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ture 5Le
turer: Venkatesan Guruswami S
ribe: Matt Cary1 Z�emor's De
oding AlgorithmWe will show a de
oding algorithm due to Z�emor [4℄ for the 
odes based on expander graphs thatwere des
ribed last le
ture. These 
odes were based on a double-
over d-regular expander G, thatis, a bipartite graph regular of degree d on both sides. Let L and R denote the left and rightvertex sets of G, and E the edge set, and let n = jLj = jRj. We will use a [d; r0d; Æ0℄ 
ode C0 to
onstru
t our 
ode C. Ea
h bit xe of a 
oded message is asso
iated with an edge e of G. Given su
ha message x and a vertex v in L or R, de�ne xjv to be the subsequen
e of x 
orresponding to alledges in
ident on v; de�ne Ev the set of those edges. We summarize this in Figure 1. Our 
ode Cwill 
onsist of all 
odewords su
h that xv 2 C0 for all v 2 R;L. Last time, we showed that C is a[N = nd; (2r0 � 1)N; Æ20N ℄ 
ode.
e3e2e1L Rv EvHere xjv = hxe1 ; xe2 ; xe3i 2 C0Figure 1: G and CThe de
oding algorithm alternates between the left and right vertex sets of G, 
orre
ting the
odeword of C0 asso
iated with ea
h vertex of one side, then swit
hing to the other side to do thesame thing. Note that the edges asso
iated with a vertex on one side of the graph, are not in
ident toany other vertex on that side; hen
e the order that the verti
es are pro
essed in does not matter. Infa
t, we 
an view (or even implement) the vertex pro
essing of ea
h round in parallel. See Figure 2for the pre
ise algorithm, and an example of 
orre
ting a the all-zeros 
odeword that has someerroneous 1-bits.Theorem 1 If G is a Ramanujan graph of suÆ
iently high degree, for any � < 1, the de
odingalgorithm 
an 
orre
t �Æ204 (1 � ")N errors, in O(log n) rounds (where the big-O notation hides adependen
e on �). This 
an be implemented in linear time on a single pro
essor; on n pro
essorsea
h round 
an be implemented in 
onstant time.Proof By linearity, and the fa
t that our de
oding algorithm is insensitive to the values of theedges, we 
an assume the transmitted 
odeword is the all-zeros ve
tor. Let the re
eived 
odeword bex. We will be 
onsidering the edge-sets 
orresponding to the in
orre
t (value 1) bits of the 
odewordat various rounds of the de
oding. Let x = x(0) be the initial value of the 
odeword, x(1) the valueafter the �rst round of de
oding on L, x(2) the value after the �rst round of de
oding on R, et
.Let V (i) = L or R as appropriate, depending on whi
h side of G was used in the ithround. LetX(i) = fe 2 E j x(i)e = 1g, and S(i) = fv 2 V (i) j Ev \X(i+1) 6= ;g, that is, S(i) is the set of verti
esthat did not su

