Carnegie Mellon University Instructor: Venkatesan Guruswami
15-859Y: Coding Theory Term: Fall 2014

PROBLEM SET 1
Due by Monday, September 29

INSTRUCTIONS

e You are allowed to collaborate with up to two other students taking the class in solving problem sets.
But here are some rules concerning such collaboration:

1. You should think about each problem by yourself for at least 30 minutes before commencing
any collaboration.

2. Collaboration is defined as discussion of the lecture material and solution approaches to the
problems. Please note that you are not allowed to share any written material and you must write
up solutions on your own. You must clearly acknowledge your collaborator(s) in the write-up of
your solutions.

3. Of course, if you prefer, you can also work alone (see the last bullet item for some “credit” for
doing so).

e Solutions typeset in ISEX are encouraged.

e You should not search for solutions on the web. More generally, you should try and solve the problems
without consulting any reference material other than the course notes and what we cover in class. If
for some reason you feel the need to consult some source, please acknowledge the source and try to
articulate the difficulty you couldn’t overcome before consulting the source and how it helped you
overcome that difficulty. Alternatively, before turning to any such material, we encourage you to ask
the instructor for hints or clarifications.

e Please start work on the problem set early. The problem set has six problems and is worth a total of
100 points. As a rough estimate, scoring around 85% of the points, or 75% of the points if you work
by yourself, might correspond to an A level performance on this problem set.

1. (15 points) There are n people in a room, each of whom is given a black/white hat chosen uniformly
at random (and independent of the choices of all other people). Each person can see the hat color of
all other people, but not their own. Each person is asked if (s)he wishes to guess their own hat color.
They can either guess, or abstain. Each person makes their choice without knowledge of what the
other people are doing. They either win collectively, or lose collectively. They win if all the people
who don’t abstain guess their hat color correctly and at least one person does not abstain. They lose
if all people abstain, or if some person guesses their color incorrectly. It is trivial for the n people to
win the game with probability at least % Your goal below is to come up with a strategy that will allow
the n people to win with optimal probability (when n + 1 is a power of 2).

(a) Lets say that a directed graph G is a subgraph of the n-dimensional hypercube if its vertex set is
{0,1}"™ and if u — v is an edge in G, then u and v differ in at most one coordinate. Let K (G)
be the number of vertices of G with in-degree at least one, and out-degree zero. Show that the
probability of winning the hat problem equals the maximum, over directed subgraphs G of the
n-dimensional hypercube, of K (G)/2".



(b) Using the fact that the out-degree of any vertex is at most n, show that K'(G)/2" is at most ;.2
for any directed subgraph GG of the n-dimensional hypercube.

(c) Show thatif n = 2" — 1, then there exists a directed subgraph G of the n-dimensional hypercube
with K(G)/2" = 1.
2. 1424344+ 5 = 15 points) In this problem you will need to come up with some ways of
constructing new codes from existing ones, and prove the following statements (recall that [n, k, d],
stands for an length n linear code over I, of dimension k):

(a) If there exists an [n, k, d], code (d > 2), then there also exists an [n — 1, k,d’ > d — 1], code.
(b) If there exists an [n, k, d]2 code with d odd, then there also exists an [n + 1, k, d + 1] code.

(c) If there exists an [n, k, d], code, then there also exists an [n —d, k —1,d’ > [d/q]], code. (Hint:
Drop the d positions corresponding to the support of a minimum weight codeword.)

(d) If there exists an [n, k1, d1]4 code and an [n, k2, da], code, then there also exists a
[27’L ki + ko, min(2d1, dg)] code.

(e) If there exists an [n, k, d]s code (0 < d < n/2), then for every m > 1, there also exists an
)™

n™, k, 020 7(" 2d } code.

(Hint: Given an n x k generator matrix GG for the code, consider the n™ x k generator matrix
whose (i1, 72, . .., iy, ) th row is the sum of rows i1, i, . . . , i,, of G. It is also more slick to use a
+1 notation for binary alphabet via the translation b — (—1)° from {0, 1} to {1, —1}, and track
the bias E;cqq . vy [z;] of a string 2 € {—1, 1}V as a proxy for its relative Hamming weight.)

3. (15 points) Let C be an [n1, k1, d1]2 binary linear code, and C5 an [ng, k2, do] binary linear code. Let
C C IFSI “"2 be the subset of n; X ny matrices whose columns belong to C and whose rows belong
to Co (view elements of C' as binary vectors of length nins in some canonical way).

Prove that C'is an [n1ng, k1 k2, d1d2]2 binary linear code.

4. 34+ 7+ 5+ 10 = 25 points) For 7 € [0,1/2], define a binary code C' of block length n to be
T-covering if every r € {0, 1}" is within Hamming distance 7n from some codeword of C'

(a) Prove that the rate of a 7-covering code must be at least 1 — h(7).

(b) Prove that a random binary code of size n?3- 2(1=h(m))n jg T-covering with probability 1 — 28 (n),
thereby concluding the existence of 7-covering codes of rate 1 — h(7) + o(1).

(c) Prove the following characterization for when a binary linear code is 7-covering:
If H is a parity check matrix for an [n, k]2 linear code C, then C' is 7-covering if and only if for
every s € ]Fg_k , there is a set of at most 7n columns of H which sum up to s (over Fy).

(d) Prove that there exist 7-covering binary linear codes C of rate 1 — h(7) + o(1).
(Hint: (a) First prove that a random linear code of rate 1 —h(7)+0(1) 7-covers most of the points
in IF}y. This step will rely on pairwise independence of the nonzero codewords in a random linear
code, and Chebyshev’s tail inequality. (b) Then prove that some O(logn) translates (cosets) of
such a linear code suffice to T-cover the whole space.)

5. (15 points) A set of vectors S C [y is called t-wise independent if for every set of positions I with
|I| = t, the set S projected to I has each of the vectors in IE‘Z appear the same number of times. (In
other words, if one picks a vector (s1, ..., ;) from S at random then any of the ¢ random variables
are uniformly and independently random over F,).

Prove that any linear code C' whose dual C* has distance d* is (d*+ — 1)-wise independent.



6. (15 points) Let C be [n, ko linear code with w; denoting the number of codewords of C' of Hamming
weight j, for 0 < j < n. (Sowy = 1 and 377 _jw; = 2k) Let W(X) = > 70 w; X7 be the
weight-enumerator polynomial of C.

Suppose C'is used for transmission on a discrete memoryless channel (X = {0, 1}, Y, IT) with max-
imum likelihood decoding at the receiver. That is, if y € V" is received, the decoding rule outputs a
codeword ¢ € C' for which p(y|c) =[]\, II(yi|c;) is maximum.

Prove that regardless of which codeword was transmitted, the resulting error probability Pe, is at

most Pery < W(() — 1 where ¢ = 3° -y, /I1(y|0)II(y[1).

For BSC,, using ( = 1/4p(1 — p) and the above bound on P, conclude the existence of linear
codes of positive rate and exponentially small error probability for communication on the BSC,, for
every fixed p < 1/2.



