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PROBLEM SET 1
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INSTRUCTIONS

• Problem sets can be turned in groups of two people; i.e., a single write-up for each two person team
suffices. You can form different groups for different problem sets. In fact this is encouraged so that
you interact with several students from the class. Of course, if you prefer, you can also work alone
(see the last bullet item for some “credit” for doing so).

• Solutions typeset in LATEX are strongly preferred.

• You are strongly urged to try and solve the problems without consulting any reference material other
than the course notes and what we cover in class. If for some reason you feel the need to consult some
source (such as a textbook or sources on the web), please acknowledge the source and try to articulate
the difficulty you couldn’t overcome before consulting the source and how it helped you overcome
that difficulty. Alternatively, before consulting any such material, I’d encourage you to ask me for a
hint, preferably by posting a comment on the blog post dedicated to this problem set, so all students
can take advantage of any hints.

• Please use the comments section of the blog also to ask for any clarifications or questions about the
problems.

• Please start work on the problem set early. The problem set has six problems and is worth a total of
100 points. As a rough estimate, scoring around 3/4’th of the points, or 2/3’rd of the points if you
turn in solutions solo, suffices for an A on this problem set.

1. (6 + 6 = 12 points) Exercise 5 from Notes 1 (giving example of self-dual codes) and Exercise 2 from
Notes 2 (Varshamov’s improved bound for linear codes).

2. (8 + 5 = 13 points) For integers n, d, w, with d ≤ 2w ≤ n, let A(n, d, w) be the largest possible size
of a subset S ⊆ {x ∈ {0, 1}n | wt(x) = w} such that for every x 6= y ∈ S, the Hamming distance
between x and y is at least d.

(a) Prove that A(n, d) ≤ 2nA(n,d,w)
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3. (15 points) Let C1 be an [n1, k1, d1]2 binary linear code, and C2 an [n2, k2, d2] binary linear code. Let
C ⊆ Fn1×n2

2 be the subset of n1 × n2 matrices whose columns belong to C1 and whose rows belong
to C2.

Prove that C is an [n1n2, k1k2, d1d2]2 binary linear code.

4. (5 + 8 + 5 + 12 = 30 points) For τ ∈ [0, 1/2], define a binary code C of block length n to be
τ -covering if every r ∈ {0, 1}n is within Hamming distance τn from some codeword of C.



(a) Prove that the rate of a τ -covering code must be at least 1− h(τ).
(b) Prove that a random binary code of size n3 · 2n−h(τ)n is τ -covering with probability 1− 2−Ω(n).

Conclude the existence of τ -covering codes of rate 1− h(τ) + o(1).
(c) Prove the following characterization for when a binary linear code is τ -covering:

If H is a parity check matrix for an [n, k]2 linear code C, then C is τ -covering if and only if for
every s ∈ Fn−k2 , there is a set of at most τn columns of H which sum up to s (over F2).

(d) Prove that there exist τ -covering binary linear codes C of rate 1− h(τ) + o(1).
(Hint: (a) First prove that a random linear code of rate 1−h(τ)+o(1) τ -covers most of the points
in Fn2 . This step will rely on pairwise independence of the nonzero codewords in a random linear
code, and Chebyshev’s tail inequality. (b) Then prove that some O(log n) translates (cosets) of
such a linear code suffice to τ -cover the whole space.)

5. (15 points)

(a) Suppose F is a non-empty collection of [n, k]2 binary linear codes such that every nonzero
element of Fn2 belongs to the same number of codes in F .
Prove that for large enough n there are codes in this collection that asymptotically meet the
Gilbert-Varshamov bound, i.e., their relative distance is at least h−1(1− k/n)− o(1).

(b) This problem uses the algebra of the extension field F2m . This field is isomorphic to the quotient
F2[X]/(h(X)) where h ∈ F2[X] is any polynomial of degree m that is irreducible over F2. For
the problem, you do not need to do anything about F2m besides the field axioms and the fact
that F2m also has the structure of a vector space of dimension m: i.e., there is there is a bijection
σ : F2m → Fm2 such that σ(x+ y) = σ(x) + σ(y) for all x, y ∈ F2m .

i. For α ∈ F2m , α 6= 0, consider the map Lα : Fm2 → F2m
2 defined as

Lα(x) = (x, σ(α · σ−1(x))

where · denotes multiplication in the field F2m .
Prove that Lα defines the encoding of a [2m,m]2 binary linear code (call it Cα).

ii. Prove that there exists α 6= 0 such that Cα asymptotically meets the Gilbert-Varshamov
bound, i.e., has relative distance h−1(1/2)− om(1).

(c) (Extra credit; For fun/brownie points only!) By counting the total number of self-dual codes
and the number of self-dual codes containing any even weight vector other than the all 0’s or
all 1’s vector, and using Part (5a), conclude that there exist self-dual codes of relative distance
h−1(1/2)− o(1) ≈ 0.11. To compare, what was the relative distance of the self-dual codes you
constructed in Problem 1?

6. (15 points) Let C be [n, k]2 linear code with wj denoting the number of codewords of C of Hamming
weight j, for 0 ≤ j ≤ n. (So w0 = 1 and

∑n
j=0wj = 2k.) Let W (X) =

∑n
j=0wjX

j be the
weight-enumerator polynomial of C.

Suppose C is used for transmission on a discrete memoryless channel (X = {0, 1},Y,Π) with max-
imum likelihood decoding at the receiver. That is, if y ∈ Yn is received, the decoding rule outputs a
codeword c ∈ C for which p(y|c) =

∏n
i=1 Π(yi|ci) is maximum.

Prove that regardless of which codeword was transmitted, the resulting error probability Perr is at
most Perr ≤W (ζ)− 1 where ζ =

∑
y∈Y

√
Π(y|0)Π(y|1).

For BSCp, using ζ =
√

4p(1− p) and the above bound on Perr, conclude the existence of linear
codes of positive rate and exponentially small error probability for communication on the BSCp for
every fixed p < 1/2.


