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PROBLEM SET 2
Due by lecture Wednesday, October 22

INSTRUCTIONS

• You are allowed to collaborate with up to two other students taking the class in solving problem sets.
But here are some rules concerning such collaboration:

1. You should think about each problem by yourself for at least 30 minutes before commencing
any collaboration.

2. Collaboration is defined as discussion of the lecture material and solution approaches to the
problems. Please note that you are not allowed to share any written material and you must write
up solutions on your own. You must clearly acknowledge your collaborator(s) in the write-up of
your solutions.

3. Of course, if you prefer, you can also work alone (see the last bullet item for some “credit” for
doing so).

• Solutions typeset in LATEX are encouraged. If this is not possible, please write legibly.

• You should not search for solutions on the web. More generally, try and solve the problems without
consulting any reference material other than the course notes and what we cover in class. However, if
needed you may use references to brush up on the underlying math skills needed to solve some of the
problems, such as linear algebra, matrix theory, number theory, finite fields, etc.

• Please start work on the problem set early. The problem set has seven problems for a total of 120
points, but we will consider your score to be out of 100 (treating any excess score above 100 as bonus
points). Thus, if you prefer, you can just pick a subset of about 100 points to attempt.

1. (15 points) Consider the binary expander code based on an unbalanced bipartite (n,m,D, γ,D(1 −
ε))-expander as defined in lecture (i.e., the code whose parity check matrix is the bipartite adjacency
matrix of the expander) for some ε < 1/20. Recall that in an (n,m,D, γ,D(1− ε))-expander, every
subset S of up to γn nodes on the left has at least D(1− ε)|S| neighbors on the right. In this exercise
you are asked to analyze the following parallel iterative decoder.

For c log n rounds (for a constant c chosen large enough), do the following in parallel for
each variable node: If the variable is in at least 2D/3 unsatisfied checks, flip its value.

Prove that the above algorithm corrects any pattern of γ(1− 3ε)n errors.

2. (20 points) We mentioned the MRRW bound that the rate of binary codes of relative distance 1/2− ε
is at most O(ε2 log(1/ε)). In this problem, you will prove this for the special case of ε-biased codes,
which are binary codes in which every pair of distinct codewords have relative Hamming distance in
the range [1/2− ε, 1/2 + ε] (note such codes have relative distance at least 1/2− ε, but in addition no
two codewords differ in more than (1/2 + ε) fraction of positions).

Consider the following claim:

Claim: Let A be an m × m real symmetric matrix with 1’s on the diagonal, and all off-diagonal
elements at most ε in absolute value. Assume ε ∈ (0, 1/4) and m is sufficiently large. Then,
rank(A) ≥ Ω

(
logm

ε2 log(1/ε)

)
.



(a) Show why the claim implies that an ε-biased code of block length n can have rate at most
O(ε2 log(1/ε)).

(b) Towards proving the above claim, first prove the following fact when the off-diagonal entries are
really small:

Let B be a real symmetric m ×m matrix with 1’s on the diagonal. If all off-diagonal
entries of B are at most 1/

√
m in absolute value, then rank(B) ≥ m/2.

Suggestion: Use the fact that Trace(B) = λ1 + · · · + λm if λi are the eigenvalues of B, and
relate Trace(B2) and Trace(B) via Cauchy-Schwarz.

(c) Prove the claim above using the fact from Part (b).
Hint: Given A, consider the matrix B who entries are t’th powers of the entries of A for some
large t, and argue that rank(B) is at most

(rank(A)+t
t

)
.

3. (20 points) For integers 1 ≤ k ≤ n, call a (multi)set S ⊆ {0, 1}n to be k-wise independent if for
every 1 ≤ i1 < i2 < · · · < ik ≤ n and (a1, a2, . . . , ak) ∈ {0, 1}k

Probx∈S [xi1 = a1 ∧ xi2 = a2 ∧ · · · ∧ xik = ak] =
1

2k

where the probability is over an element x chosen uniformly at random from S. Small sample spaces
of k-wise independent sets are of fundamental importance in derandomization. In this problem, you
will see how codes can be used to construct k-wise independent sets of near-optimal size.

(a) Using BCH codes and Problem 5 of Problem set 1, show how one can construct a 2t-wise
independent subset of {0, 1}n of size at most (n + 1)t when n is of the form 2m − 1, and a
(2t+ 1)-wise independent subset of {0, 1}n of size at most 2nt when n is a power of 2.

(b) Prove an almost matching lower bound, namely any k-wise independent set S ⊆ {0, 1}n satisfies

|S| ≥
b k
2
c∑

i=0

(
n

i

)
. (1)

Suggestion: Find a set of linearly independent vectors in R|S| of cardinality at least the R.H.S
of (1). Specifically, for T ⊆ {1, 2, . . . , n} of size ≤ bk/2c, consider the 〈χT (x)〉x∈S where
χT (x) = (−1)

∑
i∈T xi .

