
1

Regenerating Codes and Locally Recoverable

Codes for Distributed Storage Systems

Yongjune Kim and Yaoqing Yang

Abstract

We survey the recent results on applying error control coding to distributed storage systems. In

such systems, errors often happen in a burst manner, or maybe only one storage node in the whole

distributed system fails. Therefore, only a small amount of information, e.g., one data fragment, has to

be recovered. Therefore, accessing the whole data is unnecessary. Especially, we focus on regenerating

codes and locally recoverable codes, which reduce the communication cost during repairing of the

corrupted data.

I. INTRODUCTION

In the distributed storage systems, redundancy must be introduced into the systems to improve

reliability against node failures since each storage node is individually unreliable. The simplest

way is replication of the data in multiple storage nodes. However, error control coding can

improve the reliability for the same redundancy compared to replication [1]–[3].

Regenerating codes and locally recoverable codes are technologies to reconstruct a codeword

from a partial corruption, such as a single node failure. They have great advantages in distributed

storage systems, since in this kind of systems, code corruption often occurs in only a few symbols

or in a single node. For example, in order to reconstruct each symbol, the whole codeword has to

be transmitted if the conventional maximum distance separable (MDS) codes are used. However,

if locally recoverable codes are utilized, the number of symbols that are needed to reconstruct

a single symbol is less than the code length.

Y. Kim and Y. Yang are with the Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh,

PA, 15213, USA (e-mail: yongjunekim@cmu.edu, yyaoqing@andrew.cmu.edu).

2

Regenerating codes are important for distributed storage systems for the same reason, i.e., it

might be practical to design codes regenerating the data in one node by communicating functions

of the data in the surviving nodes with minimum communication cost. This serves as the main

motivation for us to look at regenerating codes. However, instead of regenerating the data in

one node that are exactly the same as the original data, one may generate another data fragment

that is constituted by linear combinations of survival data fragments and preserves the ability to

regenerate the original data. This property offers a huge flexibility, which yields a quite natural

tradeoff between storage and communication cost to regenerate a data fragment.

We use an example to show how regenerating codes work. We divide a message (e.g., file) of

size B into k fragments, encode them into n encoded fragments using an (n, k) MDS code, and

store them at n nodes. Then, the message can be recovered from any set of k coded fragments.

MDS codes such as Reed-Solomon (RS) codes are optimal in terms of the redundancy-reliability

tradeoff because k fragments provide the minimum data for recovering the original message of

size B [2].

However, the conventional MDS codes such as RS codes are not optimal in terms of repair

bandwidth of the distributed storage systems. When an individual node fails, the distributed

storage systems should regenerate (i.e., repair) a failed node. A straightforward method of

regeneration is to connect to any k nodes, download the entire message, and extract the data

that was stored in the failed node. However, downloading the entire message in order to recover

the data stored in the failed node is wasteful, and raises the question as to whether there is a

better solution. Such a solution is provided by the concept of regenerating codes [2]–[4].

II. REGENERATING CODES

A. Regenerating Codes

Conventional RS codes treat each fragment stored in a single node as one symbol over the

finite field Fq. In contrast, regenerating codes treat each fragment as being comprised of α

symbols over the finite field Fq. Linear operations over Fq permit the transfer of a fraction of

the data stored in a particular node [4]. In addition to this new parameter α, two other parameters

d and β are associated with regenerating codes.

Under the definition of regenerating codes introduced in [2], a failed node connects to an

arbitrary set of d remaining nodes while downloading β ≤ α symbols from each node. This

3

Fig. 1. Two operations of regenerating codes [5]. (a) Reconstruction. (b) Regeneration.

process is termed as regeneration and the total amount γ = dβ of data downloaded during

regeneration as the repair bandwidth. Further, the set of d nodes are termed as helper nodes.

By using regenerating codes, the repair bandwidth γ can be smaller than the size of the file B,

i.e., γ < B [2], [4].

The parameter set of regenerating codes over Fq is given by {n, k, d, α, β, B}. The corre-

sponding codes are called [n, k, d] regenerating codes having a parameter set (α, β,B). Two

important operations of [n, k, d] regenerating codes are as follows.

