CSE590VG: Codes and Pseudorandom Objects January 27, 2003

Lecture 5

Lecturer: Venkatesan Guruswami Scribe: Matt Cary

1 Zémor’s Decoding Algorithm

We will show a decoding algorithm due to Zémor [4] for the codes based on expander graphs that
were described last lecture. These codes were based on a double-cover d-regular expander G, that
is, a bipartite graph regular of degree d on both sides. Let L and R denote the left and right
vertex sets of G, and E the edge set, and let n = |L| = |R|. We will use a [d,rd, 6o] code Cy to
construct our code C. Each bit x. of a coded message is associated with an edge e of G. Given such
a message ¢ and a vertex v in L or R, define z|, to be the subsequence of z corresponding to all
edges incident on v; define E, the set of those edges. We summarize this in Figure 1. Our code C
will consist of all codewords such that z, € Cy for all v € R, L. Last time, we showed that C is a
[N = nd, (2rp — 1)N, 62 N] code.

[]

R

Here CE|U = <x617x62ax63> € Co

Figure 1: G and C

The decoding algorithm alternates between the left and right vertex sets of G, correcting the
codeword of Cy associated with each vertex of one side, then switching to the other side to do the
same thing. Note that the edges associated with a vertex on one side of the graph, are not incident to
any other vertex on that side; hence the order that the vertices are processed in does not matter. In
fact, we can view (or even implement) the vertex processing of each round in parallel. See Figure 2
for the precise algorithm, and an example of correcting a the all-zeros codeword that has some
erroneous 1-bits.

Theorem 1 If G is a Ramanujan graph of sufficiently high degree, for any o < 1, the decoding

2
algorithm can correct %(1 —¢)N errors, in O(logn) rounds (where the big-O notation hides a
dependence on «). This can be implemented in linear time on a single processor; on n processors
each round can be implemented in constant time.

Proof By linearity, and the fact that our decoding algorithm is insensitive to the values of the
edges, we can assume the transmitted codeword is the all-zeros vector. Let the received codeword be
x. We will be considering the edge-sets corresponding to the incorrect (value 1) bits of the codeword
at various rounds of the decoding. Let z = (%) be the initial value of the codeword, z(!) the value
after the first round of decoding on L, 2(*) the value after the first round of decoding on R, etc.
Let V(¥ = L or R as appropriate, depending on which side of G was used in the i*"round. Let
XD ={eeE|z =1}, and SO = {v € VO | B, n XD £ @}, that is, S is the set of vertices
that did not successfully decode their Cy codeword in the i*"round.

5-1

The Decoding Algorithm A Round of Decoding

o o
vO=rv® =R 0 0

while 3z, € Co

° °
for x, € L or R do 1 i 1
for each v € V¥ with z, & Co V ‘§ 1 V ‘< 1
Decode z, to nearest Co codeword
i i41, VD yi-D ° 0 * 1

u has been corrected; the number of errors in v was too
large for Cp, so it was corrected to an incorrect value,
from the point of view of C. Those incorrect edges will
be incident on different vertices in R, and hopefully will
be corrected in the next round. In the notation of the
proof of Theorem 1, X(©) is the set of edges that are
labeled with 1; S(®) = {v} as u is incident on only
correct edges, but v is incident to at least one incorrect
edge.

Figure 2: Decoding C

We will show that [S(©),|S(M)],|S?)|,... form a decreasing sequence, in fact,
Sival < 3711 1)
i+1] > 2 _ i

As we assume a < 1, this forms a geometric decreasing sequence, so that as |S;| < n, at most
log,_, n rounds are necessary to correct all errors. Furthermore, Y |S;| =n)_ ﬁ = O(n), so

that as we can implement the i*®round in O(|S;|) time, we have that the total sequential running
time is linear.

The task now is to justify (1). The key to this must lie in the expander property of G, in
particular, the isoperimetric inequality: for all A C L, B C R,

(4, B) - A8l <3 i,
n

where A is the second largest eigenvalue of G. Recall that this inequality says that in an expander
graph, the number of edges between any two sets is close to what one would expect if the edges of
the where chosen randomly, after the selection of the sets.

To ease notation, let § = S, T = S+ and ¥ = X0+, Each vertex in S must have
at least dgd edges of Y leaving it, otherwise that vertex would have decoded its Cy word to zero.
Each element v of T' is a vertex in R that doesn’t decode its codeword, so that the number of bad
edges that enter v must be at least 6pd/2; otherwise v would have correctly decoded. See Figure 3.
The intuition with expander graphs is that now matter how S was chosen, the edges out of § look
random, spreading out the bad edges into multiple nodes so that they will be corrected in the next
round. More precisely, each vertex in 7" has lots of edges going to vertices in .5, and the isoperimetric
inequality tells us that this only happens if 7" is small.

Lemma 2 Suppose doy > 3X\, S C L,|S| < an(bp/2 — A/d),T C R, and Y C E such that
1. every edge in Y leaves S, and
2. every v € T has > 6pd/2 edges in Y.

Then |T| < 5—|S].

