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1 The Shannon code

Consider a random variable X taking on values a1, . . . , an with probabilities p1, . . . , pn. We would like
to encode values of X so that the expected number of bits used is small. Let `1, . . . , `n be the number
of bits used to encode a1, . . . , an. Recall Kraft’s Inequality from the previous lecture: A prefix-free code
for X exists if and only if

n∑
i=1

2−`i ≤ 1.

Furthermore, we can construct such a code from `i’s satisfying this inequality, so we need to find good
values for the `i’s. In the Shannon code (sometimes called the Shannon-Fano code), we set

`i = dlog
1

pi
e.

The following calculation shows that these `i’s satisfy Kraft’s Inequality:

n∑
i=1

2−`i =
n∑

i=1

2
−dlog 1

pi
e ≤

n∑
i=1

2
− log 1

pi =
n∑

i=1

pi = 1.

The expected length of the encoding is
n∑

i=1

pidlog
1

pi
e.

This is lower bounded by H(X) and upper bounded by H(X) + 1:

n∑
i=1

pidlog
1

pi
e ≥

n∑
i=1

pi log
1

pi
= H(X)

n∑
i=1

pidlog
1

pi
e <

n∑
i=1

pi(log
1

pi
+ 1) = H(X) +

n∑
i=1

pi = H(X) + 1.

In some cases,the Shannon code does not perform optimally. Consider a Bernoulli random variable
X with parameter 0.0001. An optimal encoding requires only one bit to encode the value of X. The
Shannon code would encode 0 by 1 bit and encode 1 by log 104 bits. This is good on average but bad
in the worst case.

We can also compare the Shannon code to the Huffman code. The Huffman code always has shorter
expected length, but there are examples for which a single value is encoded with more bits by a Huffman
code than it is by a Shannon code. Consider a random variable X that takes values a, b, c, and d with
probabilities 1/3, 1/3, 1/4, and 1/12, respectively. A Shannon code would encode a, b, c, and d with
2, 2, 2, and 4 bits, respectively. On the other hand, there is an optimal Huffman code encoding a, b,
c, and d with 1, 2, 3, and 3 bits respectively. Note that c is encoded with more bits in the Huffman
code than it is in the Shannon code, but the Huffman code has shorter expected length. Also note that
the optimal code is not unique: We could also encode all values with 2 bits to get the same expected
length.
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2 Entropy lower bounds the expected length of encoding

Theorem 2.1 The expected length of encoding by a prefix-free code of a random variable X is at least
H(X).

Proof. The expected length is
∑n

i=1 pi`i. We will show that H(X)−
∑n

i=1 pi`i ≤ 0. First, observe that

H(X)−
n∑

i=1

pi`i =
n∑

i=1

pi log
1

pi
−

n∑
i=1

pi`i

=
n∑

i=1

pi log
1

p2`i
.

Define a random variable Y such that Y = 1
pi2`i

with probability pi. Then we have that

H(X)−
n∑

i=1

pi`i = E[log Y ]

≤ logE[Y ] by Jensen’s Inequality

= log

(
n∑

i=1

pi
1

pi2`i

)

= log

(
n∑

i=1

2−`i

)
≤ log 1 by Kraft’s Inequality

= 0.

Since Kraft’s Inequality also holds for non-prefix-free codes, H(X) lower bounds the expected length of
non-prefix-free codes as well.

3 Improving the Shannon code and the Fundamental Source Coding
Theorem

As was shown in the first section, the Shannon code may have expected length greater than the optimal.
By amortizing this loss over many symbols, we can approach an expected length equal to the entropy
lower bound. We will assume that we have a source outputting a sequence of i.i.d. draws from a random
variable X. Note that this assumption does not hold in many cases, e.g., the English language. We
then have m independent draws X1X2 . . . Xm from X. We also have the following fact:

Fact 3.1 H(X1X2 . . . Hm) = mH(X).

We can then construct a Shannon code for the whole string X1X2 . . . Xm of m values with expected
length at most mH(X) + 1. The average number of bits per symbol is then at most H(X) + 1

m . By
delaying and sending symbols in larger chunks, we can get better amortized cost and spread out the
loss of the Shannon code over many symbols. This proves the Fundamental Source Coding Theorem,
also called the Noiseless Coding Theorem.

Theorem 3.2 (Fundamental Source Coding Theorem) For all ε > 0 there exists n0 such that for
all n ≥ n0, given n i.i.d. samples X1X2 . . . Xn from a random variable X, it is possible to communicate
at most H(X) + ε bits per sample on average to reveal X1X2 . . . Xn to the other party.

This theorem also holds with high probability, not just on average.
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4 Joint and conditional entropy

Definition 4.1 (Joint entropy) Let X and Y be two possibly correlated random variables. The joint
entropy of X and Y , denoted H(X,Y ), is

H(X,Y ) =
∑
x,y

p(x, y) log
1

p(x, y)
,

where p(x, y) is defined to be Pr(X = x ∧ Y = y).

If X and Y are independent, p(x, y) = p(x)p(y) and

H(X,Y ) =
∑
x,y

p(x)p(y)

(
log

1

p(x)
+ log

1

p(y)

)
= H(X) +H(Y ).

In general,

H(X,Y ) =
∑
x,y

p(x, y) log
1

p(x)p(y|x)
,

where p(y|x) = Pr(Y = y|X = x).

