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Graph Theoretic Notation

Given a graph G = (V,E), we recall the following notation.

α(G) - G’s independence number.

ω(G) - G’s clique number.

χ(G) - G’s chromatic number.
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Graph Products

Definition (AND Product)

Given graphs G1 = (V1,E1), G2 = (V2,E2), their AND product,
G1 .G2, is a graph with vertex set V1 × V2 and edges given by
(u1, u2) ∼ (v1, v2) ⇐⇒ ∀i ∈ [2], ui = vi or ui ∼ vi in Ei.

Definition (OR Product)

Given graphs G1 = (V1,E1), G2 = (V2,E2), their OR product,
G1 /G2, is a graph with vertex set V1 × V2 and edges given by
(u1, u2) ∼ (v1, v2) ⇐⇒ ∃i ∈ [2], ui ≠ vi and ui ∼ vi in Ei

Note: G1 . ⋅ ⋅ ⋅ .Gn = G1 / ⋅ ⋅ ⋅ /Gn.

We abbreviate G.n ≜ (
n

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
G . ⋅ ⋅ ⋅ .G) and G/n ≜ (

n
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
G / ⋅ ⋅ ⋅ /G).
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Ramsey Numbers

Definition (Ramsey Numbers)

The Ramsey Number rn(l1, l2, . . . , ln) is the maximum r such that
there exists a coloring with n colors of the edges of the complete
graph on r vertices, Kr, such that every obtained i-monochromatic
clique has size at most li.

We abbreviate rn(l) ≜ rn(l, . . . , l).

Examples:

r2(2) = 5.

r2(3) = 17.

Generally,
√

2
l ≤ r2(l) ≤ 4l.
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Multiple Use - Gap in Capacity

Definition (Channel Coding [Shannon ’56])

A channel C is given by an input set X and output set Y, as well
as fan-out sets Sx for every x ∈ X . When a sender sends an input
x ∈ X the receiver receives some y ∈ Sx ⊆ Y.

x ∈ X y ∈ Sx ⊆ Y

Examples:

A completely noisy channel: Sx ∩ Sx′ ≠ ∅ for all x,x′ ∈ X .

A noise-free channel: Sx ∩ Sx′ = ∅ for all x,x′ ∈ X .

The pentagon channel: X = Y = {0,1,2,3,4} and
Sx = {x,x + 1 mod 5} for all x ∈ X .
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Definition (Single-Use Capacity)

The single-use capacity of a channel C, denoted by γ(1), is the
maximum number of bits the sender can transmit to the receiver
with no error in one use of the channel C.

Definition (Characteristic Graph)

The characteristic graph of a channel C, G, is a graph with vertex
set X and an edge between vertices x and x′ iff Sx ∩ Sx′ = ∅.

Theorem

For every channel C with characteristic graph G,

γ(1) = logω(G).
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Definition (Multiple-use Capacity)

The n-use capacity of a channel C, denoted by γ(n), is the maximum
number of bits the sender can transmit to the receiver with no error
in n uses of the channel C.

Theorem

For every γ(1) there exists a channel C with γ(2) ≥ 2γ
(1)−1.

Conversely, for every channel C, it holds that γ(2) ≤ 2γ
(1)+1.

Corollary

There exists a channel C with exponentially larger per-use capacity
than its single-use capacity.

Presenters:Vijay Bhattiprolu and David Wajc Repeated Communication and Ramsey Graphs 10 / 24



Preliminaries
Channel Coding

Dual-Source Coding

Single Use
Multiple Use - Gap in Capacity

Definition (Multiple-use Capacity)

The n-use capacity of a channel C, denoted by γ(n), is the maximum
number of bits the sender can transmit to the receiver with no error
in n uses of the channel C.

Theorem

For every γ(1) there exists a channel C with γ(2) ≥ 2γ
(1)−1.

Conversely, for every channel C, it holds that γ(2) ≤ 2γ
(1)+1.

Corollary

There exists a channel C with exponentially larger per-use capacity
than its single-use capacity.