• (Data) Reconstruction: Reconstruct the message of size B symbols by downloading B = kα

symbols from any k nodes

• Regeneration (repair): Repair a failed node of size α symbols by downloading γ = dβ

symbols from any d nodes among n− 1 remaining nodes

These two operations are depicted in Fig. 1 of [5].

B. Tradeoff between Storage and Repair Bandwidth

In [2], the feasible storage-repair bandwidth points were derived by the cut-set bound. The

parameters of a regenerating code must satisfy

B ≤
k−1∑
i=0

{α, (d− i)β}. (1)

The feasible points can be explicitly characterized by the following theorem.

4

Fig. 2. Optimal tradeoff curve between storage α and repair bandwidth γ = dβ for the [n = 10, k = 5, d = 9] regenerating

code [2].

Theorem 1 ([2]): For any α ≥ α∗(n, k, d, γ), the points (n, k, d, α, γ) are feasible, and linear

network codes suffice to achieve them. It is information theoretically impossible to achieve points

with α < α∗(n, k, d, γ). The threshold function α∗(n, k, d, γ) is the following:

α∗(n, k, d, γ) =


B
k
, γ ∈ [f(0),+∞)

B−g(i)γ
k−i , γ ∈ [f(i), f(i− 1))

(2)

where

f(i) =
2Bd

(2k − i− 1)i+ 2k(d− k + 1)
, (3)

g(i) =
(2d− 2k + i+ 1)i

2d
. (4)

For the given [n, k, d] regenerating code, it is desirable to minimize both α as well as β

since minimizing α results in a minimum storage solution, while minimizing β (for given d)

results in a minimum repair bandwidth solution. It is not possible to minimize both α and β

simultaneously. Thus there is a tradeoff between α and β as shown in Fig. 2.

There are two extremal points on the optimal tradeoff curve, which correspond to the best

storage efficiency and the minimum repair bandwidth, respectively. Theses two extremal points

are called the minimum storage regeneration (MSR) and minimum bandwidth regeneration

5

(MBR) points. The parameters α and β for the MSR point on the tradeoff are given by

α =
B

k
,

β =
B

k(d− k + 1)
.

(5)

The parameters α and β for the MBR point on the tradeoff are given by

α =
2dB

k(2d− k + 1)
= dβ,

β =
2B

k(2d− k + 1)
.

(6)

All the other points becides MSR and MBR points are called interior points.

C. Striping of Data [4]

Given an optimal [n, k, d] regenerating code with parameter set (α, β,B), a second optimal

regenerating code with parameter set (α′ = δα, β′ = δβ,B′ = δB) for any positive integer δ can

be constructed, by dividing the δB message symbols into δ groups of B symbols each, and

applying the (α, β,B) code to each group independently.

From (5) and (6), it is true that α and B of the MSR and MBR points are multiples of β. Thus,

if we can construct an optimal [n, k, d] regenerating code with β = 1, then we can construct an

optimal [n, k, d] regenerating codes of the MSR and MBR points for any positive integer β. If

β = 1, the values of α and B for the MSR point are given

α = d− k + 1

B = k(d− k + 1) = kα.
(7)

Also, for the MBR point, the values of α and B are given by

α = d

B = kd−
(
k

2

)
.

(8)

D. Functional Versus Exact Regeneration

The notion of functional regeneration was introduced in [2]. A failed node is replaced by

a node that is functionally equivalent such that the resulting distributed storage system of n

nodes must continue to possess the reconstruction and regeneration properties. In the functional

6

Fig. 3. Intuition on using cut-set bounds to obtain the optimum regenerating bandwidth [2].

regeneration, the data stored at the replacement node may be different from the data stored in the

corresponding failed node. This difference may incur the additional communication to inform

all nodes of the replacement. Moreover, the reconstruction and regeneration need to be retuned

for the new set of coefficients.

