Regenerating Codes for Distributed Storage System

Yongjune Kim and Yaoqing Yang

Contents

- Tradeoff between storage and communication
 - Dimakis et al. IEEE Trans. Inf. Theory, 2010
- Explicit code constructions
 - Rashmi, Shah, and Kumar, IEEE Trans. Inf. Theory, 2011.
- Open problems
 - Tian, IEEE Journal on Selected Areas in Communications, 2014.
 - Shah, Rashmi, Kumar, and Ramchandran, IEEE ITW 2010.

"Network Coding for Distributed Storage Systems", A.G.Dimakis et.al. 2010

An example

 (n,k,d,α,γ)

Whole file->k pieces->n fragments

Each fragment: α symbols

Regeneration bandwidth: $\gamma = d\beta$

An example

Minimum Storage Size

$$\alpha^{*}(n,k,d,\gamma) = \begin{cases} \frac{B}{k}, & \gamma \in [f(0),+\infty) \\ \frac{B-g(i)\gamma}{k-i}, & \gamma \in [f(i),f(i-1)) \end{cases}$$

$$f(i) \triangleq \frac{2Bd}{(2k-i-1)i+2k(d-k+1)}$$
$$g(i) \triangleq \frac{(2d-2k+i+1)i}{2d}$$

Minimum Storage Size

∃ Information flow

∃ Cut S

$$C = \sum_{e \in S} c_e = \sum_{i=0}^{\min\{d,k\}-1} \min\{(d-i)\beta, \alpha\}$$

∀ Information flow

$$\operatorname{mincut}(s,t) \ge \sum_{i=0}^{\min\{d,k\}-1} \min\{(d-i)\beta,\alpha\}$$

∀ Information flow

$$\operatorname{mincut}(s,t) \ge \sum_{i=0}^{\min\{d,k\}-1} \min\{(d-i)\beta,\alpha\}$$

Time order is feasible

$$c_1 \ge \min\{d\beta, \alpha\}$$

Topological Order (any acyclic graph)

 $c_2 \ge \min\{(d-1)\beta, \alpha\}$

Time order is feasible

$$C = \sum_{e \in S} c_e = \sum_{i=0}^{\min\{d,k\}-1} \min\{(d-i)\beta,\alpha\}$$

Exact-Regeneration Code Constructions

- MBR (Minimum bandwidth regeneration) points
- MSR (Minimum storage regeneration) points
- Interior points

Exact-Regeneration CodeConstructions

- MBR point*: Explicit code constructions for all [n, k, d] parameters are possible
- MSR point*: Explicit code constructions for $[n, k, d \ge 2k 2]$ parameters are possible

- Low rate:
$$n-1 \ge d \ge 2k-2$$
, $\frac{k}{n} \le \frac{k}{2k-1} \approx \frac{1}{2}$

Interior points**: Non-existence of exact regeneration codes

^{*} Rashmi, Shah, and Kumar, IEEE Trans. Inf. Theory, 2011.

^{**} Shah, Rashimi, Kumar and Ramchandram, IEEE Trans. Inf. Theory, 2012.

Product-Matrix Framework

$$C = \Psi M$$

$$\begin{bmatrix} c_1^t \\ \vdots \\ c_i^t \\ \vdots \\ c_n^t \end{bmatrix} = \begin{bmatrix} \psi_1^t \\ \vdots \\ \psi_i^t \\ \vdots \\ \psi_n^t \end{bmatrix} M$$

- Code matrix $C: n \times \alpha$
- Encoding matrix Ψ : $n \times d$
- Message matrix $M: d \times \alpha$
 - $-d\alpha>B$, M contains the B message symbols and some redundancy
- $ightharpoonup c_i^t = \psi_i^t M$ (α symbols) is stored in i-th node

Regeneration and Reconstruction

$$C = \Psi M$$

$$\begin{bmatrix} c_1^t \\ \vdots \\ c_f^t \\ \vdots \\ c_n^t \end{bmatrix} = \begin{bmatrix} \psi_1^t \\ \vdots \\ \psi_f^t \\ \vdots \\ \psi_n^t \end{bmatrix} M$$

