
Carnegie Mellon University Instructor: Venkatesan Guruswami
15-859Y: Coding Theory Term: Fall 2014

PROBLEM SET 3
Due by Monday, November 17

INSTRUCTIONS

• You are allowed to collaborate with up to two other students taking the class in solving problem sets.
But here are some rules concerning such collaboration:

1. You should think about each problem by yourself for at least 30 minutes before commencing
any collaboration.

2. Collaboration is defined as discussion of the lecture material and solution approaches to the
problems. Please note that you are not allowed to share any written material and you must write
up solutions on your own. You must clearly acknowledge your collaborator(s) in the write-up of
your solutions.

3. Of course, you are also more than welcome to also work alone.

• You should not search for solutions on the web. More generally, you should try and solve the problems
without consulting any reference material other than the course notes and what we cover in class. Ask
the instructor for hints or clarifications if this does not seem to work for you on some problems.
However, note that you may use references to brush up on the underlying math skills needed to solve
some of the problems, such as linear algebra, matrix theory, number theory, finite fields, etc.

• Please start work on the problem set early. The problem set has seven problems worth a total of 100
points.

(The notation F[X]≤k stands for polynomials over the field F of degree at most k. We denote [n] =
{1, 2, . . . , n}.)

1. (15 points) We saw in class that the [n, k + 1, n − k]q Reed-Solomon code encoding polynomials in
Fq[X]≤k by their evaluations at n distinct elements a1, a2, . . . , an ∈ Fq can be “list recovered” in the
following sense:

Let ` < n
k .

Given sets Si ⊂ Fq, |Si| ≤ `, for each i ∈ [n], there are at most O(n2) polynomials
f ∈ Fq[X]≤k such that f(ai) ∈ Si for every i ∈ [n], and the list of such polynomials can
be found in polynomial time.

In this exercise, you will show that this result is tight, in the sense that when ` = dnk e, there are
settings where there are super-polynomially many (i.e., nω(1)) polynomials.

Let r be a fixed prime power. Let n = q = rm and k = rm−1
r−1 . Prove that there are at least r2

m

polynomials f ∈ Fq[X]≤k such that f(a) ∈ Fr for every a ∈ Fq. Deduce that the Reed-Solomon list
recovery algorithm cannot be improved to work for ` = dnk e in general.

Hint: For x ∈ Frm , x
rm−1
r−1 always belongs to the subfield Fr (why?). So the polynomials fβ(X) :=

(X+β)
rm−1
r−1 for β ∈ Frm take values in Fr on evaluation points in Frm . Find 2m of these polynomials

that are linearly independent over Fr.

2. (12 points) In the game of 20 questions, an oracle has an arbitrary secret s ∈ {0, 1}k and the aim is
to determine the secret by asking the oracle as few yes/no questions about s as possible. It is easy to
see that k questions are necessary and sufficient. Here we consider a variant where the oracle has two
secrets s1, s2 ∈ {0, 1}k and can adversarially decide to answer each question according to either s1
or s2. That is, for a question f : {0, 1}k → {0, 1}, the oracle may answer with either f(s1) or f(s2).
Here it turns out to be impossible to pin down either of the secrets with certainty, no matter how many
questions we ask, but we can hope to compute a small set S of secrets, of a fixed size independent
of k, such that S ∩ {s1, s2} 6= ∅. (In fact, |S| can be made as small as 2.) This variant of twenty
questions apparently arose from Internet routing algorithms used by Akamai.

(i) Let C be a binary code of block length n and 2k codewords such that (a) every two codewords
of C agree in at least a fraction (1/2 − ε) of positions and (b) C can be efficiently list decoded
from a fraction (1/4+ε) of errors with list size ` independent of k. Show how to solve the above
problem in polynomial time by asking questions based on the code C.

(ii) Briefly describe how to construct a code with the properties spelled out in (i) above, and deduce
that n ≤ poly(k) questions suffice for the above variant of 20 questions. (In fact, n = O(k)
questions suffice, and feel free to show this stronger bound.)

3. (12 points) In lecture we saw that an s-folded Reed-Solomon code where the field element γ ∈ F∗
q

used for folding has order s admits a clean linear-algebraic list decoder for correcting a s
s+1(1 − R)

fraction of errors, where R is the code rate. Unfortunately to bound the list size by a polynomial our
arguments required γ to have large order. In this exercise, you will show that this was for an inherent
reason.

(i) Prove that if the order of γ is r, then there exist some choice of polynomials A0, A1, . . . , As ∈
Fq[X], not all zero, such that there are qk/r polynomials f ∈ Fq[X]≤k satisfying the condition

A0(X) +A1(X)f(X) +A2(X)f(γX) + · · ·+As(X)f(γs−1X) = 0 .

(ii) Let C be a s-folded Reed-Solomon code of length N = (q − 1)/s and rate R that is based on
folding with a γ ∈ F∗

q of order s. Prove that if C is efficiently (ρ, L)-list decodable, then there is
in fact a Reed-Solomon code (no folding needed!) of length N and rate R that is also efficiently
(ρ, L)-list decodable.
(This means that if we get an improvement over the Johnson radius 1−

√
R for a folded RS code

using a small order element for folding, then we will also get an improvement for Reed-Solomon
codes themselves.)