5-2

The upper vertices of R are not in 7', as they would be correctly decoded as a
Co codeword.

Figure 3: S and T

Proof
bod . ..
|T|T < |E(S,T)| by assumption (ii) on ||,
S| |T
< d| |n| | + AV/|S| T by the isoperimetric inequality,
bod |S|+ |7 by assumed bound on |S|, and the
S <T B A) 71+ A 2 arithmetic-geometric mean
Thus,
AlS|
T <
Tl < (1 - a)dod + A(2cc — 1)
< 15] if ogd > 3.
22—«
[|

Recall that G is Ramanujan, so that A < 2v/d. Hence the assumption §od > 3\ of the lemma is
reasonable, as A ~ v/d. In fact, as we have assumed we can take the degree of G to be arbitrarily
large, we can assume A < 6pd.

By the bound on the number of erroneous bits in z(®) assumed for the theorem,

62
XOI<a(1-e)N

Sod (60 A
< 0= N _Z
= 2“"(2 d)’

if 2X/(6od) < e, which holds from the fact noted above that we can take A < dpd. As each vertex in
SO was incident (before being corrected) to at least §yd/2 edges of X(©),

b A

Thus the lemma can be applied inductively on X, X1 etc., giving |SU0HD| < 1S, so that
the size of uncorrected nodes decreases geometrically with each round. This immediately gives the

2| X(0)|
(0) < -
|S | - pd

IN
2

5-3

O(logn) bound on the number of rounds. The linear sequential time claim follows from noting that
a clever implementation can process round i in time |S;|, so that the total time is > |S;| = O(n).
|

The original proof of Sipser and Spielman [2] only guaranteed a fraction ~ d% /48 of errors could
be corrected. The reason why Zémor’s method gains is that his proof only asserts that the size of
S() shrinks with each round; the number of erroneous edges may increase during a round. The
proof of Sipser and Spielman showed that the number of errors decreased with each round; as this is
a stronger condition, they could not prove that decoding worked with as large a fraction of errors.

Spielman [3] showed that a code (based on?) C could be encoded in linear time, so that together
with Theorem 1, we have an asymptotically good family of linear-time encodable and decodable
codes.

2 Improved Error-Correction: Distance Amplification

Recall that if a code C is able to correct a p fraction of errors, the Plotkin and Singleton bounds
imply

1
0<p< i if C is a binary code, and

1
0<p< > if C is over an arbitrary alphabet.

The code described in the previous section has rate r = 1 — 2H (1/4p); thus a bound on p, found by
solving r > 0, has

p< (H™(1/2)/4 ~ 107,
which is not very close to the general bounds on p. Can we improve the error correction, perhaps
by a code over a larger alphabet?

2.1 Distance Amplification

This question was addressed by Alon et. al. [1] with a technique known as distance amplification.
Recall that the first expander-graph based code we developed used the expander graph as a parity
check matrix. The distance amplification construction can be viewed as using instead the expander
graph as a generator matrix.

Recall that to achieve p =1/2—¢, we need 6 > 1 —2¢. Suppose we have an asymptotically good
code C of rate r and relative distance > a. We will use the double cover G of a d-regular expander
graph to define a new code C* over the alphabet 2%, of rate k/d and relative distance (1 — 3), for
any such that d satisfies d € Q(1/(ef)). In particular, if C is a [n,k,an], code, C* will be a
(n,k/d,(1— ﬂ)n)q:2d code. Note that C* will not be a linear code; it will only be “GF(2)-linear”
or “additive”, i.e. if ¢1, o are codewords then so is ¢; + ¢3. Let G have n nodes on each side. Each
codeword of ¢* € C* will correspond to a codeword ¢ € C in the following way. Assign each character
of ¢ to a node on the left of G (L), and each character of ¢* to a node on the right of G (R). Hence
each v € L is associated with a bit ¢, € {0,1}, which it sends along each incident edge to vertices
in R. Each vertex u € R collects the bits incoming on its edges into an ordered tuple (any fixed
ordering will do), to form the character ¢}, € [¢ = 2%]. See Figure 4. To summarize, we have

Claim 3 Given a d-reqular Ramanujan expander and a [n,k,an]2 code, for any § > 4/(ad) and
k
(na Rl (1 - ﬂ)n>
d q

o-4

g = 2%, there exists a

GF(2)-linear code.

o

0—<8 1>010

1<1
—

*——

L

(0,1,1)

JW

Figure 4: C and C*

Because of the one-to-one correspondence between C* and C, the two codes have the same number
of codewords, namely 2¥. But as C* is over a larger alphabet we must compute its rate in term of
q = 2%, that is, 2% = (2d)k/d, showing that the dimension of C* is k/d as claimed. The claim of
the distance of C* is nearly as straightforward, and can be shown using the familiar technique of
bounding the minimum weight of a codeword of C*. We have to convince ourselves that this will
give the minimum distance in C*, as it is only GF(2)-linear, but this is straightforward and left to
the reader.

Claim 4 The minimum weight of a codeword in C* is (1 — B)n.