essfully de
ode their C0 
odeword in the ithround.5-1



The De
oding Algorithm A Round of De
odingV (0) = L; V (1) = Ri = 0while 9xv 62 C0for xv 2 L or R dofor ea
h v 2 V (i) with xv 62 C0De
ode xv to nearest C0 
odewordi i+ 1; V (i+1)  V (i�1) 001 000) 111uv uv011u has been 
orre
ted; the number of errors in v was toolarge for C0, so it was 
orre
ted to an in
orre
t value,from the point of view of C. Those in
orre
t edges willbe in
ident on di�erent verti
es in R, and hopefully willbe 
orre
ted in the next round. In the notation of theproof of Theorem 1, X(0) is the set of edges that arelabeled with 1; S(0) = fvg as u is in
ident on only
orre
t edges, but v is in
ident to at least one in
orre
tedge.Figure 2: De
oding CWe will show that jS(0)j; jS(1)j; jS(2)j; : : : form a de
reasing sequen
e, in fa
t,jSi+1j � 12� � jSij: (1)As we assume � < 1, this forms a geometri
 de
reasing sequen
e, so that as jSij < n, at mostlog2�� n rounds are ne
essary to 
orre
t all errors. Furthermore, P jSij = nP 1(2��)i = O(n), sothat as we 
an implement the ithround in O(jSij) time, we have that the total sequential runningtime is linear.The task now is to justify (1). The key to this must lie in the expander property of G, inparti
ular, the isoperimetri
 inequality: for all A � L;B � R,����E(A;B)� d jAj � jBjn ���� � �pjAj � jBj;where � is the se
ond largest eigenvalue of G. Re
all that this inequality says that in an expandergraph, the number of edges between any two sets is 
lose to what one would expe
t if the edges ofthe where 
hosen randomly, after the sele
tion of the sets.To ease notation, let S = S(i), T = S(i+1), and Y = X(i+1). Ea
h vertex in S must haveat least Æ0d edges of Y leaving it, otherwise that vertex would have de
oded its C0 word to zero.Ea
h element v of T is a vertex in R that doesn't de
ode its 
odeword, so that the number of badedges that enter v must be at least Æ0d=2; otherwise v would have 
orre
tly de
oded. See Figure 3.The intuition with expander graphs is that now matter how S was 
hosen, the edges out of S lookrandom, spreading out the bad edges into multiple nodes so that they will be 
orre
ted in the nextround. More pre
isely, ea
h vertex in T has lots of edges going to verti
es in S, and the isoperimetri
inequality tells us that this only happens if T is small.Lemma 2 Suppose dÆ0 � 3�; S � L; jSj � �n(Æ0=2� �=d); T � R, and Y � E su
h that1. every edge in Y leaves S, and2. every v 2 T has � Æ0d=2 edges in Y .Then jT j � 12�� jSj. 5-2



S8<: TggL RThe upper verti
es of R are not in T , as they would be 
orre
tly de
oded as aC0 
odeword.Figure 3: S and TProof jT jÆ0d2 � jE(S; T )j by assumption (ii) on jT j,� d jSj � jT jn + �pjSj � jT j by the isoperimetri
 inequality,� ��Æ0d2 � �� jT j+ � jSj+ jT j2 by assumed bound on jSj, and thearithmeti
-geometri
 meanThus, jT j � �jSj(1� �)Æ0d+ �(2� � 1)� jSj2� � if Æ0d � 3�:Re
all that G is Ramanujan, so that � � 2pd. Hen
e the assumption Æ0d � 3� of the lemma isreasonable, as � � pd. In fa
t, as we have assumed we 
an take the degree of G to be arbitrarilylarge, we 
an assume �� Æ0d.By the bound on the number of erroneous bits in x(0) assumed for the theorem,jX(0)j � �Æ204 (1� ")N� Æ0d2 �n�Æ02 � �d� ;if 2�=(Æ0d) � ", whi
h holds from the fa
t noted above that we 
an take �� Æ0d. As ea
h vertex inS(0) was in
ident (before being 
orre
ted) to at least Æ0d=2 edges of X(0),jS(0)j � 2jX(0)jÆ0d � �n�Æ02 � �d� :Thus the lemma 
an be applied indu
tively on X(0); X(1), et
., giving jS(i+1)j � 12�� jS(i)j, so thatthe size of un
orre
ted nodes de
reases geometri
ally with ea
h round. This immediately gives the5-3