Regeneration: Repair $c_f^t = \psi_f^t M$ of the failed node from $d\beta$ symbols (d nodes)

Reconstruction: Recovering M from $k\alpha$ symbols (k nodes)

MBR Code Construction

Parameter set:
$$\left(\alpha=d,\beta=1,B=\binom{k+1}{2}+k(d-k)\right)$$

Message matrix M (symmetric): Independent B symbols

$$M = \begin{bmatrix} S & T \\ T^t & 0 \end{bmatrix}$$

- $S: (k \times k)$ symmetric matrix with $\binom{k+1}{2}$ symbols
- $T: (k \times (d-k))$ matrix with $k \times (d-k)$ symbols

Encoding matrix Ψ :

$$\Psi = [\Phi \ \Delta]$$

- Any d rows of Ψ are linearly independent (Ψ : $n \times d$)
- Any k rows of Φ are linearly independent $(\Phi: n \times k)$

MBR Exact-Regeneration

Theorem: Exact-regeneration of any failed node can be achieved by downloading one symbol each from any d nodes

Proof:

- Want to repair $c_f^t = \psi_f^t M$ in the failed node.
- Get the following d symbols from d helper nodes.

$$\begin{bmatrix} c_{i_1}^t \psi_f \\ \vdots \\ c_{i_d}^t \psi_f \end{bmatrix} = \begin{bmatrix} \psi_{i_1}^t \\ \vdots \\ \psi_{i_d}^t \end{bmatrix} M \psi_f = \Psi_{\text{repair}} M \psi_f$$

- Since $\Psi_{
 m repair}$ is invertible, we can obtain $M\psi_f$.
- Since M is symmetric, $\left(M\psi_f\right)^t = \psi_f^t M$, which is the data stored in the failed node.

MBR Data-Reconstruction

Theorem: All the B message symbols can be recovered by connecting to any k nodes

Proof:

- Want to recover M (B message symbols).
- Get the following $k\alpha$ symbols from k helper nodes.

$$\begin{bmatrix} c_{i_1}^t \\ \vdots \\ c_{i_k}^t \end{bmatrix} = \begin{bmatrix} \psi_{i_1}^t \\ \vdots \\ \psi_{i_k}^t \end{bmatrix} M = \Psi_{DC}M = \begin{bmatrix} \Phi_{DC} & \Delta_{DC} \end{bmatrix} \begin{bmatrix} S & T \\ T^t & 0 \end{bmatrix}$$
$$= \begin{bmatrix} \Phi_{DC}S + \Delta_{DC}T^t & \Phi_{DC}T \end{bmatrix}$$

- Since Φ_{DC} is invertible, we can obtain T from $\Phi_{\mathrm{DC}}T$.
- Afterwards, we can obtain S from $\Phi_{DC}S + \Delta_{DC}T^t$.
- From S and T, we know the B message symbols.

MSR Code Construction

Parameter set: $(\alpha = k - 1, \beta = 1, B = k\alpha = \alpha(\alpha + 1))$ where $d = 2k - 2 = 2\alpha$

Message matrix M (symmetric)

$$M = \begin{bmatrix} S_1 \\ S_2 \end{bmatrix}$$

- S_1 and S_2 : $(\alpha \times \alpha)$ symmetric matrices with $\binom{\alpha+1}{2}$ symbols
 - M has the $\alpha \times (\alpha + 1) = B$ symbols

Encoding matrix Ψ

$$\Psi = [\Phi \ \Gamma \Phi]$$

- Any d rows of Ψ are linearly independent (Ψ : $n \times d$)
- Any α rows of Φ are linearly independent $(\Phi: n \times \alpha)$
- The n diagonal elements of the diagonal matrix Γ are distinct

MSR Exact-Regeneration

Theorem: Exact-regeneration of any failed node can be achieved by downloading one symbol each from any $d=2k-2=2\alpha$ nodes **Proof:**

• Want to repair c_f^t of the failed node.

$$c_f^t = \psi_f^t M = \begin{bmatrix} \phi_f^t & \lambda_f \phi_f^t \end{bmatrix} \begin{bmatrix} S_1 \\ S_2 \end{bmatrix} = \phi_f^t S_1 + \lambda_f \phi_f^t S_2$$

