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1 Introduction

1.1 History and Motivation

The unique games conjecture has been a very influential conjecture with many striking and profound

implications. Originally proposed by Khot [Kho02], a positive resolution to the conjecture, would

imply that many natural and important questions can be approximated by a basic SDP algorithm

(see [Rag08]) and that no algorithm can do better (unless P = NP ). Many important practical

problems such as MAX-Cut, Kernel Clustering, Min Vertex Cover all fall under this category

(see [KKMO07, KR08, RS09])

One peculiarity about this conjecture is that many of the implications of this conjecture do not

extend both ways. In particular, it could be true that all the implications from UGC are still true,

however the conjecture itself is false. This was a stumbling block for a while, as it was unclear what a

refutation of the conjecture would imply. Furthermore, expanders which form the “hard” instances

for many problems turned out to be easy for the Unique Games Conjecture (see [AKK+08]).

The next observation was made by Raghvendra and Steurer (see [RS10]) who showed that the

following natural combinatorial problem reduced to Unique Games. Hence, a refutation of the

unique games conjecture would give improved algorithms for the small set expansion problem.

Recall, the expansion of a set S ⊆ V is the parameter Φ(S) = E(S,S̄)
d|S| .

Conjecture 1.1 (Small Set Expansion Conjecture) For any ε > 0, there exists a δ ∈ (0, 1)

so that given a d-regular graph G = (V,E), it is NP-Hard to

1. Accept if there exists S ⊆ V with |S| ≤ δn have φ(S) ≤ ε.

2. Reject if all sets S ⊆ V with |S| ≤ δn have φ(S) ≥ 1− ε.
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The rejection instance of this problem, is usually called a (δ, ε)-small set expander. Formally,

Definition 1.2 A graph G = (V,E) is called a (δ, ε)-small set expander if for any S ⊆ V with

|S| ≤ δn we have Φ(S) ≥ 1− ε.

Thus, while unique games on expanders is easy, their status on small-set expanders is unknown

(i.e. no polynomial time algorithm is known).

Arora, Barak, Steurer (see [ABS10]) utilized this connection to solve the unique games problem in

sub-exponential time. Their chief observation was the fact that that any graph with which is an

(δ, ε) small set expander can have only nε eigenvalues greater than 1− ε (henceforth referred to as

“top” eigenvalues). An intuitive reason for this is note that the large eigenvalues would correspond

to sets that do not expand. This is the famous Cheeger’s inequality (see [Alo86]). A large number

of eigenvalues would imply that one can find many eigenvectors which are orthogonal to each other.

They show that this is not possible unless one of those sets is very small. Their algorithm than

searches for all subsets whose vector is close to the space spanned by the “top” eigenvectors.

The best known lower-bound for the number of “top” eigenvalues stemmed from the noisy hy-

percube which achieved log(n) eigenvalues. Showing that this was the optimal bound would have

meant a tantalizing possibility as this would represent a quasi-polynomial time algorithm for the

SSEproblem. This hope was crushed by Barak et al. in their paper [BGH+12] who showed the

existence of small set expanders with a large number of “top” eigenvalues. In this note, we will

examine this result in detail.

1.2 Other Results

The paper of Barak et al. also shows that their construction can be viewed as an efficient alternative

for the long code (which is ubiquitous in UG-hardness reductions). Their paper shows that many

of the properties which hold for the long-code such as the invariance principle and the “majority

is stablest” theorem also hold for the new short code.

This allows them to that the Max Cut reduction can be reduced to an n · qpoly(k) instance of the

usual n2O(k) that comes from the long code reduction. They also improve existing Sherali Adams

+SDP for the unique games problem from poly(log(log(n))) rounds to exp(poly(log(log(n))))

rounds. While these results are important and interesting in their own right, we will only focus on

the connection small set expanders from locally testable codes.

2 Locally Testable Codes

A locally testable code (LTC) is any code which has an algorithm that given a string x, can

determine if x is a valid codeword or very far from a code by querying a small number of locations

in x. These tests are probabilistic and we only require them to be always accept actual codewords
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in C and reject elements that are “far away” from C with high probability. We make this precise

in the definition below.

