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INSTRUCTIONS

• This problem sets can be turned in groups of two people; i.e., a single write-up for each two person
team suffices. If you prefer, you can also work alone (see the last bullet item for some “credit” for
doing so). Solutions typeset in LATEX are preferred.

• You are strongly urged to try and solve the problems without consulting any reference material other
than the course notes and what we cover in class. If for some reason you feel the need to consult
some source (such as a textbook, research paper, or sources on the web), you must acknowledge the
source and also articulate the difficulty you couldn’t overcome before consulting the source and how
it helped you overcome that difficulty. Alternatively, before consulting any such material, I encourage
you to ask me for a hint, preferably by posting a comment on the blog post dedicated to this problem
set, so all students can take advantage of any hints.

• Please use the comments section of the blog for any questions or clarifications about the problems.

• Please start work on the problem set early. The problem set has seven problems and is worth a total of
100 points. As a rough estimate, a score of 70 (or 60 if you work and turn in solutions solo), suffices
for an A on this problem set.

1. (12 points) In this exercise, you are asked to show that good codes can be used to construct expanders
of logarithmic degree.

Let G ∈ Fn×k2 be the generator matrix of an [n, k]2 binary linear code with the property that every
nonzero codeword of C has Hamming weight in the range [(1/2 − ε)n, (1/2 + ε)n] (such a code is
usually called ε-biased). Define a graph H = (Fk2, E) where (x, y) ∈ E if x + y equals one of the
n rows of G (if some row occurs multiple times, place an edge of appropriate multiplicity between
x, y).

Prove that the second largest eigenvalue of the adjacency matrix of H in absolute value is at most
2ε. Use this to deduce the existence of spectral expanders (with second largest eigenvalue in absolute
value bounded away from the degree) of logarithmic degree.

2. (10 points) Consider the binary expander code based on an unbalanced bipartite (n,m,D, γ,D(1 −
ε))-expander as defined in lecture (i.e., the code whose parity check matrix is the bipartite adjacency
matrix of the expander) for some ε < 1/20. Recall that in an (n,m,D, γ,D(1− ε))-expander, every
subset S of up to γn nodes on the left has at least D(1− ε)|S| neighbors on the right. In this exercise
you are asked to analyze the following parallel iterative decoder.

For c log n rounds (for a constant c chosen large enough), do the following in parallel for
each variable node: If the variable is in at least 2D/3 unsatisfied checks, flip its value.

Prove that the above algorithm corrects any pattern of γ(1− 3ε)n errors.



3. (15 points) Consider the Tanner code T (H,C0) considered in lecture, where H = (L,R,E) is a
d-regular n × n bipartite expander with second largest eigenvalue λ, and C0 ∈ Fd2 is a linear code
of distance δ0d. We proved that T (H,C0) has relative distance at least δ0(δ0 − λ/d), and gave an
iterative algorithm to correct a fraction (1 − ε) δ04 (δ0 − λ/d) errors. The goal of this exercise is to
improve the number of corrected errors to half the (designed) distance.

Consider the following modification to the iterative algorithm based on alternate rounds of left and
right side decoding discussed in lecture. For each threshold t ∈ {0, 1, 2, . . . , δ0d/2, run the following
algorithm. In the first round of left side decoding with received word y, for any node u ∈ L such that
y|E(u) is not within distance t of some codeword of C0, declare erasures on all edges in E(u), and
decode the rest to the closest codeword in C0. This gives a string z ∈ {0, 1, ?}E . Then on the right
side, run an errors-an-erasure decoder at each node v ∈ R replacing z|E(v) with the codeword with
smallest Hamming distance on the unerased positions (breaking ties arbitrarily). This gives a string
w ∈ {0, 1}E . Now run the iterative decoding algorithm we discussed in lecture on the string w for
c log n rounds for a suitable constant c.

Prove that, for any desired ε > 0, the above algorithm, for a large enough choice of the constant c,
corrects up to a fraction (1− ε) δ02

(
δ0 − 2λ

d

)
of errors.

4. (10 points) In this exercise, the goal is to show that a variant of the expander-based Tanner codes
T (H,C0) can be be used to achieve the capacity on the binary symmetric channel.

For a n × n d-regular expander H = (L,R,E) as above, and binary linear codes C0, C1 of block
length d, define the code T (H,C0, C1) to consist of those strings z ∈ {0, 1}E such that z|E(u) ∈ C0

for each u ∈ L and z|E(v) ∈ C1 for each v ∈ R.

Show that for any desired p ∈ (0, 1/2) and ε > 0, with suitable choice of d and the codes C0, C1, one
can construct a family of codes T (H,C0, C1) with rate 1 − h(p) − ε together with an O(N logN)
time decoding algorithm for communicating on BSCp with error probability at most 2−cp,εN for some
constant cp,ε > 0.

5. (10 points)

(a) (Due to Salil Vadhan) Let ε > 0 be a sufficiently small real. Suppose that C ⊆ {0, 1}n is a code
of relative distance at least 1/3 and rate at most aε2 for some a > 0. Suppose a codeword c ∈ C
is transmitted on BSCp for p = 1/2 − ε, and we receive r ∈ {0, 1}n. Prove that if a is a small
enough constant (independent of n, ε), then with all but exponentially small probability over the
errors, c will be the unique codeword within Hamming distance (1− ε)n/2 from r.

