Repeated Communication and Ramsey Graphs Noga Alon and Alon Orlitsky

Presenters: Vijay Bhattiprolu and David Wajc

December 5, 2014

Table of contents

• Graph Theoretic Definitions

2 Channel Coding

- Single Use
- Multiple Use Gap in Capacity

3 Dual-Source Coding

- Definition
- Repeated Use and Arbitrarily Large Gap

Graph Theoretic Definitions

Preliminaries

1 Preliminaries

• Graph Theoretic Definitions

2 Channel Coding

- Single Use
- Multiple Use Gap in Capacity

3 Dual-Source Coding

- Definition
- Repeated Use and Arbitrarily Large Gap

Graph Theoretic Definitions

Graph Theoretic Notation

Given a graph G = (V, E), we recall the following notation.

- $\alpha(G)$ G's independence number.
- $\omega(G)$ G's clique number.
- $\chi(G)$ G's chromatic number.

Graph Theoretic Definitions

Graph Products

Definition (AND Product)

Given graphs $G_1 = (V_1, E_1)$, $G_2 = (V_2, E_2)$, their AND product, $G_1 \wedge G_2$, is a graph with vertex set $V_1 \times V_2$ and edges given by $(u_1, u_2) \sim (v_1, v_2) \iff \forall i \in [2], u_i = v_i \text{ or } u_i \sim v_i \text{ in } E_i.$

Graph Theoretic Definitions

Graph Products

Definition (AND Product)

Given graphs $G_1 = (V_1, E_1)$, $G_2 = (V_2, E_2)$, their AND product, $G_1 \wedge G_2$, is a graph with vertex set $V_1 \times V_2$ and edges given by $(u_1, u_2) \sim (v_1, v_2) \iff \forall i \in [2], u_i = v_i \text{ or } u_i \sim v_i \text{ in } E_i.$

Graph Theoretic Definitions

Graph Products

Definition (AND Product)

Given graphs $G_1 = (V_1, E_1)$, $G_2 = (V_2, E_2)$, their AND product, $G_1 \wedge G_2$, is a graph with vertex set $V_1 \times V_2$ and edges given by $(u_1, u_2) \sim (v_1, v_2) \iff \forall i \in [2], u_i = v_i \text{ or } u_i \sim v_i \text{ in } E_i.$

Definition (OR Product)

Given graphs $G_1 = (V_1, E_1)$, $G_2 = (V_2, E_2)$, their OR product, $G_1 \lor G_2$, is a graph with vertex set $V_1 \times V_2$ and edges given by $(u_1, u_2) \sim (v_1, v_2) \iff \exists i \in [2], u_i \neq v_i \text{ and } u_i \sim v_i \text{ in } E_i$

Graph Theoretic Definitions

Graph Products

Definition (AND Product)

Given graphs $G_1 = (V_1, E_1)$, $G_2 = (V_2, E_2)$, their AND product, $G_1 \wedge G_2$, is a graph with vertex set $V_1 \times V_2$ and edges given by $(u_1, u_2) \sim (v_1, v_2) \iff \forall i \in [2], u_i = v_i \text{ or } u_i \sim v_i \text{ in } E_i.$

Definition (OR Product)

Given graphs $G_1 = (V_1, E_1)$, $G_2 = (V_2, E_2)$, their OR product, $G_1 \lor G_2$, is a graph with vertex set $V_1 \times V_2$ and edges given by $(u_1, u_2) \sim (v_1, v_2) \iff \exists i \in [2], u_i \neq v_i \text{ and } u_i \sim v_i \text{ in } E_i$

• Note:
$$\overline{G_1} \wedge \cdots \wedge \overline{G_n} = \overline{G_1 \vee \cdots \vee G_n}$$
.

