
CSE590VG: Codes and Pseudorandom Objets January 27, 2003Leture 5Leturer: Venkatesan Guruswami Sribe: Matt Cary1 Z�emor's Deoding AlgorithmWe will show a deoding algorithm due to Z�emor [4℄ for the odes based on expander graphs thatwere desribed last leture. These odes were based on a double-over d-regular expander G, thatis, a bipartite graph regular of degree d on both sides. Let L and R denote the left and rightvertex sets of G, and E the edge set, and let n = jLj = jRj. We will use a [d; r0d; Æ0℄ ode C0 toonstrut our ode C. Eah bit xe of a oded message is assoiated with an edge e of G. Given suha message x and a vertex v in L or R, de�ne xjv to be the subsequene of x orresponding to alledges inident on v; de�ne Ev the set of those edges. We summarize this in Figure 1. Our ode Cwill onsist of all odewords suh that xv 2 C0 for all v 2 R;L. Last time, we showed that C is a[N = nd; (2r0 � 1)N; Æ20N ℄ ode.
e3e2e1L Rv EvHere xjv = hxe1 ; xe2 ; xe3i 2 C0Figure 1: G and CThe deoding algorithm alternates between the left and right vertex sets of G, orreting theodeword of C0 assoiated with eah vertex of one side, then swithing to the other side to do thesame thing. Note that the edges assoiated with a vertex on one side of the graph, are not inident toany other vertex on that side; hene the order that the verties are proessed in does not matter. Infat, we an view (or even implement) the vertex proessing of eah round in parallel. See Figure 2for the preise algorithm, and an example of orreting a the all-zeros odeword that has someerroneous 1-bits.Theorem 1 If G is a Ramanujan graph of suÆiently high degree, for any � < 1, the deodingalgorithm an orret �Æ204 (1 � ")N errors, in O(log n) rounds (where the big-O notation hides adependene on �). This an be implemented in linear time on a single proessor; on n proessorseah round an be implemented in onstant time.Proof By linearity, and the fat that our deoding algorithm is insensitive to the values of theedges, we an assume the transmitted odeword is the all-zeros vetor. Let the reeived odeword bex. We will be onsidering the edge-sets orresponding to the inorret (value 1) bits of the odewordat various rounds of the deoding. Let x = x(0) be the initial value of the odeword, x(1) the valueafter the �rst round of deoding on L, x(2) the value after the �rst round of deoding on R, et.Let V (i) = L or R as appropriate, depending on whih side of G was used in the ithround. LetX(i) = fe 2 E j x(i)e = 1g, and S(i) = fv 2 V (i) j Ev \X(i+1) 6= ;g, that is, S(i) is the set of vertiesthat did not suessfully deode their C0 odeword in the ithround.5-1



The Deoding Algorithm A Round of DeodingV (0) = L; V (1) = Ri = 0while 9xv 62 C0for xv 2 L or R dofor eah v 2 V (i) with xv 62 C0Deode xv to nearest C0 odewordi i+ 1; V (i+1)  V (i�1) 001 000) 111uv uv011u has been orreted; the number of errors in v was toolarge for C0, so it was orreted to an inorret value,from the point of view of C. Those inorret edges willbe inident on di�erent verties in R, and hopefully willbe orreted in the next round. In the notation of theproof of Theorem 1, X(0) is the set of edges that arelabeled with 1; S(0) = fvg as u is inident on onlyorret edges, but v is inident to at least one inorretedge.Figure 2: Deoding CWe will show that jS(0)j; jS(1)j; jS(2)j; : : : form a dereasing sequene, in fat,jSi+1j � 12� � jSij: (1)As we assume � < 1, this forms a geometri dereasing sequene, so that as jSij < n, at mostlog2�� n rounds are neessary to orret all errors. Furthermore, P jSij = nP 1(2��)i = O(n), sothat as we an implement the ithround in O(jSij) time, we have that the total sequential runningtime is linear.The task now is to justify (1). The key to this must lie in the expander property of G, inpartiular, the isoperimetri inequality: for all A � L;B � R,����E(A;B)� d jAj � jBjn ���� � �pjAj � jBj;where � is the seond largest eigenvalue of G. Reall that this inequality says that in an expandergraph, the number of edges between any two sets is lose to what one would expet if the edges ofthe where hosen randomly, after the seletion of the sets.To ease notation, let S = S(i), T = S(i+1), and Y = X(i+1). Eah vertex in S must haveat least Æ0d edges of Y leaving it, otherwise that vertex would have deoded its C0 word to zero.Eah element v of T is a vertex in R that doesn't deode its odeword, so that the number of badedges that enter v must be at least Æ0d=2; otherwise v would have orretly deoded. See Figure 3.The intuition with expander graphs is that now matter how S was hosen, the edges out of S lookrandom, spreading out the bad edges into multiple nodes so that they will be orreted in the nextround. More preisely, eah vertex in T has lots of edges going to verties in S, and the isoperimetriinequality tells us that this only happens if T is small.Lemma 2 Suppose dÆ0 � 3�; S � L; jSj � �n(Æ0=2� �=d); T � R, and Y � E suh that1. every edge in Y leaves S, and2. every v 2 T has � Æ0d=2 edges in Y .Then jT j � 12�� jSj. 5-2