4. (13 points) Let p be a prime and let 1 ≤ k < p. For prime fields Fp andm | (p−1), we can also define
m-folded Reed-Solomon codes based on additive folding, namely the map Fp[X]≤k → (Fmp)(p−1)/m

defined by

f(X) 7→




f(0)
f(1)

...
f(m− 1)

 ,


f(m)
f(m+ 1)

...
f(2m− 1)

 , . . . ,

f(p− 1−m)
f(γn−m+1)

...
f(p− 2)


 . (1)

Prove that if A0, A1, . . . , As ∈ Fp[X] are not all zero, then there are at most ps−1 polynomials
f ∈ Fp[X]≤k that obey the condition

A0(X) +A1(X)f(X) +A2(X)f(X + 1) + · · ·+As(X)f(X + s− 1) = 0 .

(As with multiplicative folding based on a primitive element γ, the above implies that the folded RS
code defined in (1) can be list decoded from an error fraction s

s+1

(
1− mR

m−s+1

)
, for any s, 1 ≤ s ≤

m.)

5. (15 points) For constant k, we will see in lecture a construction of a k-query locally decodable code
encoding n message bits into codewords of length 2O(n1/(k−1)) over an alphabet of size O(1). (Here
we allow the big-Oh to suppress constant factors depending on k, as we are thinking of k as a constant
in this exercise.)

In this exercise, you are asked to give a k-query locally decodable code for n-bit messages with
a better encoding length of 2O(n1/(2k−1)) but over a much bigger alphabet, also of size 2O(n1/(2k−1)).
(This means each message bit can recovered by reading k symbols from the encoding, each consisting
of O(n1/(2k−1)) bits.)

Hint: One approach is to encode the message via a low-degree polynomial as in class, except now use
a degree (2k− 1) polynomial in ≈ n1/(2k−1) variables, and include the evaluations of the polynomial
as well as its first order partial derivatives in the encoding.

6. (6 + 5+ 3 +2 + 2 +2 = 20 points) We have mentioned objects called algebraic-geometric codes, that
generalize Reed-Solomon codes and have some amazing properties, a few times in the course. The
objective of this exercise is to construct one such AG code, and establish its rate vs distance trade-off.

Let p be a prime and q = p2. Consider the equation

Y p + Y = Xp+1 (2)

over Fq.

(a) Prove that there are exactly p3 solutions in Fq × Fq to (2). That is, if S ⊆ F2
q is defined as

S = {(α, β) ∈ F2
q | βp + β = αp+1} (3)

then |S| = p3.

(b) Prove that the polynomial f(X,Y) = Y p + Y −Xp+1 is irreducible over Fq.
(Suggestion: One approach is to use the Eisenstein criterion (feel free to look this up), consid-
ering f(X,Y) as a polynomial in X with coefficients from Fq[Y].)

(c) Let n = p3. Consider the evaluation map ev : Fq[X,Y]→ Fnq defined by

ev(f) = (f(α, β) : (α, β) ∈ S)

where S is the set defined in (3).
Argue that if f 6= 0 and is not divisible by Y p + Y −Xp+1, then ev(f) has Hamming weight at
least n− deg(f)(p+ 1), where deg(f) denotes the total degree of f .
(Hint: You are allowed to use Bézout’s theorem, which states that if f, g ∈ Fq[X,Y] are nonzero
polynomials with no common factors, then they have at most deg(f)deg(g) common zeroes.)

(d) For an integer parameter ` ≥ 1, consider the set F` of bivariate polynomials

F` = {f ∈ Fq[X,Y] | deg(f) ≤ `,degX(f) ≤ p}

where degX(f) denotes the degree of f in X .

Argue that F` is an Fq-linear space of dimension (`+ 1)(p+ 1)− p(p+1)
2 .

(e) Consider the code C ⊆ Fnq for n = p3 defined by

C = {ev(f) | f ∈ F`} .

Prove that C is a linear code with minimum distance at least n− `(p+ 1).

(f) Deduce a construction of an [n, k]q code with distance d ≥ n− k + 1− p(p− 1)/2.
(Remark: Reed-Solomon codes have d = n−k+ 1, whereas these codes are off by p(p− 1)/2
from the Singleton bound. However they are much longer than RS codes, with a block length of
n = q3/2, and the deficiency from the Singleton bound is only o(n).)

7. (13 points) Recent applications in distributed storage of massive amounts of data have motivated the
study of codes where every codeword symbol can be recovered from few other codeword symbols, so
as to enable recovery from the failure of any single node in a distributed system.

More formally, we are interested in codes that produce an n-symbol codeword from k information
symbols and, for any symbol of the codeword, there exist at most t other symbols such that the value
of the symbol can be recovered from them. Here we think of t� n.

(i) Prove that the rate of such a code is at most t
t+1 .

(ii) Prove that the minimum distance of such a code is at most n − k − dkt e + 2. Which classical
coding bound does this generalize?
Suggestion: One approach is to use the fact that if a code C ⊂ Σn has distance d, then n − d
equals the largest size of a subset T ⊆ {1, 2, . . . , n} such that |CT | < |C|, where CT ⊂ ΣT is
the code C projected onto coordinates in T .

