
15-859: Information Theory and Applications in TCS Spring 2013

Lecture 5: Universal source coding
Lecturer: Mahdi Cheraghchi Scribes: Yu Zhao

5.1 Recap

• KL divergence vs. Chernoff Bound

• Data Processing and Markov Chains

• Fano’s inequality

• Asymptoti Equipartition Porperty(AEP) :

x1, . . . , xniid p(x)⇒ − log p(x1, . . . , xn)

n
→ H(X)in probability

• Typical Sets A
(n)
ε = {(x1, . . . , xn)|p(x1, . . . , xn) ∈ 2−n(H(X)±ε)} ⇒ |A(n)

ε | ≤ 2n(H(X)+ε)

5.2 Lempel-Ziv Algorithm

The Lempel-Ziv Algorithm is described as below and its main idea is keeping a dictionary D of tokens/words
in U∗:

1) Initialize D with elements of U
2) Look for the largest possible token w in D
3) Output the index of w using dlog |D|e bits
4) Remove w from D and replace it by all one-letter extensions of w
5) Until the last symbol is reached, goto 2)

Nothing is better than an example. Suppose the universe U = {a, b, c} and the string u61 = aaaccb. Figure
5.1 shows how the Lempel-Ziv Algorithm modifies the dictionary and gets the outputs.

5.3 How good is it

5.3.1 Upper bound of LZ algorithm

Theorem 5.1 (Upper bound of LZ Algorithm) Suppose un1 is parsed into clz tokens as un1 = λw1 . . . wclz
by Lempel-Ziv Algorithm and λ,w1, . . . , wclz−1 are distinct tokens by construction. Suppose yi ∈ {0, 1}∗ is
the ouput of the token wi, then |yclz1 | = |y1 . . . yclz | is just the length of total output. If we define c∗ as the
max number of distinct tokens that un1 can be parsed into, then we have

lim
n→∞

sup
|yclz1 |
n
≤ lim
n→∞

sup
c∗ log2 c

∗

n

5-1

5-2 Lecture 5: Universal source coding

Figure 5.1: An example of Lempel-Ziv Algorithm

Proof: Let q = |U |. Assuming that q ≥ 2 and c∗ ≥ 1, for each token the size of dictionary D increases
(q − 1)clz,so the size of D in the end is

1 + (q − 1)clz ≤ 1 + (q − 1)c∗ ≤ qc∗

Therefore the length of yi may be less than dlog2(qc∗)e, so we have

|yn1 | ≤ clzdlog2(qc∗)e ≤ clz log2(2qc∗) ≤ c∗ log2(2qc∗)

Therefore we get

lim
n→∞

sup
|yclz1 |
n
≤ lim
n→∞

sup
c∗(log2 c

∗ + log2(2q))

n
≤ lim
n→∞

sup
c∗ log2 c

∗

n

5.3.2 Comparing with finite state machines

Here we want to show that the lower bound of output length by FSM(finite state machine) is equal to
the upper bound of output length by Lempel-Ziv algorithm, which means that Lempel-Ziv algorithm is an
optimal. Huffman can be implemented as a FSM and achieves the optimum entropy rate for iid sources
(even ”ergodic”). We first start from a lemma:

Lemma 5.2 Let Z = Z1 . . . Zc, where Zi ∈ U∗ are distinct and |U | = q, then

|Z| > c logq
c

q3

Proof: We write

c =

m−1∑
k=0

qk + r

Lecture 5: Universal source coding 5-3

Figure 5.2: An example of FSM which is not uniquely decodable

where m ≥ 0 and 0 ≤ r < qm. And we use

m−1∑
k=0

kqk = m
qm

q − 1
− q

q − 1

qm − 1

q − 1
= (m− q

q − 1
)

m−1∑
k=0

qk +
m

q − 1
= (m− q

q − 1
)(c− r) +

m

q − 1

Since Z is shortest if we let Zi are as short as possible, we get

|Z| ≥
m−1∑
k=0

kqk +mr = (m− q

q − 1
)(c− r) +

m

q − 1
+mr ≥ (m− q

q − 1
)c > (m− 2)c

But here we have the upper bound

c =

m−1∑
k=0

qk + r <

m∑
k=0

qk < qk+1

Therefore we have m+ 1 > logq c. And finally we get

|Z| > (m− 2)c > c logq
c

q3

Theorem 5.3 (FSU lower bound) For any uniquely decodable FSM (Figure 5.2 shows a FSM wich is
not uniquely decodable) with s states, if we define c∗ as the max number of distinct tokens that un1 can be
parsed into and yi ∈ {0, 1}∗ as the output of FSM after reading ui, then the output of FSM

|yn1 | ≥ c∗ log2

c∗

8s2

Proof: Here we define cij (i, j ∈ {1, . . . , s}) to be the number of words which find FSM in state i and leave
it in j. The unique decoding assumes that ouput sequences corresponding to each cij must be distinct. We
define Lij as the total length of encodings of words in cij . By Lemma 5.2 where U = 0, 1 and |U | = 2, we
have

Lij ≥ cij log2(
cij
8

)

Therefore the total length

|yn1 | =
∑
i,j

Lij ≥
∑
i,j

cij log2(
cij
8

)

5-4 Lecture 5: Universal source coding

Here RHS is a symmetric convex function and
∑
i,j cij = c∗, so RHS get the minimum value when cij = c∗/s2

for all i, j.

|yn1 | ≥
∑
i,j

cij log2(
cij
8

) ≥ c∗ log2

c∗

8s2

Suppose we define ρFSM(un1) = |yn1 |/n for a specfic FSM and

ρs(u
n
1) = min

FSM with≤s states
ρFSM(un1)

ρs(u) = lim
n→∞

sup ρs(u
n
1)

ρ(u) = lim
s→∞

ρs(u)

By Theorem 5.3, we have

ρs(u) ≥ lim
n→∞

sup
c∗

n
log2(

c∗

8s2
) = lim

n→∞
sup

c∗ log2 c
∗

n
−O(

c∗

n
)

But by Lemma 5.2, n > c∗ logq(c
∗/q3) which means c∗ = O(n/ log n). So we have

ρs(u) ≥ lim
n→∞

sup
c∗ log2 c

∗

n

for all s, which means

ρ(u) = lim
s→∞

ρs(u) ≥ lim
n→∞

sup
c∗ log2 c

∗

n

Therefore the lower bound for any FSM is the upper bound for Lempel-Ziv algorithm, which means Lempel-
Ziv algorithm is optimal.

