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Introduction

Outline

1 Review Deletion Codes

2 Explore existing bounds on BDC capacity

3 Examine a proof for a tight upper bound on BDC capacity for
small p. (C ≤ 1− (1− o(1))H(p))
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Definitions and Notation

Definition

A binary deletion channel with deletion probability p takes a binary
string and deletes each bit independently with probability p.

Definition

For transmission of a string X ∈ {0, 1}n according to a binary
deletion channel, the deletion pattern A is an increasing
subsequence of [n] = {1, . . . , n} representing the bits that are not
deleted.

Notation

For string X ∈ {0, 1}n, XA represents the transmission of X
through a deletion channel with deletion pattern A.
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Definitions and Notation

Example

Suppose we send X = 101010 across a BDC and position 3,4,5 are
deleted.

X = 101010

A = [1, 2, 6]

XA = 100
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The Big Question

Determine the capacity of a binary deletion channel with deletion
probability p.

BSC: Well understood

BEC: Well understood

BDC: Don’t know capacity
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Existing Bounds

Lower bounds

[Mitzenmacher ’06] (1− p)/9
1− 2H(p)
[Gallager ’61, Zigangirov ’69] 1− H(p)

Upper bounds

1− p

[Mitzenmacher ’07] Computer optimized bound, beating 1− p

for p ≤ .9.

[Mitzenmacher ’07] .7918(1− p) as p → 1.
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Intuition for Upper Bound of 1− H(p)

Binary Symmetric Channel: Each of N codewords must have
approximately ≥

( n
pn

)
≈ 2H(p)n length n words which map to

it under a decoder, so N2H(p)n ≤ 2n =⇒ logN
n ≤ 1− H(p)

Binary Deletion Channel: For ”most” of the N codewords,
when p is small, you can recover the deletion pattern with
nontrivial probability. Using the same type of argument, each
of the 2n(1−p) recieved words should map to one of
approximately N2H(p)n codeword-deletion pattern pairs. Then
we also get logN

n is roughly going to be ≤ 1− H(p).

Challenge of BDCs: Asymmetry in channels. Compare
deleting bit from 101010 vs 000000
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Main Result

Theorem (KMS 2010, Abridged Version)

Suppose that we have a code C and a decoder which can
successfully decode for BDCp with probability at least δ. Then if
the length of the code n is sufficiently large, the dimension of the
code log |C | satisfies

log |C |
n

≤ 1− (1− o(1))H(p)

where o(1) vanishes as p → 0.

Ray Li BDC upper bounds



Main Result

Theorem (KMS 2010)

Suppose there is a code C and a decoder which can successfully
decode for BDCp with probability at least δ, and suppose
n ≥ 12 log(4/δ)/p. Let γ = 3 log(4/δ)/np and q′ = (1 + γ)np.
then the dimension of the code log |C | satisfies,

log |C | ≤ n − np(1− γ)− log

(
n

np(1− γ)

)
+ log

4

δ
+ log β

where β is given by β = t ′(6t ′/q′)3q
′+1 for

t ′ = d3q′ log ne
q′ + log 4δe
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Key Claim

Definition

A (q, n) deletion channel is a channel that deletes exactly q bits of
a codeword, with the set of deleted bits chosen uniformly at
random.

Claim

Suppose there exists a code C and a decoder for C that suceeds
on the (q, n) deletion channel with probability at least δ, where
n ≥ 12 log(2/δ)/p. Then the dimension of the code satisfies

log |C | ≤ n − q − log(q) + log
2

δ
+ logα

where α is given by α = t(6t/q)3q+1 for t = d3q log ne
q + log 2

q e
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Proof Sketch: Key Claim =⇒ Theorem

Goal: Find a q∗ near pn such that our decoder succeeds on the
(q∗, n) deletion channel with nontrivial probability.

Choosing γ =
√

3 log(4/γ)/np and n ≥ 12 log(4/δ)/p gives γ ≤ 1
2 .

Then there must be q∗ ∈ [(1− γ)pn, (1 + γ)pn] such that the
success probability of the (q∗, n) deletion channel is at least δ/2.
Then we use the Key Claim to obtain

log N ≤ n − q∗ − log

(
n

q∗

)
+ log

4

δ
+ logα∗

and using (1− γ)pn ≤ q∗ ≤ (1 + γ)pn we can finish.

log |C | ≤ n − np(1− γ)− log

(
n

np(1− γ)

)
+ log

4

δ
+ log β
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Proof of Key Claim

Definition

The distance between two deletion patterns of equal length A,B is

∆(A,B) = |{i |ai 6= bi}|

Definition

A word X ∈ {0, 1}n is called t-bad if there exist distinct deletion
patterns A,B such that ∆(A,B) ≥ t and XA = XB .

Examples

If A = [1, 3, 4, 5],B = [1, 4, 5, 6], are deletion patterns for n = 6,
then ∆(A,B) = 3.
11110000 is 6-bad but not 7-bad.
10101010 is not 1-bad.
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Proof of Key Claim

Lemma

For any t ≥ 1, there are at most
(n
q

)2
2n−t different t-bad strings

X ∈ {0, 1}n.

Using the lemma, we can choose a large t (t = 3q log ne
q + log 2

δ )
so that

Pr
Z∈C

[Dec(ZA) = Z ∧ Z is not t-bad] ≥ δ −
(

n

q

)2 2n−t

N
≥ δ/2
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Proof of Key Claim

Lemma

Take α = t(6t/q)3q+1. For any A, α is an upper bound on the
number of B such that ∆(A,B) ≤ t − 1.
(One can first compute (t − 1)

(2q+t
2q+1

)(q+t−1
q

)
< α as an upper

boun)

Conditioned on decoding suceeding and codeword not being t-bad,
each deletion pattern is equally likely, so we can recover the
deletion pattern with probability at least α−1.
Then the probability that we can recover the codeword and the
deletion pattern is ≥ δα−1/2, But the probability of recovering

deletion is at most 2n−q

N(nq)
, so it follows that 2n−q

N(nq)
≥ δα−1/2 and

log N ≤ n − q − log(q) + log
2

δ
+ logα
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Open Question

Tighten capacity upper bounds for general p.
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