On the other hand, by exact regeneration, a replaced node is required to store exactly the same

data as was stored in the failed node. Hence, there is no change in the coefficients of a replace

node under exact regeneration. This obviates additional communication overheads during the

regeneration operation, and also avoids retuning of the reconstruction and regeneration operations.

Another advantage of exact regeneration over functional regeneration is the ability to maintain

the code in systematic form [4], [5].

Due to these advantages, the exact regeneration codes are of considerable interest. In the next

section, we will describe the explicit constructions of exact regenerating codes at the MBR and

MSR points, which were proposed in [4].

III. INFORMATION FLOW GRAPH AND OPTIMAL REGENERATING CODES [2]

In [2], the optimal tradeoff between storage and repair bandwidth was derived by the cut-set

bound, which was explained in Theorem 1. This optimal tradeoff can be achieve by network

coding techniques [2]. In what follows, we briefly review the proof techniques used in [2].

The basic idea can be illustrated using Fig. 3. In this figure, the distributed storage system

is modeled as an information flow graph. The source is denoted by the node S and the file

7

Fig. 4. Example that achieves the min-cut bound in (9) [2].

stored in it has size B = 2Mb. The source are connected to n = 4 distributed storage nodes

and each node has a storage size α = 1Mb. Each storage node is partitioned into an in-node

and an out-node. The parameter k = 2, meaning that from any 2 distributed storage nodes, the

original data can be retrieved. The parameter d = 3, which means that any node failure can be

restored using only data from 3 existing nodes. From each existing node, the data size to be

communicated is β. Suppose the fourth node is corrupted, and the fifth node is regenerated. We

draw d = 3 links from existing nodes to the regenerated node. Each link has capacity β. Finally,

we require that all data can be reconstructed in the data collector with infinite capacity links.

From the cut-set bound, we know that on the red cut α+2β ≥ B, which means that β ≥ 0.5Mb

and the total repair bandwidth γ = dβ ≥ 1.5Mb.

Then we discuss how the theorem 1 is proved. In fact, from any node failure patterns, a

corresponding information flow graph can be constructed. Therefore, we would like to calculate

the minimum sum-capacity of all min-cuts in all possible information flows. The main step of

the proof is to show that the minimum min-cut value among all possible information flow graphs

can be written as follows

C =
∑
e∈S

ce =

min{d,k}−1∑
i=0

min{(d− i)β, α}. (9)

There is an explicit example where the min-cut value is achieved, which is shown in Fig. 4. In

this figure, the first regenerated node is connected to the last d distributed storage nodes. The

8

second regenerated node is connected to the last d− 1 original nodes and the first regenerated

nodes. In general, the i-th new node is connected to the last d + 1 − i original nodes and the

newly generated i− 1 nodes. There is a cut, which either cuts between the i-th in-node and the

i-th out-node, or cuts between the i-th in-node and the old nodes. The choice depends on which

one is smaller. Clearly, this cut yields the expression in (9).

The remaining thing is to prove that for any cut on any feasible information flow graph,

the sum-capacity is always greater all equal to the RHS of (9). It can be proved by defining a

topological order of all the nodes on the right part of the examined cut. That is, the index i of

one node is always smaller than the index j of another node, if there is a directed link from

the out-node of node with index i to the in-node of the node with index j. Then, we examine

the local cut that divides the topologically first node to the right part of the examined cut. This

local cut either has value α or has value dβ, because the d existing nodes that are connected

to this topologically first node must all be on the left part of the examined cut, otherwise the

topologically first node has a father-node on the right part. The same reasoning can be carried

on, and the expression on the RHS of (9) can be obtained.

IV. EXPLICIT CONSTRUCTIONS OF EXACT REGENERATING CODES [4]

A. Product-Matrix Framework

In [4], the product-matrix framework was proposed. Under this framework, each codeword in

the distributed storage systems can be represented by an (n× α) code matrix C whose ith row

cti contains the α symbols stored by the ith node. Note that t denotes the transpose. Each code

matrix is the product

C = ΨM (10)

of an (n× d) encoding matrix Ψ and an (d× α) message matrix M . The entries of the matrix

Ψ are fixed a priori and independent of the message symbols. The message matrix M contains

the B message symbols, with some symbols possibly repeated. We will refer to the ith row ψt
i

of Ψ as the encoding vector of node i since it is used to encode the message into the fragment

cti = ψt
i
M (11)

which is stored in the ith node.