S8<: TggL RThe upper verties of R are not in T , as they would be orretly deoded as aC0 odeword.Figure 3: S and TProof jT jÆ0d2 � jE(S; T )j by assumption (ii) on jT j,� d jSj � jT jn + �pjSj � jT j by the isoperimetri inequality,� ��Æ0d2 � �� jT j+ � jSj+ jT j2 by assumed bound on jSj, and thearithmeti-geometri meanThus, jT j � �jSj(1� �)Æ0d+ �(2� � 1)� jSj2� � if Æ0d � 3�:Reall that G is Ramanujan, so that � � 2pd. Hene the assumption Æ0d � 3� of the lemma isreasonable, as � � pd. In fat, as we have assumed we an take the degree of G to be arbitrarilylarge, we an assume �� Æ0d.By the bound on the number of erroneous bits in x(0) assumed for the theorem,jX(0)j � �Æ204 (1� ")N� Æ0d2 �n�Æ02 � �d� ;if 2�=(Æ0d) � ", whih holds from the fat noted above that we an take �� Æ0d. As eah vertex inS(0) was inident (before being orreted) to at least Æ0d=2 edges of X(0),jS(0)j � 2jX(0)jÆ0d � �n�Æ02 � �d� :Thus the lemma an be applied indutively on X(0); X(1), et., giving jS(i+1)j � 12�� jS(i)j, so thatthe size of unorreted nodes dereases geometrially with eah round. This immediately gives the5-3



O(log n) bound on the number of rounds. The linear sequential time laim follows from noting thata lever implementation an proess round i in time jSij, so that the total time is P jSij = O(n).The original proof of Sipser and Spielman [2℄ only guaranteed a fration � d20=48 of errors ouldbe orreted. The reason why Z�emor's method gains is that his proof only asserts that the size ofS(i) shrinks with eah round; the number of erroneous edges may inrease during a round. Theproof of Sipser and Spielman showed that the number of errors dereased with eah round; as this isa stronger ondition, they ould not prove that deoding worked with as large a fration of errors.Spielman [3℄ showed that a ode (based on?) C ould be enoded in linear time, so that togetherwith Theorem 1, we have an asymptotially good family of linear-time enodable and deodableodes.2 Improved Error-Corretion: Distane Ampli�ationReall that if a ode C is able to orret a � fration of errors, the Plotkin and Singleton boundsimply 0 < � < 14 ; if C is a binary ode, and0 < � < 12 ; if C is over an arbitrary alphabet.The ode desribed in the previous setion has rate r = 1� 2H(p4�); thus a bound on �, found bysolving r > 0, has � < (H�1(1=2)2=4 � 10�3;whih is not very lose to the general bounds on �. Can we improve the error orretion, perhapsby a ode over a larger alphabet?2.1 Distane Ampli�ationThis question was addressed by Alon et. al. [1℄ with a tehnique known as distane ampli�ation.Reall that the �rst expander-graph based ode we developed used the expander graph as a parityhek matrix. The distane ampli�ation onstrution an be viewed as using instead the expandergraph as a generator matrix.Reall that to ahieve � = 1=2� ", we need Æ � 1� 2". Suppose we have an asymptotially goodode C of rate r and relative distane � �. We will use the double over G of a d-regular expandergraph to de�ne a new ode C� over the alphabet 2d, of rate k=d and relative distane (1 � �), forany � suh that d satis�es d 2 
�1=(��)�. In partiular, if C is a �n; k; �n�2 ode, C� will be a�n; k=d; (1� �)n�q=2d ode. Note that C� will not be a linear ode; it will only be \GF (2)-linear"or \additive", i.e. if 1; 2 are odewords then so is 1 + 2. Let G have n nodes on eah side. Eahodeword of � 2 C� will orrespond to a odeword  2 C in the following way. Assign eah haraterof  to a node on the left of G (L), and eah harater of � to a node on the right of G (R). Heneeah v 2 L is assoiated with a bit v 2 f0; 1g, whih it sends along eah inident edge to vertiesin R. Eah vertex u 2 R ollets the bits inoming on its edges into an ordered tuple (any �xedordering will do), to form the harater �u 2 [q = 2d℄. See Figure 4. To summarize, we haveClaim 3 Given a d-regular Ramanujan expander and a [n; k; �n�2 ode, for any � > 4=(�d) andq = 2d, there exists a �n; kd ; (1� �)n�qGF (2)-linear ode. 5-4
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Figure 4: C and C�Beause of the one-to-one orrespondene between C� and C, the two odes have the same numberof odewords, namely 2k. But as C� is over a larger alphabet we must ompute its rate in term ofq = 2d, that is, 2k = �2d�k=d, showing that the dimension of C� is k=d as laimed. The laim ofthe distane of C� is nearly as straightforward, and an be shown using the familiar tehnique ofbounding the minimum weight of a odeword of C�. We have to onvine ourselves that this willgive the minimum distane in C�, as it is only GF (2)-linear, but this is straightforward and left tothe reader.Claim 4 The minimum weight of a odeword in C� is (1� �)n.Proof Take any nonzero odeword of C, whih has � �n ones by the minimum distane of C.These ones orrespond to a set S � L. Let B � R be the nodes inident to a node in S; eah nodeof T will orrespond to a nonzero harater of C�, hene it's enough to show that B is a (1 � �)fration of R. A di�erent way of saying this is that for any set T of size at least �n, E(S; T ) 6= ;.Suppose this is not true, that is, E(S; T ) = ;. Then, by the isoperimetri inequality, assuming G isRamanujan, djSj � jT jn � 2pd �pjSj � jT jimplying jT j � 4d�nbut as jT j > �n, d � 4�� :Hene, if d > 4=(��), this annot our.If we let d = O(1="), we get linear time enodable odes over GF (2O(1=")), of rate 
(") andrelative distane 1 � ". Now, the question is, an we �nd and algorithm to deode to the desired1=2� " fration of error?2.2 Deoding C�Reall that C� was onstruted in two stages, by �rst enoding the message as a odeword in C,then by using the expander graph G to reate the �nal C� odeword. The deoding proess will be5-5



