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An example 

“Network Coding for Distributed Storage Systems”, A.G.Dimakis et.al. 2010  
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An example 

Data 

Storage 

Node Failure 

Functional 
Regeneration 

( , , , , )n k d   Whole file->k pieces->n fragments 
Each fragment: 𝛼 symbols 
Regeneration bandwidth:  d 
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An example 
2B Mb

1Mb 

2, 4, 3k n d  

2 2 1.5d Mb       

Max-flow Min-cut 
Theorem 
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Minimum Storage Size 
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Minimum Storage Size 
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Sketch of the Proof (Lower bound) 
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Sketch of the Proof (Lower bound) 
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Topological Order (any acyclic graph) 
 

i j 

Time order is feasible 



Sketch of the Proof (Lower bound) 

First outer node on the right side 

1 min{ , }c d 
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Topological Order (any acyclic graph) 
 

i j 

Time order is feasible 



Sketch of the Proof (Lower bound) 

Second outer node on the right side 
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Exact-Regeneration Code 
Constructions 

MBR 

MSR 

Interior points 

• MBR (Minimum bandwidth regeneration) points 

• MSR (Minimum storage regeneration) points 

• Interior points 

13 / 24 



Exact-Regeneration Code 
Constructions 

• MBR point*: Explicit code constructions for all 𝑛, 𝑘, 𝑑  parameters 
are possible 

• MSR point*: Explicit code constructions for 𝑛, 𝑘, 𝑑 ≥ 2𝑘 − 2  
parameters are possible 

– Low rate: 𝑛 − 1 ≥ 𝑑 ≥ 2𝑘 − 2, 
𝑘

𝑛
≤

𝑘

2𝑘−1
≈

1

2
 

• Interior points**: Non-existence of exact regeneration codes 

* Rashmi, Shah, and Kumar, IEEE Trans. Inf. Theory, 2011. 
** Shah, Rashimi, Kumar and Ramchandram, IEEE Trans. Inf. Theory, 2012. 
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Product-Matrix Framework 

𝐶 = Ψ𝑀 

 
𝑐1

𝑡

⋮
𝑐𝑖

𝑡

⋮
𝑐𝑛

𝑡

=

𝜓1
𝑡

⋮
𝜓𝑖

𝑡

⋮
𝜓𝑛

𝑡

𝑀 

• Code matrix 𝐶: 𝑛 × 𝛼 

• Encoding matrix Ψ: 𝑛 × 𝑑 

• Message matrix 𝑀: 𝑑 × 𝛼 

– 𝑑𝛼 > 𝐵, 𝑀 contains the 𝐵 message symbols and some 
redundancy 

 𝑐𝑖
𝑡 = 𝜓𝑖

𝑡𝑀 (𝛼 symbols) is stored in i-th node 
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Regeneration and Reconstruction 

𝐶 = Ψ𝑀 

 
𝑐1

𝑡

⋮
𝑐𝑓

𝑡

⋮
𝑐𝑛

𝑡

=

𝜓1
𝑡

⋮
𝜓𝑓

𝑡

⋮
𝜓𝑛

𝑡

𝑀 

 

Regeneration: Repair 𝑐𝑓
𝑡 = 𝜓𝑓

𝑡 𝑀 of the failed node from 𝑑𝛽 symbols 

(𝑑 nodes) 

 

Reconstruction: Recovering 𝑀 from 𝑘𝛼 symbols (𝑘 nodes) 
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MBR Code Construction 

Parameter set: 𝛼 = 𝑑, 𝛽 = 1, 𝐵 =
𝑘 + 1

2
+ 𝑘 𝑑 − 𝑘  

Message matrix 𝑀 (symmetric): Independent 𝐵 symbols 

𝑀 =
𝑆 𝑇

𝑇𝑡 0
 

• 𝑆: 𝑘 × 𝑘  symmetric matrix with 
𝑘 + 1

2
 symbols 

• 𝑇: 𝑘 × 𝑑 − 𝑘  matrix with 𝑘 × 𝑑 − 𝑘  symbols 

Encoding matrix Ψ: 
Ψ = Φ  Δ  

• Any 𝑑 rows of Ψ are linearly independent (Ψ: 𝑛 × 𝑑) 

• Any 𝑘 rows of Φ are linearly independent (Φ: 𝑛 × 𝑘) 
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MBR Exact-Regeneration 

Theorem: Exact-regeneration of any failed node can be achieved by 
downloading one symbol each from any 𝑑 nodes 

Proof: 

• Want to repair 𝑐𝑓
𝑡 = 𝜓𝑓

𝑡 𝑀 in the failed node. 