• Get the following d symbols from d helper nodes.

$$\begin{bmatrix} c_{i_1}^t \phi_f \\ \vdots \\ c_{i_d}^t \phi_f \end{bmatrix} = \begin{bmatrix} \psi_{i_1}^t \\ \vdots \\ \psi_{i_d}^t \end{bmatrix} M \phi_f = \Psi_{\text{repair}} M \phi_f$$

- Since Ψ_{repair} is invertible, we can obtain $M\phi_f = \begin{bmatrix} S_1\phi_f \\ S_2\phi_f \end{bmatrix}$.
- Since S_1 and S_2 are symmetric, $\left(S_i\phi_f\right)^t=\phi_f^tS_i$ for i=1,2, where we can repair $\phi_f^tS_1+\lambda_f\phi_f^tS_2$.

MSR Exact-Reconstruction

Theorem: All the B message symbols can be recovered by connecting to any k nodes

Proof:

- Want to recover M.
- Get the following $k\alpha$ symbols from k helper nodes.

$$\begin{bmatrix} c_{i_1}^t \\ \vdots \\ c_{i_k}^t \end{bmatrix} = \begin{bmatrix} \psi_{i_1}^t \\ \vdots \\ \psi_{i_k}^t \end{bmatrix} M = \Psi_{DC}M = [\Phi_{DC} \ \Gamma_{DC}\Phi_{DC}] \begin{bmatrix} S_1 \\ S_2 \end{bmatrix}$$
$$= [\Phi_{DC}S_1 + \Gamma_{DC}\Phi_{DC}S_2]$$

• Post multiply with Φ_{DC}^t ,

$$[\Phi_{DC}S_1 + \Gamma_{DC}\Phi_{DC}S_2]\Phi_{DC}^t = \Phi_{DC}S_1\Phi_{DC}^t + \Gamma_{DC}\Phi_{DC}S_2\Phi_{DC}^t$$
$$= P + \Gamma_{DC}Q$$

$$-P = \Phi_{\rm DC}S_1\Phi_{\rm DC}^t$$
 and $Q = \Phi_{\rm DC}S_2\Phi_{\rm DC}^t$ are symmetric.

MSR Exact-Reconstruction

Proof (continued):

- Know $A = P + \Gamma_{DC}Q$ where P and Q are symmetric.
- By comparing (i,j)-th element and (j,i)-th element of $A=P+\Gamma_{\rm DC}Q$, all the nondiagonal elements of P and Q are known by

$$-A_{i,j} = P_{i,j} + \lambda_i Q_{i,j} \text{ and } A_{j,i} = P_{j,i} + \lambda_j Q_{j,i} = P_{i,j} + \lambda_j Q_{i,j}$$

$$- Q_{i,j} = \frac{A_{i,j} - A_{j,i}}{\lambda_i - \lambda_j}$$

- The elements in the *i*-th row of $P = \Phi_{DC}S_1\Phi_{DC}^t$ except $P_{i,i}$ are given by $\phi_i^tS_1[\phi_1\cdots\phi_{i-1}\phi_{i+1}\cdots\phi_{\alpha+1}]$
- Since $[\phi_1 \cdots \phi_{i-1} \phi_{i+1} \cdots \phi_{\alpha+1}]$ is invertible, know $\phi_i^t S_1$ for $1 \le i \le k$.
- Since $[\psi_1 \quad \psi_{l-1} \quad \tau_{l+1}]$...
 Selecting the first α of these, know $\begin{bmatrix} \phi_1^t \\ \vdots \\ \phi_{\alpha}^t \end{bmatrix} S_1 = \Phi_{\mathrm{DC}}' S_1$.
- Since Φ'_{DC} is invertible, reconstruct S_1 .
- Similarly, we can reconstruct S_2 from Q.

Open Problems

- Gap between functional regenerating codes and exact regenerating codes at interior points (*)
- Explicit code constructions for [n, k, d < 2k 2] at the MSR point
 - For high rate code
 - Not achievable if $\beta = 1$ (**)

^{*} Tian, IEEE Journal on Selected Areas in Communications, 2014.

^{**} Shah, Rashmi, Kumar, and Ramchandran, IEEE ITW 2010.