(b) Extra credit question: (For your fun only; No need to turn anything in, and I think the question
might still be open.) Can one deduce the same conclusion without assuming the upper bound
on rate, but instead based on the hypothesis C is list-decodable up to a fraction (1/2 − ε/3) of
errors (with lists of size poly(1/ε), say), and has relative distance at least (1/2− ε/3)?

6. (4 + 8 + 8 = 20 points) In this problem, we will consider the number-theoretic counterpart of Reed-
Solomon codes. Let 1 6 k < n be integers and let p1 < p2 < · · · < pn be n distinct primes.
Denote K =

∏k
i=1 pi and N =

∏n
i=1 pi. The notation ZM stands for integers modulo M , i.e., the set

{0, 1, . . . ,M − 1}. Consider the Chinese Remainder code defined by the encoding map E : ZK →
Zp1 × Zp2 × · · · × Zpn defined by:

E(m) = (m mod p1, m mod p2, · · · , m mod pn) .

(Note that this is not a code in the usual sense we have been studying since the symbols at different
positions belong to different alphabets. Still notions such as distance of this code make sense and are
studied in the questions below.)



(a) Suppose that m1 6= m2. For 1 6 i 6 n, define the indicator variable bi = 1 if E(m1)i 6=
E(m2)i and bi = 0 otherwise. Prove that

∏n
i=1 p

bi
i > N/K.

Use the above to deduce that whenm1 6= m2, the encodings E(m1) and E(m2) differ in at least
n− k + 1 locations.

(b) This exercise examines how the idea behind the Welch-Berlekamp decoder can be used to decode
these codes
Suppose r = (r1, r2, . . . , rn) is the received word where ri ∈ Zpi . By Part (a), we know there
can be at most one m ∈ ZK such that ∏

i:E(m)i 6=ri

pbii 6
√
N/K . (1)

(Be sure you see why this is the case.) The exercises below develop a method to find the unique
such m, assuming one exists.
In what follows, let r be the unique integer in ZN such that r mod pi = ri for every i =
1, 2, . . . , n (note that the Chinese Remainder theorem guarantees that there is a unique such r).

i. Assuming anm satisfying (1) exists, prove that there exist integers y, z with 0 6 y <
√
NK

and 1 6 z 6
√
N/K such that y ≡ rz (mod N).

ii. Prove also that if y, z are any integers satisfying the above conditions, then in factm = y/z.

(Remark: A pair of integers (y, z) satisfying above can be found by solving the integer linear
program with integer variables y, z, t and linear constraints: 0 < z 6

√
N/K; and 0 6 z · r −

t · N <
√
NK. This is an integer program in a fixed number of dimensions and can be solved

in polynomial time. Faster, easier methods are also known for this special problem.)

(c) Instead of condition (1) what if we want to decode under the more natural condition for Ham-
ming metric, that is |{i : E(m)i 6= ri}| 6 n−k

2 ? Using ideas similar to GMD decoding, show
how this can be done by calling the above decoder many times, by erasing the last i symbols for
each choice of 1 6 i 6 n.

7. (6+5+4+3+3+2 = 23 points) We have mentioned objects called algebraic-geometric codes, that
generalize Reed-Solomon codes and have some amazing properties, a couple of times in the course.
The objective of this exercise is to construct one such AG code, and establish its rate vs distance
trade-off.

Let p be a prime and q = p2. Consider the equation

Y p + Y = Xp+1 (2)

over Fq.

(a) Prove that there are exactly p3 solutions in Fq × Fq to (2). That is, if S ⊆ F2
q is defined as

S = {(α, β) ∈ F2
q | βp + β = αp+1}

then |S| = p3.

(b) Prove that the polynomial p(X,Y ) = Y p + Y −Xp+1 is irreducible over Fq.
(Suggestion: One approach is to use the Eisenstein criterion, considering p as a polynomial in
X over Fq[Y ].)

http://planetmath.org/encyclopedia/EisensteinCriterion.html


(c) Let n = p3. Consider the evaluation map ev : Fq[X,Y ]→ Fnq defined by

ev(f) = (f(α, β) : (α, β) ∈ S) .

Argue that if f 6= 0 and is not divisible by Y p+ Y −Xp+1, then ev(f) has Hamming weight at
least n− deg(f)(p+ 1), where deg(f) denotes the total degree of f .
(Hint: You are allowed to make use of Bézout’s theorem, which states that if f, g ∈ Fq[X,Y ] are
nonzero polynomials with no common factors, then they have at most deg(f)deg(g) common
zeroes.)

(d) For an integer parameter ` > 1, consider the set F` of bivariate polynomials

F` = {f ∈ Fq[X,Y ] | deg(f) 6 `,degX(f) 6 p}

where degX(f) denotes the degree of f in X .

Argue that F` is an Fq-linear space of dimension (`+ 1)(p+ 1)− p(p+1)
2 .

(e) Consider the code C ⊆ Fnq for n = p3 defined by

C = {ev(f) | f ∈ F`} .

Prove that C is a linear code with minimum distance at least n− `(p+ 1).

(f) Deduce a construction of an [n, k]q code with distance d > n− k + 1− p(p− 1)/2.
(Remark: Reed-Solomon codes have d = n−k+1, whereas these codes are off by p(p− 1)/2
from the Singleton bound. However they are much longer than RS codes, with a block length of
n = q3/2, and the deficiency from the Singleton bound is only o(n).)


