distance claim, “secure verification of location claims” verifies an in-region claim (i.e.
verifies that a prover lies within a specified region), while “verifiable multilateration” verifies
that a prover is at a particular location.

All discussed protocols under “verify location claims” can make use of encryption keys,
which makes authentication easier and more secure. They are all range-based. Yet, “SLA”
and “A low-cost robust localization scheme for WLAN” are classified as range-free when they
use message-maps. Range-free algorithms are less accurate when compared to range-based
ones. On the other hand, they are scalable because they do not count on special types of
nodes.

Table 2 shows which localization algorithms address which security attacks. By defini-
tion, all discussed protocols under “verify location claims” target the distance fraud attack.
Among these, [6], [16] and [7] also target the mafia fraud attack, while only [7] targets the
terrorist fraud attack. Wormhole and spoofing (malicious node pretending to be privileged)
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attacks got the attention of many algorithms. Both [13] and [18] detect manipulation of
localization messages by malicious nodes. SecNav [13] is the only localization algorithm
in WSN -to the best of our knowledge- that targets jamming, overshadowing, and replay
attacks.

6 Conclusion and Open Issues

In this survey paper, we have illustrated the importance of securing the localization pro-
cess in wireless sensor networks. We presented a taxonomy of the different features that can
be used to classify secure localization schemes for wireless sensor networks. The taxonomy
can be applied to evaluate the characteristics of a location system needed by a particular ap-
plication or the suitability of an existing location system for its application. Further, attacks
against localization schemes in WSNs were explained. Then, secure localization schemes
suitable (or potentially suitable) for sensor networks are discussed, mentioning the attacks
each of them targets.

Many research opportunities are still available in the field. Protocols that make use of
ultra-sound in clever ways to secure the localization process are missing in the literature.
Algorithms tailored for WSN which verify location claims without requiring a point-to-
point range estimates (i.e. range-free) are missing. Range-free algorithms are more scalable
because it does not need special types of nodes like anchors which is more suitable for
WSNs. For WSN applications where both objectives (i.e. verify claims & own localization)
are needed, a unified framework that combines mechanisms for solving both problems will
be appreciated. A whole new objective in the field is to hide a legitimate sensor’s location
(e.g. for privacy concerns) from other nodes (e.g. an opponent), while enabling the sensor
to transmit and receive messages. Protocols that enable a group of nodes to know their
locations without giving opponent nodes enough clues would be of interest for many civil
and military applications. Secure localization protocols that account for movement of nodes
are lacking. Imagine an application in which nodes are allowed to move along specific paths.
It is required to periodically verify that nodes are still on track.

Although secure localization in WSNs is getting researchers’ attention recently, it is still
a “young field”; meaning, the door is all-the-way open for new ideas to enrich the literature.
We hope this survey paper could encourage more research in the field and drive attention to
new/open issues in the field.
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