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la: Introduction-The Singleton Bound

Singleton Bound. k < n— d + 1, for any [n, k, d] code.
Proof. Any 2 codewords disagree in the first n — d 4+ 1 coordinates
somewhere, so there are < q"*dJr1 in total A

Linear codes achieving equality are called Maximum Distance Sepa-
rable (MDS) codes. A general question: given d and k, what is the
greatest length n of an MDS code?



1b: MDS codes and generic subsets of ]Ff,

List k rows generating MDS code C as a k X n matrix A.

Claim. The columns of A give rise to a set S of n vectors, such that
any k = n—d + 1 of them are LI. We call such an S generic.
Proof. Any k-dependence in columns

=Y cAs =0(|K| = k)

deK

:>Z csxs = 0V rows x of A(= Vx € C).
ek

So not all ¢"~9*1 choices for the n — d + 1 such (x;)sck appear in
C. Contradiction! R
Conversely, any generic S gives rise to an MDS code of length |S|.



lc: (Supposedly) best example

We have a correspondence:

Length of MDS code <Size of generic S C F¥

Try RM codes! We know they meet the Singleton Bound.

Enc: f —(f(a1),...,f(an)) as an RS encoder needs to use distinct
aj, so we can obtain a length of up to n = g by using all possible
elements of [Fy.

Under this correspondence, the generic S obtained is the " normal ra-
tional curve” {(1,¢,t2,...,tk"1) : t € Fy}-any k such form a VDM
matrix, hence are LI! We can add (0,...,0,1) to this S, reaching
n=gq+1.

MDS Conjecture:
If k < g, then a generic |S| < g+ 1. We prove case k < p(= q).



2a: Segre’s Tangent Function

Say S C F;; is generic. Then, if Z C S has |Z| = k — 2, consider
the codimension-1 hyperplanes ~ O Z with normal vectors vs. We
define a t-variable polynomial

Tz(X) = H <vg, X >.
y¥ns=7

Then, if {x,y,z} UY C S is a basis, we have

Tyuag () Tyugy(2) Tyugzy (%)
= (_1)t+1 TYu{x} (2) TYU{y} (x) TYu{z} (v),

where t =p+ k—1—15]|.



2b:

Interpolating T

For E ={a1,...,arq2} and | Y| = k — 2 disjoint in S,

0=> Ty(a) [] det(b,a,¥)™"

ackE bEE\a

But all we needed was that {b, a} U Y was a basis Va # b € E. We
never split up Y'!
Idea: exchange elements of E and Y. More generally, if Y =

s kb
r—1
Ty, (ai) 1
O | AR NE | e——
a,...ar€E \i=1 Toi(n) zeEUY\(6:U{ar}) det(ar, 2,6r)

Here 0; = (a1,...,3i-1,Yi,---,Yk_2), as a set and a tuple.



2c: Using Segre’s lemma to simplify the
interpolation equation

Any order of ay,..., a, give the same term in the sum!
So, we have

r—1

To( 1
o= Y M6 0 oo

a1<-<aeE i=1 f+1(y') 2¢0,0{a,}

Set r =t + 2 (use all of E). Then the above is a product of many
nonzero elements of I, together with (t 4+ 2)!, so (t +2)! =
Hence p<t+2=p+k+1—|S|,s0|S|<k+1<p+1M



3a: Caveats

if r=t+2>k—1, we use 0,...which only has k — 2 entries. But
t=q+k—-1—15|.

If |S| < t+ k, we have no room for disjoint |E| =t +2 and |Y| =
k—2in S. Here, we can use the "dual” generic set S’ C Fg' = Fg_k
corresponding to the dual code, with |[S| = n = |S’|. Then, if also
|S'| < t' + k', have

t+k+t'+k

— =g —1.
n < 5 q



3b: Potential to generalise

The same argument gives, for g > p, that |S| < g+k+1—min{k, p}.
But we cannot hope to replace p by g in this proof because of the
final step: p! =0 in Fy.

Nevertheless, in a follow-up paper, Ball relaxed the condition from
k<pto k <2p—2, for MDS to hold.

Also, when p = 2 and k = 3 or g — 1, the conjecture isn’t quite
true-instead |S| < g+2 is known. For k = 3 we may add (0, 1,0) to
the aforementioned normal rational curve, making g + 2 vectors in
total-a " hyperoval “. Similarly, when k = g — 1, we may add e, ;.



3c: The maximal examples

1. For the prime case, or more generally k < p, every such S of
size g + 1 is equivalent to the normal rational curve (with
(0,...,0,1)).

2. Constructions such as {(1,x,x% +nx% x3,x*) : x € Fo}
(Glynn, 1986) not containing the normal rational curve are
known, but they are all (extensions of) RS codes.

3. The MDS conjecture only talks about kK < g. k > g allows for
|S| = k + 1 uniquely via
S={(A,0...,0),...,(0,...,0, )} U{(,..., 1)}