Definition 2.1 Let C be a [N,K,D]2 linear code that is a K-dimensional subspace of Fn2 . We say

that C is an LTC if there exists a verifier which makes q queries to a given word x and accepts with

probability 1 if x ∈ C and rejects with probability ≥ s(k) all words x with distance at least k.

Definition 2.2 A canonical tester for a code C is a distribution T over C⊥ such that the tester ac-

cepts if Prq∼T [q · x = 0] and rejects otherwise. For an x ∈ Fn2 , we say that sT (x) := Prq∼T [q · x = 1]

We define the soundness curve of this tester as

sT (k) := min
α∈Fn2

∆(α,C)≥k

sT (α)

It was shown in [BSHR05] that every verifier for a linear code can be converted into a canonical

tester. For the remainder, we will assume that every verifier will be of this form.

LTCs have received a lot of attention in the computer science literature. They are considered a

“combinatorial counterparts” to the celebrated PCP theorem. Two distinct regimes have been well

studied. In this note, we are particularly interested in the high rate regime. Our codes will have

a constant distance, and high rate; forcing the dual code to have a small number of words. We

say a tester is ε-smooth, if Prq∼T [qi = 1] = ε, (i.e. the coordinates are queried in an unbiased

fashion.) A tester is said to be ε-2-smooth if in addition, for any two distinct coordinates i 6= j,

Prq∼T [qi 6= qj = 1] = ε2.

Lemma 2.3 If T is a ε-smooth canonical tester, then sT (α) ≤ ∆(α, C)ε for all α ∈ Fn2 . Further-

more, if T is ε-2-smooth, then sT (α) ≥ (1− γ) ·∆(α,C)ε where ∆(α,C)ε ≤ γ.

Proof: Let x ∈ Fn2 and k = ∆(x,C). By renaming the coordinates, we can say that Pr probability of rejection =

sT (x) ≤ Prq∼T [q1 = 1] + Prq∼T [q2 = 1] + · · · + Prq∼T [qk = 1]. By the ε-smoothness of the tester

T , one can conclude that sT (x) ≤ kε.

Using principle of inclusion-exclusion we can say that sT (x) ≥
∑n

i=0 Prq∼T [qi = 1]−
∑

i,j Prq∼T [qi = qj = 1].

This is at least kε− k2ε2 ≥ kε(1− kε). �

3 Constructing Small Set Expanders

We define a graph CayC = (C⊥, T ) whose vertex set consists of all x ∈ C⊥. We connect x to x+ q

and assign it weight Pr [q ∼ T ] for all q ∼ T . Due to the special structure of this graph, we can

calculate the eigenvectors exactly and they will correspond to characters (a fact that is true for all

Cayley graphs constructed from abelian groups).

The central observation is to notice that the eigenvalues of this graph are related to the soundness

of the canonical tester T .
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3.1 Cayley Graphs

Lemma 3.1 The eigenvectors of CayC are denoted by χx(v) = −1〈x,v〉. Furthermore, two eigen-

vectors χx and χy are the same iff x + y ∈ C. Lastly, the eigenvalue λx associated with χx is

λx = 1− 2sT (x).

Proof: Firstly, we will show that χx (as defined above) is an eigenvector. To show this we simply

multiply χx by the adjacency matrix of CayRM (denoted as A).

(A · χx)(v)

=
∑
q

Pr [q ∼ T ] · χx(v + q)

= Eq∼T [χx(q + v)]

= Eq∼T [χx(q) · χx(v)]

= Eq∼T [χx(q)]χx(v)

= Eq∼T [−1〈x,q〉]χx(v)

Observing that E[−1〈x,q〉] = 1− 2Pr [〈x, q〉 = 1].

=
(
1− 2Prq∼T [〈x, q〉 = 1]

)
χx(v)

=
(
1− 2sT (x)

)
χx(v)

From the previous calculation, one can deduce that χx is an eigenvector and has eigenvalue λx =

1− 2sT (x).