9

Reconstruction amounts to recovering the message matrix M from the kα symbols obtained

from an arbitrary set of k storage nodes. Let us denote the set of k nodes to which the data-

collector (DC) connects as {i1, . . . , ik}. The jth node in this set passes on the vector ψt
ij
M to

the DC. Hence, the DC obtains the product matrix

ΨDCM (12)

where ΨDC is the submatrix of Ψ consisting of the k rows
{
ψt
i1
, . . . , ψt

ik

}
. By using the properties

of the matrices ΨDC and M , we can recover the message matrix M and obtain the B message

symbols.

To regenerate a failed node f , the node replacing the failed node connects to an arbitrary

subset {h1, . . . , hd} of d helper nodes. Each helper node passes on the inner product of the α

symbols stored in it with a vector µ
f

of length α to the replacement node. Thus, the helper node

hj passes

ψt
hj
Mµ

f
. (13)

The replacement node obtains the product matrix

ΨrepairMµ
f

(14)

where Ψrepair is the submatrix of Ψ consisting of the d rows
{
ψt
h1
, . . . , ψt

hd

}
. By using the

properties of the matrices Ψrepair and M , we can repair (regenerate) the α symbols in the failed

node.

B. Product-Matrix MBR Code Construction

We can construct any [n, k, d] regenerating codes for the MBR point (i.e., MBR codes) if all

n, k, and d satisfy k ≤ d ≤ n− 1. B of (8) can be rewritten in the following form.

B =

(
k + 1

2

)
+ k(d− k) (15)

Then the parameter set of the [n, k, d] MBR code is given by(
α = d, β = 1, B =

(
k + 1

2

)
+ k(d− k)

)
. (16)

Let S be a (k× k) matrix constructed so that the
(
k+1
2

)
entries in the upper-triangular half of

the matrix are filled up by
(
k+1
2

)
distinct message symbols drawn from the set {ui}Bi=1. The

(
k
2

)

10

entries in the strictly lower-triangular portion of the matrix are then chosen so as to make the

matrix S a symmetric matrix. The remaining k(d − k) message symbols are used to fill up a

second (k× (d− k)) matrix T . The message matrix M is then defined as the (d× d) symmetric

matrix given by

M =

 S T

T t 0

 (17)

The symmetry of the message matrix will be found to be instrumental during regeneration and

reconstruction. Next, define the encoding matrix Ψ to be any (n× d) matrix of the form

Ψ = [Φ ∆] (18)

where Φ and ∆ are (n× k) and (n× (d− k)) matrices respectively, chosen in such a way that:

1) Any d rows of Ψ are linearly independent;

2) Any k rows of Φ are linearly independent.

The above requirements can be met, for example, by choosing Ψ to be either a Cauchy or

a Vandermonde matrix. The only constraint on the field size comes from the above required

properties of the encoding matrix Ψ. For instance, when Ψ is chosen as a Vandermonde matrix,

any field of size n or higher suffices.

The following two theorems show that the code presented is an [n, k, d] MBR code by

establishing the exact-regeneration and data-reconstruction properties respectively.

Theorem 2 (MBR Exact-Regeneration [4]): In the code presented, exact-regeneration of any

failed node can be achieved by downloading one symbol each from any d of the (n−1) remaining

nodes.

Proof: Let ψt
f

be the row of Ψ corresponding to the failed node f . Thus the α(= d) symbols

stored in the failed node correspond to the vector

ψt
f
M. (19)

The replacement for the failed node f connects to an arbitrary set {hj | j = 1, . . . , d} of d helper

nodes. Upon being contacted by the replacement node, the helper node hj computes the inner

product

ψt
hj
Mψ

f
(20)

11

and passes on this value to the replacement node. Thus, in the present construction, the vector

µ
f

in (13) equals ψ
f
. Thus, the replacement node obtains the d symbols ΨrepairMψ

f
from the d

helper nodes, where

Ψrepair =


ψt
h1...