Presenters:Vijay Bhattiprolu and David Wajc Repeated Communication and Ramsey Graphs 10 / 24



Preliminaries
Channel Coding

Dual-Source Coding

Single Use
Multiple Use - Gap in Capacity

Characterising γ(n) vs. γ(1) - first step

The n-use use of the channel C is equivalent to one use of a channel
Cn with input and output sets X n and Yn. For every n-tuple x̄ =
(x1, . . . , xn) ∈ X n we have Sx̄ = Sx1 × ⋅ ⋅ ⋅ × Sxn . The characteristic
graph of Cn is therefore G/n.

Theorem

For every channel C with characteristic graph G,

γ(1) = logω(G) and γ(n) = logω(G/n).
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Proof of Capacity Increase

Definition

Let ρn(l1, . . . , ln) ≜ max{ω(G1 . ⋅ ⋅ ⋅ . Gn) ∣ ω(Gi) ≤ li, ∀i ∈ [n]}.

We abbreviate ρn(l) ≜ ρn(l, . . . , l).

Lemma

For all n, l ≥ 1, ρn(l) can be achieved by a single graph G = Gi ∀i.

Lemma

For all n, l ≥ 1, it holds ρn(l) = rn(l).

Recall that
√

2
l ≤ r2(l) ≤ 4l.

∴ for every γ(1) there exists a channel C with γ(2) ≥ 2γ
(1)−1,

and every such channel C satisfies γ(2) ≤ 2γ
(1)+1.
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Proof of Relation to Ramsey Numbers

Lemma

For all n, l ≥ 1, it holds ρn(l, . . . , l) = rn(l, . . . , l).

Proof - Part I.

ρn(l) ≥ rn(l). Let r = rn(l). Fix an n-coloring of the edges of Kr

such that all i-monochromatic cliques have size ≤ l. Let Gi be the
graph induced by the i-colored edges of Kr. Clearly ω(Gi) ≤ l and
{(1, . . . ,1), . . . , (r, . . . , r)} is a clique in G1 / ⋅ ⋅ ⋅ /Gn.
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{(1, . . . ,1), . . . , (r, . . . , r)} is a clique in G1 / ⋅ ⋅ ⋅ /Gn.
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Proof of Relation to Ramsey Numbers

Lemma

For all n, l ≥ 1, it holds ρn(l, . . . , l) = rn(l, . . . , l).

Proof - Part II.

rn(l) ≥ ρn(l). Let ρ = ρn(l). Let G1, . . . ,Gn and G = G1 / ⋅ ⋅ ⋅ /Gn
be graphs with ω(Gi) ≤ l such that ω(G) = ρ. Fix a clique of size
ρ in G, S = {(x1

1, . . . , x
1
n), . . . , (x

ρ
1, . . . , x

ρ
n)}. We n-color Kρ by

assigning each edge (u, v) a color i such that (xui , xvi ) ∈ E[Gi].
Every monochromatic set under this n-coloring has size ≤ l.
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An Open Question: Per-Use Capacity

Definition (Per-Use Capacity)

The n-use per-use capacity of a channel is C(n) = γ(n)/n.
Shannon’s zero-error capacity is C(∞) ≜ lim

n→∞
γ(n)/n.

Alon and Orlitsky proved C(∞) ≥ C(2) ≥ 0.25 ⋅ 2γ(1) .
We can improve this slightly to C(∞) ≥ C(3) ≥ 0.264 ⋅ 2γ(1) , but
cannot improve this gap for larger n.

Open Question: Can C(n) = γ(n)/n grow with n for fixed γ(1) = c?
If true, this would resolve an open question of Erdős, of whether
rn(c′) grows faster than any exponential in c′.
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Definition (Dual-Source)

A dual-source consists of a finite set X , a set Y and a support set
S ⊆ X ×Y. The fan-out set Sx = {y ∶ (x, y) ∈ S}.

Definition (Dual-Source Instance)

In each dual-source instance sender PX and receiver PY are given
(before hand) symbols x and y, respectively, where (x, y) ∈ S.

We are interested in the minimum number of bits needed
(irrespective of the starting instance), that PX needs to send
(noiselessly) for PY to learn x.
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Definition (Single instance cost)

The single-instance (n-instance) cost of a dual-source S, denoted
by σ(1) (σ(n)), is the minimum number of bits the sender needs to
transmit irrespective of starting instance (n instances) of S.

Definition (Characteristic Graph)

The characteristic graph of a dual-source has vertex set X and two
vertices are connected iff their fan out sets intersect.