O(log n) bound on the number of rounds. The linear sequential time 
laim follows from noting thata 
lever implementation 
an pro
ess round i in time jSij, so that the total time is P jSij = O(n).The original proof of Sipser and Spielman [2℄ only guaranteed a fra
tion � d20=48 of errors 
ouldbe 
orre
ted. The reason why Z�emor's method gains is that his proof only asserts that the size ofS(i) shrinks with ea
h round; the number of erroneous edges may in
rease during a round. Theproof of Sipser and Spielman showed that the number of errors de
reased with ea
h round; as this isa stronger 
ondition, they 
ould not prove that de
oding worked with as large a fra
tion of errors.Spielman [3℄ showed that a 
ode (based on?) C 
ould be en
oded in linear time, so that togetherwith Theorem 1, we have an asymptoti
ally good family of linear-time en
odable and de
odable
odes.2 Improved Error-Corre
tion: Distan
e Ampli�
ationRe
all that if a 
ode C is able to 
orre
t a � fra
tion of errors, the Plotkin and Singleton boundsimply 0 < � < 14 ; if C is a binary 
ode, and0 < � < 12 ; if C is over an arbitrary alphabet.The 
ode des
ribed in the previous se
tion has rate r = 1� 2H(p4�); thus a bound on �, found bysolving r > 0, has � < (H�1(1=2)2=4 � 10�3;whi
h is not very 
lose to the general bounds on �. Can we improve the error 
orre
tion, perhapsby a 
ode over a larger alphabet?2.1 Distan
e Ampli�
ationThis question was addressed by Alon et. al. [1℄ with a te
hnique known as distan
e ampli�
ation.Re
all that the �rst expander-graph based 
ode we developed used the expander graph as a parity
he
k matrix. The distan
e ampli�
ation 
onstru
tion 
an be viewed as using instead the expandergraph as a generator matrix.Re
all that to a
hieve � = 1=2� ", we need Æ � 1� 2". Suppose we have an asymptoti
ally good
ode C of rate r and relative distan
e � �. We will use the double 
over G of a d-regular expandergraph to de�ne a new 
ode C� over the alphabet 2d, of rate k=d and relative distan
e (1 � �), forany � su
h that d satis�es d 2 
�1=(��)�. In parti
ular, if C is a �n; k; �n�2 
ode, C� will be a�n; k=d; (1� �)n�q=2d 
ode. Note that C� will not be a linear 
ode; it will only be \GF (2)-linear"or \additive", i.e. if 
1; 
2 are 
odewords then so is 
1 + 
2. Let G have n nodes on ea
h side. Ea
h
odeword of 
� 2 C� will 
orrespond to a 
odeword 
 2 C in the following way. Assign ea
h 
hara
terof 
 to a node on the left of G (L), and ea
h 
hara
ter of 
� to a node on the right of G (R). Hen
eea
h v 2 L is asso
iated with a bit 
v 2 f0; 1g, whi
h it sends along ea
h in
ident edge to verti
esin R. Ea
h vertex u 2 R 
olle
ts the bits in
oming on its edges into an ordered tuple (any �xedordering will do), to form the 
hara
ter 
�u 2 [q = 2d℄. See Figure 4. To summarize, we haveClaim 3 Given a d-regular Ramanujan expander and a [n; k; �n�2 
ode, for any � > 4=(�d) andq = 2d, there exists a �n; kd ; (1� �)n�qGF (2)-linear 
ode. 5-4
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C C�
Figure 4: C and C�Be
ause of the one-to-one 
orresponden
e between C� and C, the two 
odes have the same numberof 
odewords, namely 2k. But as C� is over a larger alphabet we must 
ompute its rate in term ofq = 2d, that is, 2k = �2d�k=d, showing that the dimension of C� is k=d as 
laimed. The 
laim ofthe distan
e of C� is nearly as straightforward, and 
an be shown using the familiar te
hnique ofbounding the minimum weight of a 
odeword of C�. We have to 
onvin
e ourselves that this willgive the minimum distan
e in C�, as it is only GF (2)-linear, but this is straightforward and left tothe reader.Claim 4 The minimum weight of a 
odeword in C� is (1� �)n.Proof Take any nonzero 
odeword of C, whi
h has � �n ones by the minimum distan
e of C.These ones 
orrespond to a set S � L. Let B � R be the nodes in
ident to a node in S; ea
h nodeof T will 
orrespond to a nonzero 
hara
ter of C�, hen
e it's enough to show that B is a (1 � �)fra
tion of R. A di�erent way of saying this is that for any set T of size at least �n, E(S; T ) 6= ;.Suppose this is not true, that is, E(S; T ) = ;. Then, by the isoperimetri
 inequality, assuming G isRamanujan, djSj � jT jn � 2pd �pjSj � jT jimplying jT j � 4d�nbut as jT j > �n, d � 4�� :Hen
e, if d > 4=(��), this 
annot o