ψt
hd

 . (21)

By construction, the (d × d) matrix Ψrepair is invertible. Hence, the replacement node recovers

Mψ
f

through multiplication on the left by Ψ−1repair. Since M is symmetric, we can obtain(
Mψ

f

)t
= ψt

f
M (22)

which is precisely the data previously stored in the failed node.

Theorem 3 (MBR Data-Reconstruction [4]): In the code presented, all the B message sym-

bols can be recovered by connecting to any k nodes, i.e., the message symbols can be recovered

through linear operations on the entries of any k rows of the matrix C.

Proof: Let

ΨDC = [ΦDC ∆DC] (23)

be the (k × d) submatrix of Ψ, corresponding to the k rows of Ψ to which the DC connects.

Thus, the DC has access to the symbols

ΨDCM =
[
ΦDCS + ∆DCT

t ΦDCS
]
. (24)

By construction, ΨDC is invertible. Hence, by multiplying the matrix ΨDCM on the left by Ψ−1DC,

one can recover first T and subsequently, S.

C. Product-Matrix MSR Code Construction

We can construct any [n, k, d ≥ 2k − 2] regenerating codes for the MSR point (i.e., MSR

codes). We begin by constructing an MSR code for d = 2k− 2 and can extend it to MSR codes

such that d > 2k − 1 [4].

At the MSR point with d = 2k − 2, we have

α = d− k + 1 = k − 1 (25)

12

and hence

d = 2α. (26)

Also,

B = kα = α(α + 1). (27)

We define the (d× α) message matrix M as

M =

 S1

S2

 (28)

where S1 and S2 are (α × α) symmetric matrices constructed such that the
(
α+1
2

)
entries in

the upper-triangular part of each of the two matrices are filled up by
(
α+1
2

)
distinct message

symbols. Thus, all the B = α(α+ 1) message symbols are contained in the two matrices S1 and

S2. The entries in the strictly lower-triangular portion of the two matrices S1 and S2 are chosen

so as to make these matrices symmetric.

Next, we define the encoding matrix Ψ to be the (n× d) matrix given by

Ψ = [Φ ΛΦ] (29)

where Φ is an (n × α) matrix and Λ is an (n × n) diagonal matrix. The elements of Ψ are

chosen such that the following conditions are satisfied:

1) Any d rows of Ψ are linearly independent;

2) Any α rows of Φ are linearly independent;

3) The n diagonal elements of Λ are distinct.

The above requirements can be met, for example, by choosing Ψ to be a Vandermonde matrix

with elements chosen carefully to satisfy the third condition.

Theorem 4 (MSR Exact-Regeneration [4]): In the code presented, exact-regeneration of any

failed node can be achieved by downloading one symbol each from any d = 2k−2 of the (n−1)

remaining nodes.

Proof: Let
[
φt
f
λfφ

t

f

]
be the row of Ψ corresponding to the failed node f . The α symbols

stored in the failed node were [
φt
f
λfφ

t

f

]
M = φt

f
S1 + λfφ

t

f
S2. (30)

13

The replacement for the failed node f connects to an arbitrary set {hj | j = 1, . . . , d} of d

helper nodes. Upon being contacted by the replacement node, the helper node hj computes the

inner product ψt
hj
Mφ

f
and passes on this value to the replacement node. Note that the vector

µ
f

in (13) equals φ
f
. The replacement node obtains the d symbols ΨrepairMφ

f
from the d helper

nodes, where

Ψrepair =


ψt
h1...

ψt
hd

 . (31)

By construction, the (d× d) matrix Ψrepair is invertible. Thus, the replacement node knows

Mφ
f

=

 S1φf

S2φf

 . (32)

As S1 and S2 are symmetric matrices, the replacement node has thus acquired through transpo-

sition, both φt
f
S1 and φt

f
S2. Using these, it can obtain (30) which is precisely the data previously

stored in the failed node.