Graph Theoretic Definitions

Graph Products

Definition (AND Product)

Given graphs $G_1 = (V_1, E_1)$, $G_2 = (V_2, E_2)$, their AND product, $G_1 \wedge G_2$, is a graph with vertex set $V_1 \times V_2$ and edges given by $(u_1, u_2) \sim (v_1, v_2) \iff \forall i \in [2], u_i = v_i \text{ or } u_i \sim v_i \text{ in } E_i.$

Definition (OR Product)

Given graphs $G_1 = (V_1, E_1)$, $G_2 = (V_2, E_2)$, their OR product, $G_1 \lor G_2$, is a graph with vertex set $V_1 \times V_2$ and edges given by $(u_1, u_2) \sim (v_1, v_2) \iff \exists i \in [2], u_i \neq v_i \text{ and } u_i \sim v_i \text{ in } E_i$

• Note:
$$\overline{G_1} \land \dots \land \overline{G_n} = \overline{G_1 \lor \dots \lor G_n}$$
.
• We abbreviate $G^{\land n} \triangleq (\overbrace{G \land \dots \land G}^n)$ and $G^{\lor n} \triangleq (\overbrace{G \lor \dots \lor G}^n)$.

Graph Theoretic Definitions

Ramsey Numbers

Definition (Ramsey Numbers)

The Ramsey Number $r_n(l_1, l_2, ..., l_n)$ is the maximum r such that there exists a coloring with n colors of the edges of the complete graph on r vertices, K_r , such that every obtained *i*-monochromatic clique has size at most l_i .

Graph Theoretic Definitions

Ramsey Numbers

Definition (Ramsey Numbers)

The Ramsey Number $r_n(l_1, l_2, ..., l_n)$ is the maximum r such that there exists a coloring with n colors of the edges of the complete graph on r vertices, K_r , such that every obtained *i*-monochromatic clique has size at most l_i .

We abbreviate $r_n(l) \triangleq r_n(l, \ldots, l)$.

Graph Theoretic Definitions

Ramsey Numbers

Definition (Ramsey Numbers)

The Ramsey Number $r_n(l_1, l_2, ..., l_n)$ is the maximum r such that there exists a coloring with n colors of the edges of the complete graph on r vertices, K_r , such that every obtained *i*-monochromatic clique has size at most l_i .

We abbreviate $r_n(l) \triangleq r_n(l, \ldots, l)$.

Examples:

• $r_2(2) = 5$.

Graph Theoretic Definitions

Ramsey Numbers

Definition (Ramsey Numbers)

The Ramsey Number $r_n(l_1, l_2, ..., l_n)$ is the maximum r such that there exists a coloring with n colors of the edges of the complete graph on r vertices, K_r , such that every obtained *i*-monochromatic clique has size at most l_i .

We abbreviate $r_n(l) \triangleq r_n(l, \ldots, l)$.

•
$$r_2(2) = 5$$
.

Graph Theoretic Definitions

Ramsey Numbers

Definition (Ramsey Numbers)

The Ramsey Number $r_n(l_1, l_2, ..., l_n)$ is the maximum r such that there exists a coloring with n colors of the edges of the complete graph on r vertices, K_r , such that every obtained *i*-monochromatic clique has size at most l_i .

We abbreviate $r_n(l) \triangleq r_n(l, \ldots, l)$.

- $r_2(2) = 5$.
- $r_2(3) = 17$.

Graph Theoretic Definitions

Ramsey Numbers

Definition (Ramsey Numbers)

The Ramsey Number $r_n(l_1, l_2, ..., l_n)$ is the maximum r such that there exists a coloring with n colors of the edges of the complete graph on r vertices, K_r , such that every obtained *i*-monochromatic clique has size at most l_i .

We abbreviate $r_n(l) \triangleq r_n(l, \ldots, l)$.

- $r_2(2) = 5$.
- $r_2(3) = 17$.
- Generally, $\sqrt{2}^l \leq r_2(l) \leq 4^l$.

Single Use Multiple Use - Gap in Capacity

Channel Coding

Preliminaries

• Graph Theoretic Definitions

2 Channel Coding

- Single Use
- Multiple Use Gap in Capacity

3 Dual-Source Coding

- Definition
- Repeated Use and Arbitrarily Large Gap

Single Use Multiple Use - Gap in Capacity

Definition (Channel Coding [Shannon '56])

A channel C is given by an input set \mathcal{X} and output set \mathcal{Y} , as well as fan-out sets S_x for every $x \in \mathcal{X}$. When a sender sends an input $x \in \mathcal{X}$ the receiver receives some $y \in S_x \subseteq \mathcal{Y}$.