4. (20 points) For the noise model where one bit of the codeword gets erased (and we know which
location got erased), the parity check code gives a simple solution to recover the missing bit, with just
one bit redundancy. Now, consider the harsher model where one bit gets deleted and we don’t know
the position of the missing bit.

(a) Suppose C ⊆ {0, 1}n is a binary code capable of recovering from deletion of one bit. Prove that
|C| ≤ O(2n/n). Thus about log n bits of redundancy are needed in such a code.

(b) For integers n, `, 0 ≤ ` ≤ n, consider the code

C` = {(x1, x2, . . . , xn) ∈ {0, 1}n | x1 + 2x2 + 3x3 + · · ·+ nxn ≡ ` (mod (n+ 1))} ,

where the sum above is over integers.
Prove that each C` is capable of correctly recovering a deleted bit in its codewords. Deduce the
existence of a code of size ≥ 2n/(n+ 1) that can correct a single deletion.



(c) Bonus question: Can you construct an explicit code of size 2n/poly(n) than can recover from
deletion of two bits?

5. (10 points) For this problem, assume the NP-hardness of the following problem (this can be shown
via a reduction from Subset Sum):

Instance: A set S = {α1, . . . , αn} ⊆ F2m , an element β ∈ F2m , and an integer 1 ≤ k < n.

Question: Is there a nonempty subset T ⊆ {1, 2, . . . , n} with |T | = k + 1 such that
∑

i∈T αi = β?

Consider the [n, k] Reed-Solomon code CRS over F2m obtained by evaluating polynomials of degree
at most k − 1 at points in S. Define y ∈ (F2m)n as follows: yi = αk+1

i − βαki for i = 1, 2, . . . , n.

Prove that there is a codeword of CRS at Hamming distance at most n − k − 1 from y if and only if
there is a set T as above of size k + 1 satisfying

∑
i∈T αi = β.

Conclude that finding the nearest codeword in a Reed-Solomon code over exponentially large fields
is NP-hard. (Proving this for polynomial sized fields remains an embarrassing open question.)

6. (15 points) Let Fq be the field with q elements, and let α ∈ Fq. Prove that the polynomial Xq−1 − α
is irreducible over Fq if and only if α is a primitive element of Fq.

7. (20 points) In this problem, we will consider the number-theoretic counterpart of Reed-Solomon
codes. Let 1 ≤ k < n be integers and let p1 < p2 < · · · < pn be n distinct primes. Denote
K =

∏k
i=1 pi and N =

∏n
i=1 pi. The notation ZM stands for integers modulo M , i.e., the set

{0, 1, . . . ,M − 1}. Consider the Chinese Remainder code defined by the encoding map E : ZK →
Zp1 × Zp2 × · · · × Zpn defined by:

E(m) = (m mod p1, m mod p2, · · · , m mod pn) .

(Note that this is not a code in the usual sense we have been studying since the symbols at different
positions belong to different alphabets. Still notions such as distance of this code make sense and are
studied in the questions below.)

(a) Suppose that m1 6= m2. For 1 ≤ i ≤ n, define the indicator variable bi = 1 if E(m1)i 6=
E(m2)i and bi = 0 otherwise. Prove that

∏n
i=1 p

bi
i > N/K.

Use the above to deduce that whenm1 6= m2, the encodings E(m1) and E(m2) differ in at least
n− k + 1 locations.

(b) This exercise examines how the idea behind the Welch-Berlekamp decoder can be used to decode
these codes
Suppose r = (r1, r2, . . . , rn) is the received word where ri ∈ Zpi . By Part (a), we know there
can be at most one m ∈ ZK such that∏

i:E(m)i 6=ri

pbii ≤
√
N/K . (2)

(Be sure you see why this is the case.) The exercises below develop a method to find the unique
such m, assuming one exists.
In what follows, let r be the unique integer in ZN such that r mod pi = ri for every i =
1, 2, . . . , n (note that the Chinese Remainder theorem guarantees that there is a unique such r).

i. Assuming anm satisfying (2) exists, prove that there exist integers y, z with 0 ≤ y <
√
NK

and 1 ≤ z ≤
√
N/K such that y ≡ rz (mod N).



ii. Prove also that if y, z are any integers satisfying the above conditions, then in factm = y/z.

(Remark: A pair of integers (y, z) satisfying above can be found by solving the integer linear
program with integer variables y, z, t and linear constraints: 0 < z ≤

√
N/K; and 0 ≤ z · r −

t · N <
√
NK. This is an integer program in a fixed number of dimensions and can be solved

in polynomial time. Faster, easier methods are also known for this special problem.)

(c) Instead of condition (2) what if we want to decode under the more natural condition for Ham-
ming metric, that is |{i : E(m)i 6= ri}| ≤ n−k

2 ? Show how this can be done by calling the
above decoder many times, by erasing the last i symbols for each choice of 1 ≤ i ≤ n.