Theorem 5 (MSR Data-Reconstruction [4]): In the code presented, all the B message symbols

can be recovered by connecting to any k nodes, i.e., the message symbols can be recovered

through linear operations on the entries of any k rows of the code matrix C.

Proof: Let

ΨDC = [ΦDC ΛDCΦDC] (33)

be the (k × d) submatrix of Ψ, containing the k rows of Ψ which correspond to the k nodes to

which the DC connects. Hence, the DC obtains the symbols

ΨDCM = [ΦDC ΛDCΦDC]

 S1

S2


= [ΦDCS1 + ΛDCΦDCS2] . (34)

The DC can post-multiply this term with Φt
DC to obtain

[ΦDCS1 + ΛDCΦDCS2] Φt
DC = ΦDCS1Φ

t
DC + ΛDCΦDCS2Φ

t
DC. (35)

Next, let the symmetric matrices P and Q be defined as

P = ΦDCS1Φ
t
DC (36)

Q = ΦDCS2Φ
t
DC. (37)

14

In terms of P and Q, the DC has access to the symbols of the matrix P + ΛDCQ.

The (i, j) element of this matrix (for 1 ≤ i, j ≤ k) is

Pi,j + λiQi,j, (38)

while the (j, i) element is given by

Pj,i + λjQj,k = Pi,j + λjQi,j, (39)

since P and Q are symmetric. Note that λi 6= λj by construction of the encoding matrix Ψ.

Thus, the DC can solve for the values of Pi,j and Qi,j for all i 6= j.

Consider the matrix P . Let ΦDC be given by

ΦDC =


φt
1
...

φt
α+1

 . (40)

All the nondiagonal elements of P are known. The elements in the ith row (excluding the

diagonal element) are given by

φt
i
S1

[
φ
1
· · · φ

i−1 φi+1
· · · φ

α+1

]
. (41)

Since the matrix to the right is invertible by construction, the DC can obtain{
φt
i
S1 | 1 ≤ i ≤ α + 1

}
. (42)

Selecting the first α of these, the DC has access to
φt
1
...

φt
α

S1. (43)

The matrix on the left is also invertible by construction and hence the DC can recover S1.

Similarly, using the values of the nondiagonal elements of Q, the DC can recover S2.

15

V. LOCALLY RECOVERABLE CODES

Suppose the message vector is m and the corresponding codeword is x. When the code is

linear, it holds that xT = mT ·G, where G is the generator matrix. We follow the notations

of [6] to define a locally recoverable code.

Definition 6: An (n, r, d,M, α)-LRC (locally recoverable code) is a code that satisfies the

following conditions:

• The message to be encoded has size M bits. The code length is n and each code symbol

has α bits;

• Any coded symbol can be reconstructed by accessing at most r symbols.

• The code distance is d.

The second property is often called the locality of the code. Clearly, the lower the locality of

the code is, the easier it is for the distributed storage system to reconstruct from single data

corruption.

There is another parameter called information locality to characterize the local recovering

ability of a code, which is quite similar to the locality. Suppose the generator matrix of the code

can be written as

G = [c1, c2, . . . , cn], (44)

where each ci is a column vector. Each ci has a corresponding code symbol because the code

symbol xi When a code has information locality r, there exist a sub-matrix GI of G such that GI

is full rank and the corresponding codeword symbols all have locality r. If a code has information

locality r, all code symbols can be divided into two sets S1 and S2, S1 ∪ S2 = {1, 2, . . . , n},

such that each code symbol in S1 can be reconstructed from r symbols and each code symbol in

S2 can be reconstructed from symbols in S1. The information locality is especially useful when

the code is a systematic one and information symbols are more frequently updated than parity

symbols.