Single Use Multiple Use - Gap in Capacity

Definition (Channel Coding [Shannon '56])

A channel C is given by an input set \mathcal{X} and output set \mathcal{Y} , as well as fan-out sets S_x for every $x \in \mathcal{X}$. When a sender sends an input $x \in \mathcal{X}$ the receiver receives some $y \in S_x \subseteq \mathcal{Y}$.

Examples:

• A completely noisy channel: $S_x \cap S_{x'} \neq \emptyset$ for all $x, x' \in \mathcal{X}$.

Single Use Multiple Use - Gap in Capacity

Definition (Channel Coding [Shannon '56])

A channel C is given by an input set \mathcal{X} and output set \mathcal{Y} , as well as fan-out sets S_x for every $x \in \mathcal{X}$. When a sender sends an input $x \in \mathcal{X}$ the receiver receives some $y \in S_x \subseteq \mathcal{Y}$.

- A completely noisy channel: $S_x \cap S_{x'} \neq \emptyset$ for all $x, x' \in \mathcal{X}$.
- A noise-free channel: $S_x \cap S_{x'} = \emptyset$ for all $x, x' \in \mathcal{X}$.

Single Use Multiple Use - Gap in Capacity

Definition (Channel Coding [Shannon '56])

A channel C is given by an input set \mathcal{X} and output set \mathcal{Y} , as well as fan-out sets S_x for every $x \in \mathcal{X}$. When a sender sends an input $x \in \mathcal{X}$ the receiver receives some $y \in S_x \subseteq \mathcal{Y}$.

- A completely noisy channel: $S_x \cap S_{x'} \neq \emptyset$ for all $x, x' \in \mathcal{X}$.
- A noise-free channel: $S_x \cap S_{x'} = \emptyset$ for all $x, x' \in \mathcal{X}$.
- The pentagon channel: $\mathcal{X} = \mathcal{Y} = \{0, 1, 2, 3, 4\}$ and $S_x = \{x, x + 1 \mod 5\}$ for all $x \in \mathcal{X}$.

Definition (Single-Use Capacity)

The single-use capacity of a channel C, denoted by $\gamma^{(1)}$, is the maximum number of bits the sender can transmit to the receiver with no error in one use of the channel C.

Definition (Single-Use Capacity)

The single-use capacity of a channel C, denoted by $\gamma^{(1)}$, is the maximum number of bits the sender can transmit to the receiver with no error in one use of the channel C.

Definition (Characteristic Graph)

The characteristic graph of a channel C, G, is a graph with vertex set \mathcal{X} and an edge between vertices x and x' iff $S_x \cap S_{x'} = \emptyset$.

Definition (Single-Use Capacity)

The single-use capacity of a channel C, denoted by $\gamma^{(1)}$, is the maximum number of bits the sender can transmit to the receiver with no error in one use of the channel C.

Definition (Characteristic Graph)

The characteristic graph of a channel C, G, is a graph with vertex set \mathcal{X} and an edge between vertices x and x' iff $S_x \cap S_{x'} = \emptyset$.

Theorem

For every channel C with characteristic graph G,

$$\gamma^{(1)} = \log \omega(\mathcal{G}).$$

Single Use Multiple Use - Gap in Capacity

Definition (Multiple-use Capacity)

The *n*-use capacity of a channel C, denoted by $\gamma^{(n)}$, is the maximum number of bits the sender can transmit to the receiver with no error in n uses of the channel C.

Theorem

For every $\gamma^{(1)}$ there exists a channel C with $\gamma^{(2)} \ge 2^{\gamma^{(1)}-1}$. Conversely, for every channel C, it holds that $\gamma^{(2)} \le 2^{\gamma^{(1)}+1}$.