Suppose we have that χx and χy be the same value. Then note that −1〈α,x〉 = −1〈α,y〉 for all

α ∈ C⊥. This implies that 〈α, x− y〉 = 0 for all α ∈ C⊥. Since this is the exact characterization of

the dual, we can say that x− y ∈ C. Hence for each coset Fn2/C, we generate a unique eigenvector.

�

Since there is one eigenvector for each coset, we will choose the minimum weight (non-zero positions)

to be the unique representative for this coset.

3.2 Large Number of “Top” Eigenvalues

If the original code has distance at least 1, then note that any two characters corresponding to χx
will be different. We will now show that they also correspond to vectors that have large eigenvalues.

Lemma 3.2 There are at least n
2 eigenvectors whose eigenvalues are greater than 1− 4 · ε.
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Proof: Consider the characteristics that correspond to the dictators or ei ∈ Fn2 . In particular,

λi = 1− 2Prq∼T [qi = 1]. Note that we know that we have a ε-smooth tester which means

n∑
i=1

Prq∼T [qi = 1] ≤ εn

By Markov’s inequality, we can say that at least n
2 of these will have eigenvalue at most Prq∼T [qi = 1] ≤

2ε. Hence, proving the claim. �

3.3 Expansion

Expansion of this graph stems from the hypercontractivity of the eigenspace spanned by the top

eigenvectors. In an intuitive sense, hypercontractivity is a bound on the 4-norm with respect to

the 2-norm. The main idea is that if a function is very spiky or concentrated on a few co-ordinates,

then its 4-norm is much higher than its 2-norm. However, if a function has a subspace where the

4-norm is a constant factor away from 2 norm, it must be fairly spread out. In other words, its

support cannot be very sparse. It is important to understand that these values only make sense

as the size of the subspace grows to infinity and the hypercontractivityj constant is independent of

the size of the subspace.

The second connection is that given any small set expander S ⊆ V , its indicator vector will be

close to the top eigenspace. This is by a higher order analogue of Cheeger’s inequality, we know

that every set with small expansion must have a large eigenvalue. However, if the top eigenspace is

hypercontractive, then the indicator vector of any small set cannot be in it. Hence, we can conclude

that the small sets will expand. We will make these arguments precise below:

Lemma 3.3 For every vertex subset S ⊆ C⊥ for the graph (C⊥, T ), and every k < D
5 we have

Φ(S) ≥ 2sT (k)− 3kµ(S)
1
2 .

Proof: Consider the set of cosets whose eigenvectors have minimum weight at most k where we

will pick k < D
4 . Given any set S let v be the indicator vector of this set and let µ(S) be the size

of this set. We know that φ(S) = 1− Prq∼T [(x+ q) ∈ S | x ∈ S]. Therefore we say that

µ(S)(1− Φ(S))

= Ex∈S,y∈N(S)[v(x)v(y)]

= 〈v,Av〉

Noting that v can be written as v =
∑

α v̂αχα and the fact that χx are orthonormal vectors

=
∑

α∈Fn2 /C

λαv̂
2
α
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=
∑

α∈Fn2 /C
|α|≤k

λαv̂
2
α +

∑
α∈Fn2 /C
|α|>k

λαv̂
2
α

Noting that the 1− 2sT (k) is monotonic and bounded by 1

≤
∑

α∈Fn2 /C
|α|≤k

v̂2
α + (1− 2sT (k))‖v‖22

Rewriting this, we get that φ(S) ≥ 2sT (k)− 1
µ(S)

∥∥v≤k∥∥2

2
. Hence any bound on

∥∥v≤k∥∥2

2
would give

us a lower bound for the expansion of any set S. Let V ≤k be the space spanned by χα where

|α| ≤ k and define V ≤kp→q := maxx
‖PV≤kx‖q
‖x‖p

.