Theorem

For every dual source with characteristic graph G,

σ(1) = logX (G).

σ(n) = log(X (G.n))
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Definition (Multiple-Use Rate)

For multiple instances, the n-use rate is the average number of bits
the sender needs to send over n instances of the dual-source, is

R(n) ≜ σ
(n)

n
.

Theorem

For every ε, t > 0, there is a graph G, such that ∀n, X (G) ≥ εt but
X (G.n) ≤ O(nt(2 + ε)n+1).

Corollary

For every ε > 0, and arbitrarily large σ(1), there are dual sources
such that, such that R(1) ≥ σ(1) and R(∞) ≤ 1 + ε.
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Preliminaries of Proof

Definition

The vertices of the Kneser graph K(u, t) correspond to all the (u
t
)

subsets of size t of {1, . . . u}. Two vertices are connected iff they
are disjoint.
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Coloring Kneser graphs

Observation

Let {1, . . . u} be a set of colors. Assigning to each vertex v any
element x ∈ v as it’s color, generates a valid coloring of K(u, t).

Definition

A color z ∈ [u]n of a vertex (v1, v2 . . . vn) of K.n(u, t), that
satisfies ∀i, zi ∈ vi, is called a representative coloring.

Observation

Let {1, . . . u}n be a set of colors. Assigning to each vertex
(v1, v2 . . . vn) any representative color z, generates a valid coloring
of K.n(u, t).
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proof

Theorem

X (K(u, t)) = u − 2t + 2 [Lovasz]

While, X (K.n(u, t)) ≤ n(ut )
n ln (u

t
) =m

Proof.

Pick m colors uniformly and independently from [u]n.

Prob. of a color being representative for a vertex v : (t/u)n.

Prob. of no color being representative for v : (1 − (t/u)n)m.

The claim follows by union bound over all (ut)
n

vertices.
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Open Question

Definition (Normalized per-use capacity)

For multiple instances, the normalized n-use rate is given by

R̃(n) ≜ R(n)

logX
.

Alon and Orlitsky showed that for every ε > 0 there is a dual-source
such that R̃(1) ≥ 1 − ε but R̃(∞) ≤ R̃(2) ≤ 1

2 .

Open Question: Is it true that for every ε > 0 there is a
dual-source such that R̃(1) ≥ 1 − ε but R̃(∞) ≤ ε?

A positive answer would have interesting applications to
communication complexity.

Presenters:Vijay Bhattiprolu and David Wajc Repeated Communication and Ramsey Graphs 23 / 24



Preliminaries
Channel Coding

Dual-Source Coding

Definition
Repeated Use and Arbitrarily Large Gap

Open Question

Definition (Normalized per-use capacity)

For multiple instances, the normalized n-use rate is given by

R̃(n) ≜ R(n)

logX
.

Alon and Orlitsky showed that for every ε > 0 there is a dual-source
such that R̃(1) ≥ 1 − ε but R̃(∞) ≤ R̃(2) ≤ 1

2 .

Open Question: Is it true that for every ε > 0 there is a
dual-source such that R̃(1) ≥ 1 − ε but R̃(∞) ≤ ε?

A positive answer would have interesting applications to
communication complexity.

Presenters:Vijay Bhattiprolu and David Wajc Repeated Communication and Ramsey Graphs 23 / 24



Preliminaries
Channel Coding

Dual-Source Coding

Definition
Repeated Use and Arbitrarily Large Gap

Open Question

Definition (Normalized per-use capacity)

For multiple instances, the normalized n-use rate is given by

R̃(n) ≜ R(n)

logX
.

Alon and Orlitsky showed that for every ε > 0 there is a dual-source
such that R̃(1) ≥ 1 − ε but R̃(∞) ≤ R̃(2) ≤ 1

2 .

Open Question: Is it true that for every ε > 0 there is a
dual-source such that R̃(1) ≥ 1 − ε but R̃(∞) ≤ ε?

A positive answer would have interesting applications to
communication complexity.

Presenters:Vijay Bhattiprolu and David Wajc Repeated Communication and Ramsey Graphs 23 / 24



Preliminaries
Channel Coding

Dual-Source Coding

Definition
Repeated Use and Arbitrarily Large Gap

Thank You.
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