Single Use Multiple Use - Gap in Capacity

Definition (Multiple-use Capacity)

The *n*-use capacity of a channel C, denoted by $\gamma^{(n)}$, is the maximum number of bits the sender can transmit to the receiver with no error in n uses of the channel C.

Theorem

For every $\gamma^{(1)}$ there exists a channel C with $\gamma^{(2)} \ge 2^{\gamma^{(1)}-1}$. Conversely, for every channel C, it holds that $\gamma^{(2)} \le 2^{\gamma^{(1)}+1}$

Corollary

There exists a channel C with exponentially larger per-use capacity than its single-use capacity.

Single Use Multiple Use - Gap in Capacity

Characterising $\gamma^{(n)}$ vs. $\gamma^{(1)}$ - first step

The *n*-use use of the channel \mathcal{C} is equivalent to one use of a channel \mathcal{C}^n with input and output sets \mathcal{X}^n and \mathcal{Y}^n . For every *n*-tuple $\bar{x} = (x_1, \ldots, x_n) \in \mathcal{X}^n$ we have $S_{\bar{x}} = S_{x_1} \times \cdots \times S_{x_n}$. The characteristic graph of \mathcal{C}^n is therefore $\mathcal{G}^{\vee n}$.

Single Use Multiple Use - Gap in Capacity

Characterising $\gamma^{(n)}$ vs. $\gamma^{(1)}$ - first step

The *n*-use use of the channel \mathcal{C} is equivalent to one use of a channel \mathcal{C}^n with input and output sets \mathcal{X}^n and \mathcal{Y}^n . For every *n*-tuple $\bar{x} = (x_1, \ldots, x_n) \in \mathcal{X}^n$ we have $S_{\bar{x}} = S_{x_1} \times \cdots \times S_{x_n}$. The characteristic graph of \mathcal{C}^n is therefore $\mathcal{G}^{\vee n}$.

Theorem

For every channel C with characteristic graph G,

$$\gamma^{(1)} = \log \omega(\mathcal{G}) \quad \text{and} \quad \gamma^{(n)} = \log \omega(\mathcal{G}^{\vee n}).$$

Single Use Multiple Use - Gap in Capacity

Proof of Capacity Increase

Definition

Let $\rho_n(l_1,\ldots,l_n) \triangleq \max\{\omega(\mathcal{G}_1 \land \cdots \land \mathcal{G}_n) \mid \omega(\mathcal{G}_i) \le l_i, \forall i \in [n]\}.$

Single Use Multiple Use - Gap in Capacity

Proof of Capacity Increase

Definition

Let $\rho_n(l_1,\ldots,l_n) \triangleq \max\{\omega(\mathcal{G}_1 \land \cdots \land \mathcal{G}_n) \mid \omega(\mathcal{G}_i) \le l_i, \forall i \in [n]\}.$

We abbreviate $\rho_n(l) \triangleq \rho_n(l, \ldots, l)$.

Single Use Multiple Use - Gap in Capacity

Proof of Capacity Increase

Definition

Let $\rho_n(l_1,\ldots,l_n) \triangleq \max\{\omega(\mathcal{G}_1 \land \cdots \land \mathcal{G}_n) \mid \omega(\mathcal{G}_i) \le l_i, \forall i \in [n]\}.$

We abbreviate $\rho_n(l) \triangleq \rho_n(l, \ldots, l)$.

Lemma

For all $n, l \ge 1$, $\rho_n(l)$ can be achieved by a single graph $G = G_i \ \forall i$.

Single Use Multiple Use - Gap in Capacity

Proof of Capacity Increase

Definition

Let $\rho_n(l_1,\ldots,l_n) \triangleq \max\{\omega(\mathcal{G}_1 \land \cdots \land \mathcal{G}_n) \mid \omega(\mathcal{G}_i) \le l_i, \forall i \in [n]\}.$

We abbreviate $\rho_n(l) \triangleq \rho_n(l, \ldots, l)$.

Lemma

For all $n, l \ge 1$, $\rho_n(l)$ can be achieved by a single graph $G = G_i \ \forall i$.

Lemma

For all $n, l \ge 1$, it holds $\rho_n(l) = r_n(l)$.