• Get the following 𝑑 symbols from 𝑑 helper nodes. 

𝑐𝑖1

𝑡 𝜓𝑓

⋮
𝑐𝑖𝑑

𝑡 𝜓𝑓

=

𝜓𝑖1

𝑡

⋮
𝜓𝑖𝑑

𝑡
𝑀𝜓𝑓 = Ψrepair𝑀𝜓𝑓 

• Since Ψrepair is invertible, we can obtain 𝑀𝜓𝑓. 

• Since 𝑀 is symmetric, 𝑀𝜓𝑓
𝑡

= 𝜓𝑓
𝑡 𝑀, which is the data stored in 

the failed node. 
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MBR Data-Reconstruction 

Theorem: All the 𝐵 message symbols can be recovered by connecting 
to any 𝑘 nodes 

Proof: 

• Want to recover 𝑀 (𝐵 message symbols). 

• Get the following 𝑘𝛼 symbols from 𝑘 helper nodes. 

𝑐𝑖1

𝑡

⋮
𝑐𝑖𝑘

𝑡
=

𝜓𝑖1

𝑡

⋮
𝜓𝑖𝑘

𝑡
𝑀 = ΨDC𝑀 = ΦDC   ΔDC

𝑆 𝑇
𝑇𝑡 0

 

          = ΦDC𝑆 + ΔDC𝑇𝑡    ΦDC𝑇  

• Since ΦDC is invertible, we can obtain 𝑇 from ΦDC𝑇. 

• Afterwards, we can obtain 𝑆 from ΦDC𝑆 + ΔDC𝑇𝑡.  

• From 𝑆 and 𝑇, we know the 𝐵 message symbols. 
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MSR Code Construction 

Parameter set: 𝛼 = 𝑘 − 1, 𝛽 = 1, 𝐵 = 𝑘𝛼 = 𝛼 𝛼 + 1  where 
𝑑 = 2𝑘 − 2 = 2𝛼 

Message matrix 𝑀 (symmetric) 

𝑀 =
𝑆1

𝑆2
 

• 𝑆1 and 𝑆2: 𝛼 × 𝛼  symmetric matrices with 
𝛼 + 1

2
 symbols 

– 𝑀 has the 𝛼 × 𝛼 + 1 = 𝐵 symbols 

Encoding matrix Ψ 
Ψ = Φ  ΓΦ  

• Any 𝑑 rows of Ψ are linearly independent (Ψ: 𝑛 × 𝑑) 

• Any 𝛼 rows of Φ are linearly independent (Φ: 𝑛 × 𝛼) 

• The 𝑛 diagonal elements of the diagonal matrix Γ are distinct 
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MSR Exact-Regeneration 

Theorem: Exact-regeneration of any failed node can be achieved by 
downloading one symbol each from any 𝑑 = 2𝑘 − 2 = 2𝛼 nodes 

Proof: 

• Want to repair 𝑐𝑓
𝑡 of the failed node.  

𝑐𝑓
𝑡 = 𝜓𝑓

𝑡 𝑀 = 𝜙𝑓
𝑡    𝜆𝑓𝜙𝑓

𝑡 𝑆1

𝑆2
= 𝜙𝑓

𝑡𝑆1 + 𝜆𝑓𝜙𝑓
𝑡𝑆2 

• Get the following 𝑑 symbols from 𝑑 helper nodes. 

𝑐𝑖1

𝑡 𝜙𝑓

⋮
𝑐𝑖𝑑

𝑡 𝜙𝑓

=

𝜓𝑖1

𝑡

⋮
𝜓𝑖𝑑

𝑡
𝑀𝜙𝑓 = Ψrepair𝑀𝜙𝑓 

• Since Ψrepair is invertible, we can obtain 𝑀𝜙𝑓 =
𝑆1𝜙𝑓

𝑆2𝜙𝑓
. 