A. Tradeoff between information locality and minimum distance

A breakthrough in the local decoding problem comes from [7], where a special class of linear

codes called Pyramid codes is invented. A Pyramid code is obtained in the following way. First

16

pick an arbitrary linear (k + d− 1, k, d) MDS code C0, i.e., a code that achieves the Singleton

bound. Suppose the encoding map can be written as

E0(x) =
(
xT ,xTp0,x

Tp1, . . . ,x
Tpd−2

)
, (45)

where the generator matrix

G0 = [I,P0] = [I,p0,p1, . . . ,pd−2]. (46)

Then, we partition the the message bit index set {1, 2, . . . , k} into t =
⌈
k
r

⌉
disjoint subsets

{1, 2, . . . , k} =
t⋃
i=1

Si, with each set Si containing at most r elements. By x|S we denote the |S|

dimensional restriction of x to coordinates in the set S which is a subset of {1, 2, . . . , k}. The

Pyramid code is finally defined to be the code that has the encoding map

E(x) =
(
xT ,xT |S1 · p0|S1 ,x

T |S2 · p0|S2 , . . .x
T |St · p0|St ,xTp1, . . . ,x

Tpd−2
)
. (47)

Note that an MDS code has the property that the vector p0 has full Hamming weight. Therefore,

the restriction of p0 to each subset Si makes the corresponding coordinates in Si able to be

locally decoded with locality r. Since this construction only captures the locality of k information

symbols, we conclude that Pyramid codes with t =
⌈
k
r

⌉
have information locality r. Another

way to look at the locality of Pyramid code is from the parity check matrix. Since the original

MDS code C0 has the generator matrix structure shown in (46), the generator matrix G of the

constructed Pyramid code can be written as

G = [I,p0 ◦ eS1 ,p0 ◦ eS2 . . . ,p0 ◦ eSt ,p1, . . . ,pd−2], (48)

where ◦ denotes the Hadamard product and eSi denote the k-bit vector that has support Si. Since

we know that G = [I,P] has parity check matrix H = [PT , I], the corresponding parity check

matrix can be determined from (46). The information locality of the Pyramid code can also be

examined directly from the parity check matrix.

The information locality r and the minimum distance d of an (n, k) Pyramid code satisfies

the following constraint:

n− k =

⌈
k

r

⌉
+ d− 2. (49)

It is proved later in [8] that the best obtainable information locality-minimum distance tradeoff

for a (n, k, d) linear code is

d ≤ n− k −
⌈
k

r

⌉
+ 2. (50)

17

Therefore, the Pyramid code obtains the best information locality-minimum distance tradeoff.

The proof of (49) in [8] is based on the following fact: for a given linear code with generator

matrix G, for any range space spanned by columns of G with rank smaller or equal to k − 1,

the number of columns used to span this range space must be smaller or equal to n− d. Based

on this column, one can upper bound the number of selected columns in G with n− d, while a

specific selection procedure results in a lower bound of the number of selected columns, which

is a function of the information locality. Using this technique, one can obtain the upper bound

of d for a given information locality r.

In Theorem 7 of [8], an even stronger result is given for the case that r|k. It is proved that

under such condition, the code that attains the maximum minimum distance in (49) must satisfy

the property that the k information symbols in the systematic code (note that information locality

is always defined for a linear code with the first k code symbols being able to be locally decoded)

are divided into several disjoint subsets, where each set corresponds one linear dependence of

the information symbols in it and some other parity check symbols. That is to say, at least for

the case when r|k, the Pyramid code, although it seems simple, is actually the only way to

achieve the best distance under a locality constraint.

B. Tradeoff between locality and code rate

People have obtained the tradeoff between locality and code rate under extreme rates that are

close to the Shannon’s limit. For example, a code construction based on grouping code symbols

is given in [9] to get a good locality-rate tradeoff. First, similar to the construction of Pyramid

codes, a powerful code C0 is chosen. The code C0 is designed to asymptotically achieve the

random coding bound, i.e., it is a linear code with length m and rate 1 − H(p) − ε that has

probability of incorrect decoding at most 2−E(p,ε)m. The best error exponent is usually called the

random coding exponent and is detailed in many text books, such as [10]. Denote by G0 the

generator matrix of the code C0. Then, one can construct a large code with length n satisfying

m = (1 + α)/E(p, ε) log n, (51)

where α is a constant. We simply assume that n/m is an integer, then the generator matrix of

the constructed code is

G = In/m ⊗G0. (52)

18

Clearly, this code is encoded by grouping the code bits into groups of log n and encoding

each group with the powerful linear code C0. This construction preserves the good code rate

1−H(p)− ε and yields a code locality in the order of Θ(log n). But the bonus point is that by

using the bounded error probability 2−E(p,ε)m of each group and the union bound, one can show

that the total error probability of this code approximately in the order of O(1
nα

), which means

that this can even achieve acceptable error correction performance when the rate is approaching

the channel capacity.