Single Use Multiple Use - Gap in Capacity

Proof of Capacity Increase

Definition

Let $\rho_n(l_1,\ldots,l_n) \triangleq \max\{\omega(\mathcal{G}_1 \land \cdots \land \mathcal{G}_n) \mid \omega(\mathcal{G}_i) \le l_i, \forall i \in [n]\}.$

We abbreviate $\rho_n(l) \triangleq \rho_n(l, \ldots, l)$.

Lemma

For all $n, l \ge 1$, $\rho_n(l)$ can be achieved by a single graph $G = G_i \ \forall i$.

Lemma

For all
$$n, l \ge 1$$
, it holds $\rho_n(l) = r_n(l)$.

Recall that $\sqrt{2}^l \leq r_2(l) \leq 4^l$.

 $\therefore \text{ for every } \gamma^{(1)} \text{ there exists a channel } \mathcal{C} \text{ with } \gamma^{(2)} \geq 2^{\gamma^{(1)}-1} \\ \text{ and every such channel } \mathcal{C} \text{ satisfies } \gamma^{(2)} \leq 2^{\gamma^{(1)}+1}.$

Single Use Multiple Use - Gap in Capacity

Proof of Relation to Ramsey Numbers

Lemma

For all $n, l \ge 1$, it holds $\rho_n(l, \ldots, l) = r_n(l, \ldots, l)$.

Single Use Multiple Use - Gap in Capacity

Proof of Relation to Ramsey Numbers

Lemma

For all
$$n, l \ge 1$$
, it holds $\rho_n(l, \ldots, l) = r_n(l, \ldots, l)$.

Proof - Part I.

 $\begin{array}{l} \underline{\rho_n(l) \geq r_n(l)}. \mbox{ Let } r = r_n(l). \mbox{ Fix an } n\mbox{-coloring of the edges of } K_r \\ \hline \mbox{such that all } i\mbox{-monochromatic cliques have size } \leq l. \mbox{ Let } G_i \mbox{ be the graph induced by the } i\mbox{-colored edges of } K_r. \mbox{ Clearly } \omega(G_i) \leq l \mbox{ and } \{(1,\ldots,1),\ldots,(r,\ldots,r)\} \mbox{ is a clique in } G_1 \lor \cdots \lor G_n. \end{array}$

Single Use Multiple Use - Gap in Capacity

Proof of Relation to Ramsey Numbers

Lemma

For all $n, l \ge 1$, it holds $\rho_n(l, \ldots, l) = r_n(l, \ldots, l)$.

Single Use Multiple Use - Gap in Capacity

Proof of Relation to Ramsey Numbers

Lemma

For all
$$n, l \ge 1$$
, it holds $\rho_n(l, \ldots, l) = r_n(l, \ldots, l)$.

Proof - Part II.

 $\begin{array}{l} r_n(l) \geq \rho_n(l). \mbox{ Let } \rho = \rho_n(l). \mbox{ Let } G_1, \ldots, G_n \mbox{ and } G = G_1 \lor \cdots \lor G_n \\ \hline \mbox{be graphs with } \omega(G_i) \leq l \mbox{ such that } \omega(G) = \rho. \mbox{ Fix a clique of size } \\ \rho \mbox{ in } G, \ S = \{(x_1^1, \ldots, x_n^1), \ldots, (x_1^\rho, \ldots, x_n^\rho)\}. \mbox{ We } n\mbox{-color } K_\rho \mbox{ by assigning each edge } (u, v) \mbox{ a color } i \mbox{ such that } (x_i^u, x_i^v) \in E[G_i]. \\ \hline \mbox{ Every monochromatic set under this } n\mbox{-coloring has size } \leq l. \end{array}$

Single Use Multiple Use - Gap in Capacity

An Open Question: Per-Use Capacity

Definition (Per-Use Capacity)

The *n*-use per-use capacity of a channel is $C^{(n)} = \gamma^{(n)}/n$. Shannon's zero-error capacity is $C^{(\infty)} \triangleq \lim_{n \to \infty} \gamma^{(n)}/n$.

