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PROBLEM SET 2
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INSTRUCTIONS

• This problem sets can be turned in groups of two people; i.e., a single write-up for each two person
team suffices. If you prefer, you can also work alone (see the last bullet item for some “credit” for
doing so). Solutions typeset in LATEX are preferred.

• The generous time window of almost 4 weeks for the problem set should give you ample time to think
carefully about the problems. Therefore, you are strongly urged to try and solve the problems without
consulting any reference material other than the course notes and what we cover in class. If for some
reason you feel the need to consult some source (such as a textbook or sources on the web), please
acknowledge the source and try to articulate the difficulty you couldn’t overcome before consulting
the source and how it helped you overcome that difficulty. Alternatively, before consulting any such
material, I encourage you to ask me for a hint, preferably by posting a comment on the blog post
dedicated to this problem set, so all students can take advantage of any hints.

• Please use the comments section of the blog for any questions or clarifications about the problems.

• Please start work on the problem set early. The problem set has six problems and is worth a total of
100 points. As a rough estimate, scoring around 3/4’th of the points, or 2/3’rd of the points if you
turn in solutions solo, suffices for an A on this problem set.

1. (5 + 3 + 8 = 16 points) For integers 1 6 k 6 n, call a subset S ⊆ {0, 1}n to be k-wise independent
if for every 1 6 i1 < i2 < · · · < ik 6 n and (a1, a2, . . . , ak) ∈ {0, 1}k

Probx∈S [xi1 = a1 ∧ xi2 = a2 ∧ · · · ∧ xik = ak] =
1
2k

where the probability is over an element x chosen uniformly at random from S. In this problem, you
will see how codes can be used to construct k-wise independent sets of small size.

(a) Let H ∈ Ft×n
2 be the parity check matrix of an [n, n − t, d]2 binary linear code of distance

d > k + 1. Define S = {xTH | x ∈ Ft
2}. Prove that S is a k-wise independent set of size 2t.

(b) Using the above, show how one can construct a k-wise independent subset of {0, 1}n of size at
most (2n)d

k
2
e.

(c) Prove an almost matching lower bound, namely any k-wise independent set S ⊆ {0, 1}n satisfies

|S| >
b k

2
c∑

i=0

(
n

i

)
. (1)

Suggestion: Find an orthonormal set of vectors in R|S| of cardinality at least the R.H.S of (1).

2. (7 + 9 = 16 points) In this exercise, you will prove that certain sparse and structured polynomials are
irreducible.



(a) Let q be a prime. Prove that f(X) = Xq −X − 1 is an irreducible polynomial in Fq[X].

(b) Let Fq be any finite field and α ∈ Fq be a non-zero element of order k (i.e., αk = 1 but αi 6= 1
for 1 6 i < k) which satisfies gcd(k, q−1

k ) = 1. Prove that f(X) = Xk − α is irreducible in
Fq[X].

(Suggestion: In both cases, use the fact that if there is a factor of f(X) of degree b, then there is a root

ζ of the polynomial f satisfying ζqb
= ζ.)

3. (12 points) In this problem, you will prove that a certain “ultimate” form of Reed-Solomon decoding
is NP-hard.

You may assume that the following problem is NP-hard.

Instance: A set S = {α1, . . . , αn} ⊆ F2m , an element β ∈ F2m , and an integer 1 6 k < n.

Question: Is there a nonempty subset T ⊆ {1, 2, . . . , n} with |T | = k + 1 such that
∑

i∈T αi = β?

Consider the [n, k] Reed-Solomon code CRS over F2m obtained by evaluating polynomials of degree
at most k − 1 at points in S. Define y ∈ (F2m)n as follows: yi = αk+1

i − βαk
i for i = 1, 2, . . . , n.

Prove that there is a codeword of CRS at Hamming distance at most n − k − 1 from y if and only if
there is a set T as above of size k + 1 satisfying

∑
i∈T αi = β.

Conclude that finding the nearest codeword in a Reed-Solomon code over exponentially large fields
is NP-hard.

4. (5 + 4 + 7 = 16 points) Let C be an [n, k, n− k + 1]q linear code for some 1 6 k < n.

(a) Prove that C⊥ is an [n, n− k, k + 1]q linear code.

(b) Prove that the number of codewords of C of weight d = n− k + 1 equals (q − 1)
(
n
d

)
.

(c) Let Wi be the number of codewords of C of weight i for n− k + 1 6 i 6 n. Show that

n−t∑
i=n−k+1

(
n− i
t

)
Wi =

(
n

t

)
(qk−t − 1), 0 6 t < k ,

and that the solution to the above set of equations is unique.
(Suggestion: One approach is to use the q-ary MacWilliams identities (stated in Exercise 2 of
Notes 5.1. You can assume these identities without proof.)

5. (20 points) In this problem, we will look at some binary “BCH-like” subfield subcodes of Reed-
Solomon codes that meet the Gilbert-Varshamov bound.

Let F = F2m . Fix positive integers d, n with (d− 1)m < n < 2m, and a set S = {α1, α2, . . . , αn} of
n distinct nonzero elements of F. For a vector v = (v1, . . . , vn) ∈ (F∗)n of n not necessarily distinct
nonzero elements from F, define the Generalized Reed-Solomon code GRSS,v,d as follows:

GRSS,v,d = {(v1 · p(α1), v2 · p(α2), . . . , vn · p(αn)) | p(X) ∈ F[X] has degree 6 n− d} .

(a) Show that GRSS,v,d is an [n, n− d+ 1, d]F linear code.

(b) Argue that GRSS,v,d ∩ Fn
2 is a binary linear code of rate at least 1− (d−1)m

n .

(c) Let c ∈ Fn
2 be a nonzero binary vector. Prove that (for every choice of d, S) there are at most

(2m − 1)n−d+1 choices of the vector v for which c ∈ GRSS,v,d.

http://errorcorrectingcodes.wordpress.com/2010/02/07/notes-5-1-fourier-transform-macwillams-identities-and-lp-bound/


(d) Prove that if the integer D satisfies

(2m − 1)d−1 >
D−1∑
i=0

(
n

i

)
,

then there exists a vector v ∈ (F∗)n such that the minimum distance of the binary code GRSS,v,d∩
Fn

2 is at least D.

(e) Using Parts (5b) and (5d), show how to conclude that the family of codes GRSS,v,d∩Fn
2 contains

binary linear codes that meet the Gilbert-Varshamov bound.

6. (20 points) For a finite field Fqm , define the Trace map Tr as follows: for x ∈ Fqm

Tr(x) = x+ xq + xq2
+ · · ·+ xqm−1

.

(a) Show that Tr(α) ∈ Fq for every α ∈ Fqm .

(b) Prove that Tr : Fqm → Fq is a surjective Fq-linear map.

(c) Let C ⊆ Fn
qm be a linear code, and C⊥ ⊆ Fn

qm its dual. Define C|Fq
= C ∩Fn

q to be the subfield
subcode of C.
Prove that

(C|Fq
)⊥ = Tr(C⊥)

where Tr(C⊥) = {Tr(c) | c ∈ C⊥}.
Suggestion: Prove both the set inclusions, starting with the easier inclusion Tr(C⊥) ⊆ (CFq)

⊥.

(d) Show that
dim(C) 6 dim(Tr(C)) 6 m · dim(C) ,

and
dim(C)− (m− 1)(n− dim(C)) 6 dim(C|Fq

) 6 dim(C) ,

where for a linear space X ⊆ Fn, dim(X) stands for its dimension as a F-vector space.