• Since 𝑆1 and 𝑆2 are symmetric, 𝑆𝑖𝜙𝑓
𝑡

= 𝜙𝑓
𝑡𝑆𝑖  for 𝑖 = 1, 2, where we can 

repair 𝜙𝑓
𝑡𝑆1 + 𝜆𝑓𝜙𝑓

𝑡𝑆2. 
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MSR Exact-Reconstruction 

Theorem: All the 𝐵 message symbols can be recovered by connecting 
to any 𝑘 nodes 

Proof: 

• Want to recover 𝑀. 

• Get the following 𝑘𝛼 symbols from 𝑘 helper nodes. 

𝑐𝑖1

𝑡

⋮
𝑐𝑖𝑘

𝑡
=

𝜓𝑖1

𝑡

⋮
𝜓𝑖𝑘

𝑡
𝑀 = ΨDC𝑀 = ΦDC  ΓDCΦDC

𝑆1

𝑆2

= ΦDC𝑆1 + ΓDCΦDC𝑆2  

• Post multiply with ΦDC
𝑡 ,  

ΦDC𝑆1 + ΓDCΦDC𝑆2 ΦDC
𝑡 = ΦDC𝑆1ΦDC

𝑡 + ΓDCΦDC𝑆2ΦDC
𝑡  

                                                  = 𝑃 + ΓDC𝑄 

– 𝑃 = ΦDC𝑆1ΦDC
𝑡  and 𝑄 = ΦDC𝑆2ΦDC

𝑡  are symmetric. 
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MSR Exact-Reconstruction 

Proof (continued): 
• Know 𝐴 = 𝑃 + ΓDC𝑄 where 𝑃 and 𝑄 are symmetric. 
• By comparing (𝑖, 𝑗)-th element and (𝑗, 𝑖)-th element of 𝐴 = 𝑃 + ΓDC𝑄, all 

the nondiagonal elements of 𝑃 and 𝑄 are known by   

– 𝐴𝑖,𝑗 = 𝑃𝑖,𝑗 + 𝜆𝑖𝑄𝑖,𝑗  and 𝐴𝑗,𝑖 = 𝑃𝑗,𝑖 + 𝜆𝑗𝑄𝑗,𝑖 = 𝑃𝑖,𝑗 + 𝜆𝑗𝑄𝑖,𝑗 

– 𝑄𝑖,𝑗 =
𝐴𝑖,𝑗−𝐴𝑗,𝑖

𝜆𝑖−𝜆𝑗
 

• The elements in the 𝑖-th row of 𝑃 = ΦDC𝑆1ΦDC
𝑡  except 𝑃𝑖,𝑖 are given by 

𝜙𝑖
𝑡𝑆1 𝜙1 ⋯ 𝜙𝑖−1 𝜙𝑖+1 ⋯ 𝜙𝛼+1  

• Since 𝜙1 ⋯ 𝜙𝑖−1 𝜙𝑖+1 ⋯ 𝜙𝛼+1  is invertible, know 𝜙𝑖
𝑡𝑆1 for 1 ≤ 𝑖 ≤ 𝑘.  

• Selecting the first 𝛼 of these, know 
𝜙1

𝑡

⋮
𝜙𝛼

𝑡
𝑆1 = ΦDC

′ 𝑆1.  

• Since ΦDC
′  is invertible, reconstruct 𝑆1.  

• Similarly, we can reconstruct 𝑆2 from 𝑄.  
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Open Problems 

• Gap between functional 
regenerating codes and exact 
regenerating codes at interior 
points (*) 

 

• Explicit code constructions for 
𝑛, 𝑘, 𝑑 < 2𝑘 − 2  at the MSR 

point 

– For high rate code 

– Not achievable if 𝛽 = 1 (**) 

 
* Tian, IEEE Journal on Selected Areas in Communications, 2014. 
** Shah, Rashmi, Kumar, and Ramchandran, IEEE ITW 2010. 

Functional  
Repair region 
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