Single Use Multiple Use - Gap in Capacity

An Open Question: Per-Use Capacity

Definition (Per-Use Capacity)

The *n*-use per-use capacity of a channel is $C^{(n)} = \gamma^{(n)}/n$. Shannon's zero-error capacity is $C^{(\infty)} \triangleq \lim_{n \to \infty} \gamma^{(n)}/n$.

Alon and Orlitsky proved $C^{(\infty)} \ge C^{(2)} \ge 0.25 \cdot 2^{\gamma^{(1)}}$. We can improve this slightly to $C^{(\infty)} \ge C^{(3)} \ge 0.264 \cdot 2^{\gamma^{(1)}}$, but cannot improve this gap for larger n.

Single Use Multiple Use - Gap in Capacity

An Open Question: Per-Use Capacity

Definition (Per-Use Capacity)

The *n*-use per-use capacity of a channel is $C^{(n)} = \gamma^{(n)}/n$. Shannon's zero-error capacity is $C^{(\infty)} \triangleq \lim_{n \to \infty} \gamma^{(n)}/n$.

Alon and Orlitsky proved $C^{(\infty)} \ge C^{(2)} \ge 0.25 \cdot 2^{\gamma^{(1)}}$. We can improve this slightly to $C^{(\infty)} \ge C^{(3)} \ge 0.264 \cdot 2^{\gamma^{(1)}}$, but cannot improve this gap for larger n.

Open Question: Can $C^{(n)} = \gamma^{(n)}/n$ grow with n for fixed $\gamma^{(1)} = c$? If true, this would resolve an open question of Erdős, of whether $r_n(c')$ grows faster than any exponential in c'.

Definition Repeated Use and Arbitrarily Large Gap

Dual-Source Coding

Preliminaries

• Graph Theoretic Definitions

2 Channel Coding

- Single Use
- Multiple Use Gap in Capacity

3 Dual-Source Coding

- Definition
- Repeated Use and Arbitrarily Large Gap

Definition (Dual-Source)

A dual-source consists of a finite set \mathcal{X} , a set \mathcal{Y} and a support set $\mathcal{S} \subseteq \mathcal{X} \times \mathcal{Y}$. The fan-out set $S_x = \{y : (x, y) \in \mathcal{S}\}$.

Definition (Dual-Source Instance)

In each dual-source instance sender $P_{\mathcal{X}}$ and receiver $P_{\mathcal{Y}}$ are given (before hand) symbols x and y, respectively, where $(x, y) \in S$.

We are interested in the minimum number of bits needed (irrespective of the starting instance), that $P_{\mathcal{X}}$ needs to send (noiselessly) for $P_{\mathcal{Y}}$ to learn x.

Definition Repeated Use and Arbitrarily Large Gap

Definition (Single instance cost)

The single-instance (*n*-instance) cost of a dual-source S, denoted by $\sigma^{(1)}$ ($\sigma^{(n)}$), is the minimum number of bits the sender needs to transmit irrespective of starting instance (*n* instances) of S.

Definition (Single instance cost)

The single-instance (*n*-instance) cost of a dual-source S, denoted by $\sigma^{(1)}$ ($\sigma^{(n)}$), is the minimum number of bits the sender needs to transmit irrespective of starting instance (*n* instances) of S.

Definition (Characteristic Graph)

The characteristic graph of a dual-source has vertex set X and two vertices are connected iff their fan out sets intersect.

Definition (Single instance cost)

The single-instance (*n*-instance) cost of a dual-source S, denoted by $\sigma^{(1)}$ ($\sigma^{(n)}$), is the minimum number of bits the sender needs to transmit irrespective of starting instance (*n* instances) of S.

Definition (Characteristic Graph)

The characteristic graph of a dual-source has vertex set X and two vertices are connected iff their fan out sets intersect.

Theorem

For every dual source with characteristic graph \mathcal{G} ,

$$\sigma^{(1)} = \log \mathcal{X}(\mathcal{G}).$$

Definition (Single instance cost)

The single-instance (*n*-instance) cost of a dual-source S, denoted by $\sigma^{(1)}$ ($\sigma^{(n)}$), is the minimum number of bits the sender needs to transmit irrespective of starting instance (*n* instances) of S.