Proof Take any nonzero codeword of C, which has > an ones by the minimum distance of C.
These ones correspond to a set S C L. Let B C R be the nodes incident to a node in S; each node
of T' will correspond to a nonzero character of C*, hence it’s enough to show that B is a (1 — f3)
fraction of R. A different way of saying this is that for any set T' of size at least n, E(S,T) # 0.
Suppose this is not true, that is, E(S,T) = (). Then, by the isoperimetric inequality, assuming G is
Ramanujan,

WL < ova- ST T

implying
4
7| < o
da
but as |T'| > fn,
i<
S B

Hence, if d > 4/(«/3), this cannot occur. l

If we let d = O(1/e), we get linear time encodable codes over GF(29(1/2)) of rate Q(¢) and
relative distance 1 — e. Now, the question is, can we find and algorithm to decode to the desired
1/2 — ¢ fraction of error?

2.2 Decoding C*

Recall that C* was constructed in two stages, by first encoding the message as a codeword in C,
then by using the expander graph G to create the final C* codeword. The decoding process will be

9-9

similar: the received word is sent through the expander graph to give a word in {0,1}", and then
the decoding algorithm for C is applied to reconstruct the message.

It remains to define how to send the received word the the expander graph. Recall that in coding,
each bit of the message is associated with a node on the left side of the graph, this bit is replicated
on each edge incident to the node, and collected into characters on the right side of the graph.
Applying this process in reverse presents the problem that a left side node will not receive the same
message on all of its incoming edges: errors in the received word will cause the inputs to the left side
to be inconsistent, as shown in Figure 5. The easiest solution is to have each left-hand node take
the majority of the bits on its incoming edges; it turns out this simple algorithm works quite well.
The intuition is based, yet again, on the random-like quality of the expander. The neighbors of a
left-hand node look random, so that the fraction of incorrect neighbors of a particular will usually
approximate the fraction of incorrect nodes on the entire right-hand side. Hemnce, if slightly more
than half of the right-hand nodes are correct, most of the errors will be corrected simply by passing
them through the graph. The remaining errors are few enough that the error correction of C will be
able to fix them.

1
1 1 0
0

—
>
1<0 %\E (1,1,1)

'& 1
R

o —

L

The upper node on the left is incorrect because of the errors on the
right-hand side, while the lower node was repaired.

Figure 5: Decoding C*

Claim 5 Let d be given as in the construction of C*, and let v be the error fraction that C can
correctly decode from. If d > %, the decoding procedure outlined above can correct a (1—¢€) fraction
of errors.

Proof Let y be the received word with at least (1 —&)n correct symbols, and let z be the result of
sending y through G (but not yet decoding it with the C algorithm). Let ¢* be the closest codeword
of C* to y. Let T" be the right-hand nodes of G' corresponding to correct characters of y, i.e. the u;
such that y; = ¢}. Let ¢ be the C codeword corresponding to C*; our goal is to show z and c differ
on at most yn bits.

Let S = {i | v; € L has < d/2 neighbors in T'}, so that z; # ¢; for all v; € S, as the majority rule
will not decide on the correct bit for z;. Hence, we need to show that |S| < yn. We immediately
have that

B(S,T) < 51|

by the definition of §. By the isoperimetric inequality we have

E(S,T) > M

> d|8] (+g> — A5,

= AVIS[- [T

5-6

bounding |T'| by the number of received errors in the first term, and simply by » in the second term.
Hence,

ed|S| < \/|S|n,

A\ 2
< | — .
151 = <Ed> "

Hence as G is Ramanujan, A < 2v/d, so that if d > 4/(ve?) as assumed, |S| < yn as required. B

implying the following,

Note to get the distance bound, we needed d > 4/(ag). Now, we need d > 4/(ve?), so that, like
with previous asymptotically good constructions, we loose a square in the decoding.

If C is linear-time encodable and decodable, then one can show that C* is linear-time encodable
and decodable as well. This is a reasonable assertion, as we are assuming d is a constant, and the
encoding and decoding algorithms are quite simple, but we will not formally prove this.

To summarize, we now have rate Q(¢?) codes with linear-time encoding and decoding algorithms
to a (1/2—¢) fraction of errors, over alphabets of size 20(1/¢*) This approaches the Singleton bound,
which asserts the rate is at most € for such decoding capability.

References

[1] Noga Alon, Jehoshua Bruck, Joseph Naor, Moni Naor, and Ronny Roth. Construction of
asymptotically good low-rate error-correcting codes through pseudo-random graphs. I[EEE
Transactions on Information Theory, 38:509-516, 1992.

[2] Michael Sipser and Daniel Spielman. Expander codes. IEEE Transactions on Information
Theory, 42(6):1710-1722, 1996.

[3] Daniel Spielman. Linear-time encodable and decodable error-correcting codes. IEEE Transac-
tions on Information Theory, 42(6):1723-1732, 1996.

[4] Gillés Zémor. On expander codes. IEEE Transactions on Information Theory, 47(2):835-837,
2001.

5-7