similar: the reeived word is sent through the expander graph to give a word in f0; 1gn, and thenthe deoding algorithm for C is applied to reonstrut the message.It remains to de�ne how to send the reeived word the the expander graph. Reall that in oding,eah bit of the message is assoiated with a node on the left side of the graph, this bit is repliatedon eah edge inident to the node, and olleted into haraters on the right side of the graph.Applying this proess in reverse presents the problem that a left side node will not reeive the samemessage on all of its inoming edges: errors in the reeived word will ause the inputs to the left sideto be inonsistent, as shown in Figure 5. The easiest solution is to have eah left-hand node takethe majority of the bits on its inoming edges; it turns out this simple algorithm works quite well.The intuition is based, yet again, on the random-like quality of the expander. The neighbors of aleft-hand node look random, so that the fration of inorret neighbors of a partiular will usuallyapproximate the fration of inorret nodes on the entire right-hand side. Hene, if slightly morethan half of the right-hand nodes are orret, most of the errors will be orreted simply by passingthem through the graph. The remaining errors are few enough that the error orretion of C will beable to �x them.
L

11 110 R
C C�h1; 1; 1ih1; 0; 0i1 10011101

The upper node on the left is inorret beause of the errors on theright-hand side, while the lower node was repaired.Figure 5: Deoding C�Claim 5 Let d be given as in the onstrution of C�, and let  be the error fration that C anorretly deode from. If d � 4�2 , the deoding proedure outlined above an orret a (1�") frationof errors.Proof Let y be the reeived word with at least (1� ")n orret symbols, and let z be the result ofsending y through G (but not yet deoding it with the C algorithm). Let � be the losest odewordof C� to y. Let T be the right-hand nodes of G orresponding to orret haraters of y, i.e. the uisuh that yi = �i . Let  be the C odeword orresponding to C�; our goal is to show z and  di�eron at most n bits.Let S = fi j vi 2 L has � d=2 neighbors in Tg, so that zi 6= i for all vi 2 S, as the majority rulewill not deide on the orret bit for zi. Hene, we need to show that jSj < n. We immediatelyhave that E(S; T ) � d2 jSjby the de�nition of S. By the isoperimetri inequality we haveE(S; T ) � djSj � jT jn � �pjSj � jT j� djSj�12 + "�� �pjSjn;5-6



bounding jT j by the number of reeived errors in the �rst term, and simply by n in the seond term.Hene, "djSj � �pjSjn;implying the following, jSj � � �"d�2 n:Hene as G is Ramanujan, � � 2pd, so that if d � 4=("2) as assumed, jSj � n as required.Note to get the distane bound, we needed d & 4=(�"). Now, we need d & 4=("2), so that, likewith previous asymptotially good onstrutions, we loose a square in the deoding.If C is linear-time enodable and deodable, then one an show that C� is linear-time enodableand deodable as well. This is a reasonable assertion, as we are assuming d is a onstant, and theenoding and deoding algorithms are quite simple, but we will not formally prove this.To summarize, we now have rate 
("2) odes with linear-time enoding and deoding algorithmsto a (1=2�") fration of errors, over alphabets of size 2O(1="2). This approahes the Singleton bound,whih asserts the rate is at most " for suh deoding apability.Referenes[1℄ Noga Alon, Jehoshua Bruk, Joseph Naor, Moni Naor, and Ronny Roth. Constrution ofasymptotially good low-rate error-orreting odes through pseudo-random graphs. IEEETransations on Information Theory, 38:509{516, 1992.[2℄ Mihael Sipser and Daniel Spielman. Expander odes. IEEE Transations on InformationTheory, 42(6):1710{1722, 1996.[3℄ Daniel Spielman. Linear-time enodable and deodable error-orreting odes. IEEE Transa-tions on Information Theory, 42(6):1723{1732, 1996.[4℄ Gill�es Z�emor. On expander odes. IEEE Transations on Information Theory, 47(2):835{837,2001.
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