Definition (Characteristic Graph)

The characteristic graph of a dual-source has vertex set X and two vertices are connected iff their fan out sets intersect.

Theorem

For every dual source with characteristic graph \mathcal{G} ,

$$\sigma^{(1)} = \log \mathcal{X}(\mathcal{G}).$$

$$\sigma^{(n)} = \log(\mathcal{X}(\mathcal{G}^{\wedge n}))$$

Definition Repeated Use and Arbitrarily Large Gap

Definition (Multiple-Use Rate)

For multiple instances, the n-use rate is the average number of bits the sender needs to send over n instances of the dual-source, is

$$R^{(n)} \triangleq \frac{\sigma^{(n)}}{n}.$$

Definition Repeated Use and Arbitrarily Large Gap

Definition (Multiple-Use Rate)

For multiple instances, the n-use rate is the average number of bits the sender needs to send over n instances of the dual-source, is

$$R^{(n)} \triangleq \frac{\sigma^{(n)}}{n}.$$

Theorem

For every $\epsilon, t > 0$, there is a graph \mathcal{G} , such that $\forall n, \mathcal{X}(\mathcal{G}) \ge \epsilon t$ but $\mathcal{X}(\mathcal{G}^{\wedge n}) \le O(nt(2+\epsilon)^{n+1}).$

Definition Repeated Use and Arbitrarily Large Gap

Definition (Multiple-Use Rate)

For multiple instances, the n-use rate is the average number of bits the sender needs to send over n instances of the dual-source, is

$$R^{(n)} \triangleq \frac{\sigma^{(n)}}{n}.$$

Theorem

For every $\epsilon, t > 0$, there is a graph \mathcal{G} , such that $\forall n, \mathcal{X}(\mathcal{G}) \ge \epsilon t$ but $\mathcal{X}(\mathcal{G}^{\wedge n}) \le O(nt(2+\epsilon)^{n+1}).$

Corollary

For every $\epsilon > 0$, and arbitrarily large $\sigma^{(1)}$, there are dual sources such that, such that $R^{(1)} \ge \sigma^{(1)}$ and $R^{(\infty)} \le 1 + \epsilon$.

Definition Repeated Use and Arbitrarily Large Gap

Preliminaries of Proof

Definition

The vertices of the Kneser graph K(u,t) correspond to all the $\binom{u}{t}$ subsets of size t of $\{1, \ldots u\}$. Two vertices are connected iff they are disjoint.

Definition Repeated Use and Arbitrarily Large Gap

Coloring Kneser graphs

Observation

Let $\{1, \ldots u\}$ be a set of colors. Assigning to each vertex v any element $x \in v$ as it's color, generates a valid coloring of K(u, t).

Definition Repeated Use and Arbitrarily Large Gap

Coloring Kneser graphs

Observation

Let $\{1, \ldots u\}$ be a set of colors. Assigning to each vertex v any element $x \in v$ as it's color, generates a valid coloring of K(u,t).

Definition

A color $z \in [u]^n$ of a vertex $(v_1, v_2 \dots v_n)$ of $K^{\wedge n}(u, t)$, that satisfies $\forall i, z_i \in v_i$, is called a representative coloring.

Definition Repeated Use and Arbitrarily Large Gap

Coloring Kneser graphs

Observation

Let $\{1, \ldots u\}$ be a set of colors. Assigning to each vertex v any element $x \in v$ as it's color, generates a valid coloring of K(u,t).

Definition

A color $z \in [u]^n$ of a vertex $(v_1, v_2 \dots v_n)$ of $K^{\wedge n}(u, t)$, that satisfies $\forall i, z_i \in v_i$, is called a representative coloring.

Observation

Let $\{1, \ldots u\}^n$ be a set of colors. Assigning to each vertex $(v_1, v_2 \ldots v_n)$ any representative color z, generates a valid coloring of $K^{\wedge n}(u, t)$.