Using this new definition, we can bound
∥∥v≤k∥∥2

2
≤ (V ≤k4/3→2)2‖v‖24/3 ≤ (V ≤k4/3→2)2µ(S)

3
2 . Finally, we

use the well known fact in boolean analysis that for any subspace R we have that R4/3→2 ≤ R2→4.

All that remains is to bound V ≤k2→4.

Let v be any arbitrary vector and let v̂α be its Fourier coefficients. Define the function g : {0, 1}n →
R as

g :=
∑

α∈Fn2 /C
|α|≤k

v̂αχα

Since the original code C had distance D, we know that the dual code is D − 1-wise independent.

Since k < D/5, we know that Ex∼{0,1}n [g(x)4]
1
4 = Ex∼C⊥ [g(x)]

1
4 =

∥∥v≤k∥∥
4
. By the hypercontractive

inequality applied to g, we can now say that∥∥∥v≤k∥∥∥
4

= Ex∼{0,1}n [g(x)4]
1
4

≤
√

3
kEx∼{0,1}n [g(x)2]

1
2

≤
√

3
k
∥∥∥v≤k∥∥∥

2

≤
√

3
k‖v‖2

Thus we can conclude that (V ≤k2→4)2 ≤ 3k. Substituting this into the original bound, we get the

required statement. �

3.4 Reed Muller Codes and Continuous Random Works

So far, we have shown a mechanism that given a code and a canonical tester with small query

complexity and with good soundness parameters, produces graphs that are small set expanders yet

contain a large number of “top” eigenvalues.
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In this section, we will instantiate this with Reed Muller (RM) codes , and fine tune the parameters.

Our RM code C will consist of all n bit polynomials with degree at most n − d + 1 and distance

2d+1. Note that the dual code is also a RM code with max degree d. Hence we note that the C⊥

has
∑d

i=0

(
n
i

)
codes. The graph will consist of CayRM = (RMn,d, T ) where the tester queries words

which are products of d-affine variables.

In [BKS+10], show that there exists an efficient tester which has a good soundness curve. Their

tester samples a minimum weight code with equal probability. It is known that minimum weight

codes correspond to products of d-affine variables. These code words have weight 2n−d. The number

of large eigenvalues is related to the weight of these words, we can say that ε = 2−d. The following

theorem outlines the soundness parameters of the graph.

Theorem 3.4 [?] There exists a constant ν0 such that for all n, d, k, k < ν0 · 2d the tester TRM
which queries only εN positions and has soundness s(k) ≥ k

2 2−d.

Substituting theorem 3.4 into lemma 3.3, and letting k = ν0
2 2d (note that assuming ν0 < 1

2 ,

this also satisfies the requirement that k < D
5 ), we see that the expansion of all sets is at least

Φ(S) ≥ ν
2 − O( 1

n). Now we can “power this up” to get a graph with near perfect expansion by

taking a random walk. One can run into potentially tricky issues regarding the number of steps to

take and other discretization errors. To get around this, the authors propose to take a continuous

random walk and reweigh the graph edges accordingly.

Lemma 3.5 Given a graph G with adjacency matrix AG, with eigenvectors x1, . . . , xn and eigenval-

ues u1, . . . un. The eigenvectors of the matrix et·A are x1, . . . , xn and have eigenvalues etµ1 , . . . , etµn.

Proof: Expanding etA as I + tA+ t2A2..., and noting that all powers of A commute (hence share

common eigenbasis), we note that they must have the same eigenvectors. A simple calculation

shows that the associated eigenvalues are etµi . �

Let ACayRM denote the adjacency matrix of CayRM . By CayRM (t) we denote the graph formed

by the adjacency matrix e−t(I−ACayRM
). The following technical lemma is useful in analyzing the

precise structure of the graph and reasoning about the eigenvalue profile. We omit the proof as it

is presented clearly in [BGH+12](see lemma 4.13).