An impossibility result is also given in [9], stating that for any code C with code length n and

rate 1− p− ε that achieves probability of error bounded away from 1, when used over BEC(p)

channel, the locality of C is at least c log 1/ε, where c is a constant. This result shows that the

LDGM code construction in [9] attains the best locality when being transmitted at a rate that

approaches the channel capacity.

VI. OPEN PROBLEMS

In regenerating Codes, for the two extremal points such as MSR and MBR points, the explicit

code constructions of exact regeneration were proposed in [4]. Thus, we can claim that the

optimal tradeoff of functional regeneration of MSR and MBR points is identical to that of exact

regeneration. However, we do not know the optimal tradeoff of exact regeneration codes for

interior points.

Recently, it was shown that there exists a non-vanishing gap between the optimal tradeoff

of the functional regeneration codes and that of the exact regeneration codes [11]. The optimal

tradeoff between storage and repair bandwidth of the interior points of exact regeneration is an

important open problem.

Also, the code construction for MSR point was proposed for d ≥ 2k− 2 [4]. Since 2k− 2 ≤

d ≤ n− 1,
k

n
≤ k

2k − 1
≈

1

2
. (53)

The explicit code construction of MSR code for high rate is not known, which is a practically

important open problem. In [12], it was shown that we can not achieve the high rate MSR code

if β = 1.

19

REFERENCES

[1] J. S. Plank, “Erasure codes for storage systems: A brief primer,” Usenix Magazine, vol. 38, no. 6, 2013.

[2] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchandran, “Network coding for distributed storage

systems,” IEEE Trans. Inf. Theory, vol. 56, no. 9, pp. 4539–4551, 2010.

[3] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A survey on network codes for distributed storage,” Proc. IEEE,

vol. 99, no. 3, pp. 476–489, 2011.

[4] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating codes for distributed storage at the MSR and

MBR points via a product-matrix construction,” IEEE Trans. Inf. Theory, vol. 57, no. 8, pp. 5227–5239, 2011.

[5] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran, “Distributed storage codes with repair-by-transfer and

nonachievability of interior points on the storage-bandwidth tradeoff,” IEEE Trans. Inf. Theory, vol. 58, no. 3, pp. 1837–

1852, 2012.

[6] D. S. Papailiopoulos and A. G. Dimakis, “Locally repairable codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Cambridge,

MA, Jul. 2012, pp. 2771–2775.

[7] C. Huang, M. Chen, and J. Li, “Pyramid codes: Flexible schemes to trade space for access efficiency in reliable data

storage systems,” in Proc. Sixth IEEE Int. Symp. Network Computing and Applications (NCA), Cambridge, MA, 2007, pp.

79–86.

[8] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the locality of codeword symbols,” IEEE Trans. Inf. Theory,

vol. 58, no. 11, pp. 6925–6934, 2012.

[9] A. Mazumdar, V. Chandar, and G. W. Wornell, “Update-efficiency and local repairability limits for capacity approaching

codes,” IEEE J. Sel. Areas Commun., vol. 32, no. 5, pp. 976–988, May 2014.

[10] R. G. Gallager, Information Theory and Reliable Communication. New York: Wiley, 1968.

[11] C. Tian, “Characterizing the Rate Region of the (4,3,3) Exact-Repair Regenerating Codes,” IEEE J. Sel. Areas Commun.,

vol. 32, no. 5, pp. 967–975, 2014.

[12] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran, “Explicit codes minimizing repair bandwidth for distributed

storage,” in Proc. IEEE Inf. Theory Workshop (ITW), Cairo, Egypt, 2010, pp. 1–5.