ur.If we let d = O(1="), we get linear time en
odable 
odes over GF (2O(1=")), of rate 
(") andrelative distan
e 1 � ". Now, the question is, 
an we �nd and algorithm to de
ode to the desired1=2� " fra
tion of error?2.2 De
oding C�Re
all that C� was 
onstru
ted in two stages, by �rst en
oding the message as a 
odeword in C,then by using the expander graph G to 
reate the �nal C� 
odeword. The de
oding pro
ess will be5-5



similar: the re
eived word is sent through the expander graph to give a word in f0; 1gn, and thenthe de
oding algorithm for C is applied to re
onstru
t the message.It remains to de�ne how to send the re
eived word the the expander graph. Re
all that in 
oding,ea
h bit of the message is asso
iated with a node on the left side of the graph, this bit is repli
atedon ea
h edge in
ident to the node, and 
olle
ted into 
hara
ters on the right side of the graph.Applying this pro
ess in reverse presents the problem that a left side node will not re
eive the samemessage on all of its in
oming edges: errors in the re
eived word will 
ause the inputs to the left sideto be in
onsistent, as shown in Figure 5. The easiest solution is to have ea
h left-hand node takethe majority of the bits on its in
oming edges; it turns out this simple algorithm works quite well.The intuition is based, yet again, on the random-like quality of the expander. The neighbors of aleft-hand node look random, so that the fra
tion of in
orre
t neighbors of a parti
ular will usuallyapproximate the fra
tion of in
orre
t nodes on the entire right-hand side. Hen
e, if slightly morethan half of the right-hand nodes are 
orre
t, most of the errors will be 
orre
ted simply by passingthem through the graph. The remaining errors are few enough that the error 
orre
tion of C will beable to �x them.
L

11 110 R
C C�h1; 1; 1ih1; 0; 0i1 10011101

The upper node on the left is in
orre
t be
ause of the errors on theright-hand side, while the lower node was repaired.Figure 5: De
oding C�Claim 5 Let d be given as in the 
onstru
tion of C�, and let 
 be the error fra
tion that C 
an
orre
tly de
ode from. If d � 4
�2 , the de
oding pro
edure outlined above 
an 
orre
t a (1�") fra
tionof errors.Proof Let y be the re
eived word with at least (1� ")n 
orre
t symbols, and let z be the result ofsending y through G (but not yet de
oding it with the C algorithm). Let 
� be the 
losest 
odewordof C� to y. Let T be the right-hand nodes of G 
orresponding to 
orre
t 
hara
ters of y, i.e. the uisu
h that yi = 
�i . Let 
 be the C 
odeword 
orresponding to C�; our goal is to show z and 
 di�eron at most 
n bits.Let S = fi j vi 2 L has � d=2 neighbors in Tg, so that zi 6= 
i for all vi 2 S, as the majority rulewill not de
ide on the 
orre
t bit for zi. Hen
e, we need to show that jSj < 
n. We immediatelyhave that E(S; T ) � d2 jSjby the de�nition of S. By the isoperimetri
 inequality we haveE(S; T ) � djSj � jT jn � �pjSj � jT j� djSj�12 + "�� �pjSjn;5-6



bounding jT j by the number of re
eived errors in the �rst term, and simply by n in the se
ond term.Hen
e, "djSj � �pjSjn;implying the following, jSj � � �"d�2 n:Hen
e as G is Ramanujan, � � 2pd, so that if d � 4=(
"2) as assumed, jSj � 
n as required.Note to get the distan
e bound, we needed d & 4=(�"). Now, we need d & 4=(
"2), so that, likewith previous asymptoti
ally good 
onstru
tions, we loose a square in the de
oding.If C is linear-time en
odable and de
odable, then one 
an show that C� is linear-time en
odableand de
odable as well. This is a reasonable assertion, as we are assuming d is a 
onstant, and theen
oding and de
oding algorithms are quite simple, but we will not formally prove this.To summarize, we now have rate 
("2) 
odes with linear-time en
oding and de
oding algorithmsto a (1=2�") fra
tion of errors, over alphabets of size 2O(1="2). This approa
hes the Singleton bound,whi
h asserts the rate is at most " for su
h de
oding 
apability.Referen
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