Lemma 3.6 Let t = ε · 2d+1 for ε > 0 and ρ = e−ε. Let λα denote the eigenvalues of CayRM (t)

then there exist absolute constants µ0, δ0, such that if deg(α) = k then λα ≤ max
(
ρk/2, ρµ02d

)
Theorem 3.7 For any ε, η > 0, there exists a graph G with (2n)

1
d eigenvalues larger than 1 − 4ε

where d = log(1/ε) + log(log(1/η)) + O(1) and where every set S ⊆ G and has size µ(S) ≤ δ has

expansion Φ(S) ≥ 1− η − 3O(
log(1/η)

ε
)
√
µ(S).

Proof: Fix l = c1
ε log( 1

ν ) so that

exp(−ε l
2

) = η (1)
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Next, we fix d = log(l) +O(1) so that it satisfies

l ≤ min(µ02d+1, 2d/5) (2)

where µ0 is from the previous lemma.

Let CayRM (t) be the graph at time t = ε2d+1 and consider the eigenvalues associated with the

eigenvectors α whose minimum weight 1.Therefore, it has eigenvalue sT (1) ≥ 2−d−1. Here the

corresponding eigenvalue in CayRM (t) is

λα = exp(−t(1− µα))

≥ exp(−t(1− (1− 2(2−d−1))))

≥ exp(−t(2−d))
≥ exp(−2ε)

≥ 1− 2ε

Thus we can conclude there are n eigenvectors with eigenvalue at least 1−2ε. Since we have about

O(nd) vertices and there are about n/2 eigenvectors whose eigenvalues are high. We can conclude

that there are about 2log(|G|)
1
d eigenvalues larger than 1− 2ε.

We note that hypercontractivity follows as the eigenvectors for CayRM (t) are the same as CayRM .

We note that the proof follows verbatim and hence we can conclude that the space formed by

the eigenvectors of weight l satisfy V ≤l2→4 ≤ 3l. By applying Lemma 3.6, we can say that if the

eigenvalues of all values are bounded by exp−ε l2 ≤ η. Hence, we can say that for all sets we have

φ(S) ≥ 1− η − 3
c1
ε

log( 1
η

)√
µ(S). �

4 The Converse and Open Problems

In a follow up work by Gopalan, Vadhan, Zhou [GVZ14], the authors show that there is a converse

relationship to the above construction. In particular, the previous construction demonstrated a

method of generating Cayley graphs whose eigenvalues are similar to the boolean hypercube from

locally testable codes. They complement this result by showing that a Cayley graph with some

spectral properties can produce a locally testable code with good soundness and smoothness.

Let us say that a locally testable code has soundness δ if Prq∼T [〈α, q〉 = 1] ≥ δ∆(r, C).

Note that given any Cayley Graph (A = Fh2 ,D) where D is a distribution on the A. Let b ∈ A∗

where A∗ is the set of linear functions of the form A → F2. Then the characters of graph are

defined by χb(α) = −1b(α) for every α ∈ A and b ∈ A∗.

Definition 4.1 Given a cayley graph (A,D) be a Cayley graph on the group A = Fh2 . Let µ, ξ ∈
[0, 1] and d ∈ [n]. Let B∗ = b1, . . . , bn be a set of d-wise independent set of generators for A∗ of

cardinality n. We say that B∗ is a (µ, ξ) spectrum generator if satisfies the following properties:
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• Large Eigenvalues. λb ≥ 1− µ for all b ∈ B∗.

• Spectral Decay. For a ∈ A∗, λa ≤ 1− ξ · rankB∗(a).

Theorem 4.2 Let Cay(A = Fh2 ,D) be a Cayley graph and let B∗ = {b1, . . . , bn} be a (µ, ξ)-spectrum

generator for it. Then we can construct a C = [n, n−h, d]2 linear code and D can be used to generate

a µ/2-smooth tester and soundness ξ/2.

This work shows that there is a natural equivalence between Cayley graphs that are small set

expanders and locally testable codes with good soundness and smoothness properties.

While this work closes the bound between small-set expanders with many top eigenvalues, there is

still a gap. Closing this gap would improve the current understanding on algorithmic challenges to

solving the Unique Games Conjecture.
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