Definition Repeated Use and Arbitrarily Large Gap

proof

Theorem

 $\mathcal{X}(K(u,t)) = u - 2t + 2$ [Lovasz]

While, $\mathcal{X}(K^{\wedge n}(u,t)) \leq n(\frac{u}{t})^n \ln \binom{u}{t} = m$

Definition Repeated Use and Arbitrarily Large Gap

proof

Theorem

$$\mathcal{X}(K(u,t)) = u - 2t + 2$$
 [Lovasz]

While,
$$\mathcal{X}(K^{\wedge n}(u,t)) \leq n(\frac{u}{t})^n \ln {\binom{u}{t}} = m$$

Proof.

Pick m colors uniformly and independently from $[u]^n$.

Definition Repeated Use and Arbitrarily Large Gap

proof

Theorem

$$\mathcal{X}(K(u,t)) = u - 2t + 2 \ [Lovasz]$$

While, $\mathcal{X}(K^{\wedge n}(u,t)) \le n(\frac{u}{t})^n \ln \binom{u}{t} = m$

Proof.

Pick *m* colors uniformly and independently from $[u]^n$. Prob. of a color being representative for a vertex $v : (t/u)^n$.

Definition Repeated Use and Arbitrarily Large Gap

proof

Theorem

$$\mathcal{X}(K(u,t)) = u - 2t + 2 \ [Lovasz]$$

While, $\mathcal{X}(K^{\wedge n}(u,t)) \le n(\frac{u}{t})^n \ln {\binom{u}{t}} = m$

Proof.

Pick m colors uniformly and independently from $[u]^n$. Prob. of a color being representative for a vertex $v : (t/u)^n$. Prob. of no color being representative for $v : (1 - (t/u)^n)^m$.

Definition Repeated Use and Arbitrarily Large Gap

proof

Theorem

$$\mathcal{X}(K(u,t)) = u - 2t + 2 \ [Lovasz]$$

While, $\mathcal{X}(K^{\wedge n}(u,t)) \le n(\frac{u}{t})^n \ln \binom{u}{t} = m$

Proof.

Pick *m* colors uniformly and independently from $[u]^n$. Prob. of a color being representative for a vertex $v : (t/u)^n$. Prob. of no color being representative for $v : (1 - (t/u)^n)^m$. The claim follows by union bound over all $\binom{u}{t}^n$ vertices.

Definition Repeated Use and Arbitrarily Large Gap

Open Question

Definition (Normalized per-use capacity)

For multiple instances, the normalized n-use rate is given by

$$\tilde{R}^{(n)} \triangleq \frac{R^{(n)}}{\log \mathcal{X}}.$$

Definition Repeated Use and Arbitrarily Large Gap

Open Question

Definition (Normalized per-use capacity)

For multiple instances, the normalized n-use rate is given by

$$\tilde{R}^{(n)} \triangleq \frac{R^{(n)}}{\log \mathcal{X}}.$$

Alon and Orlitsky showed that for every $\epsilon > 0$ there is a dual-source such that $\tilde{R}^{(1)} \ge 1 - \epsilon$ but $\tilde{R}^{(\infty)} \le \tilde{R}^{(2)} \le \frac{1}{2}$.

Definition Repeated Use and Arbitrarily Large Gap

Open Question

Definition (Normalized per-use capacity)

For multiple instances, the normalized n-use rate is given by

$$\tilde{R}^{(n)} \triangleq \frac{R^{(n)}}{\log \mathcal{X}}.$$

Alon and Orlitsky showed that for every $\epsilon > 0$ there is a dual-source such that $\tilde{R}^{(1)} \ge 1 - \epsilon$ but $\tilde{R}^{(\infty)} \le \tilde{R}^{(2)} \le \frac{1}{2}$.

Open Question: Is it true that for every $\epsilon > 0$ there is a dual-source such that $\tilde{R}^{(1)} \ge 1 - \epsilon$ but $\tilde{R}^{(\infty)} \le \epsilon$?

A positive answer would have interesting applications to communication complexity.

Definition Repeated Use and Arbitrarily Large Gap

Thank You.