We can then do the following calculation:

H(X,Y ) =
∑
x,y

p(x, y) log
1

p(x)p(y|x)

=
∑
x,y

p(x, y) log
1

p(x)
+
∑
x,y

p(x, y) log
1

p(y|x)

=
∑
x

p(x) log
1

p(x)
+
∑
x

p(x)
∑
y

p(y|x) log
1

p(y|x)

= H(X) +
∑
x

p(x)H(Y |X = x)

= H(X) + Ex[H(Y |X = x)].

This motivates the definition of conditional entropy:

Definition 4.2 (Conditional entropy) The conditional entropy of Y given X is

H(Y |X) = Ex[H(Y |X = x)].

Our calculation then shows this lemma:

Lemma 4.3 H(X,Y ) = H(X) +H(Y |X).

Intuitively, this says that how surprised we are by drawing from the joint distribution of X and Y is
how surprised we are by X plus how surprised we are by Y given that we know X already.

Note that if X and Y are independent, H(Y |X) = H(Y ) and H(X,Y ) = H(X) +H(Y ).

Recall the chain rule for probability: p(x, y) = p(x)p(y|x), or, more generally,

p(x1, . . . , xn) = p(x1)p(x2|x1) . . . p(xn|x1, . . . , xn).

There is a similar chain rule for entropy:
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Theorem 4.4 (Chain rule) For random variables X, Y , and Z,

H(X,Y, Z) = H(X) +H(Y |X) +H(Z|X,Y ).

For n random variables X1, . . . , Xn,

H(X1, X2, . . . , Xn) = H(X1) +H(X2|X1) + · · ·+H(Xn|X1, X2, . . . , Xn−1).

The log in the definition of entropy changes the multiplication in the probability chain rule to addition.
Also, the order of the random variables does not matter. For example, it also holds that

H(X,Y ) = H(Y ) +H(X|Y ).

Note that H(X|X) = 0.

Example 4.5 Let X be a random variable that is uniform on {0, 1, 2, 3}. Let Y = X mod 2.

Clearly, H(X) = 2.

H(Y ) = 1 since Y is uniform on {0, 1}.
H(X|Y ) = 1 because knowing Y tells us if X is odd or even.

H(Y |X) = 0 since knowing X tell us the exact value of Y .

H(X,Y ) = 2 because X tells us everything about X and Y .

Intuitively, it seems like conditioning should never increase entropy: knowing more should never
increase our surprise. This is indeed the case:

Lemma 4.6 (Conditioning cannot increase entropy) H(Y |X) ≤ H(Y ).

Proof. The proof is similar to the above proof that the entropy lower bounds the expected length of a
code. First, we have that

H(Y |X)−H(Y ) = H(X,Y )−H(X)−H(Y )

=
∑
x,y

p(x, y) log
1

p(x, y)
−
∑
x

p(x) log
1

p(x)
−
∑
y

p(y) log
1

p(y)
.

Since p(x) =
∑

y p(x, y) and p(y) =
∑

x p(x, y),

H(Y |X)−H(Y ) =
∑
x,y

p(x, y) log
p(x)p(y)

p(x, y)
.

We now define Z to be a random variable taking value p(x)p(y)
p(x,y) with probability p(x, y), so

H(Y |X)−H(Y ) = Ex,y[logZ]

≤ logE[Z] by Jensen’s Inequality

= log

(∑
x,y

p(x, y)
p(x)p(y)

p(x, y)

)

= log

((∑
x

p(x)

)(∑
y

p(y)

))
= log 1

= 0.
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As a corollary, we have a statement similar to the union bound:

Corollary 4.7 For random variables X and Y ,

H(X,Y ) ≤ H(X) +H(Y ).

More generally, for random variables X1, . . . , Xn,

H(X1, . . . , Xn) ≤
n∑

i=1

H(Xi).

Exercise 4.8 For a random variable X with support size n, we can think of entropy as a function from
[0, 1]n to R≥0. If X takes on n different values with probabilities p1, · · · , pn, then for p = (p1, · · · , pn),
H(p) =

∑n
i=1 pi log 1

pi
. Show that H(p) is a concave function, i.e., show

H(λp + (1− λ)q) ≥ λH(p) + (1− λ)H(q)

for all λ ∈ [0, 1], p,q ∈ [0, 1]n.

5 Mutual information

Definition 5.1 (Mutual information) The mutual information between random variables X and Y ,
denoted I(X;Y ), is

I(X;Y ) = H(X)−H(X|Y ).

Intuitively, mutual information is the reduction in the uncertainty of X that comes from knowing
Y .

We can write I(X;Y ) in several other equivalent ways:

I(X;Y ) = H(X)−H(X|Y )

= H(X)− (H(X,Y )−H(Y ))

= H(X) +H(Y )−H(X,Y )

= H(Y )−H(Y |X)

= I(X;Y )

Note that I(X;Y ) = I(Y ;X).

The next lemma follows from the fact that conditioning cannot increase entropy.

Lemma 5.2 I(X;Y ) ≥ 0.

Also, if X and Y are independent, I(X;Y ) = 0.

Example 5.3 Consider X and Y as defined in Example 4.5. Then

I(X;Y ) = H(X)−H(X|Y ) = 2− 1 = 1.

Example 5.4 Let the Zi’s be i.i.d. random variables that are uniform over {0, 1}. Let X = Z1Z2Z3Z4Z5

and Y = Z4Z5Z6Z7. Then I(X;Y ) = 2 since X and Y have 2 bits in common.

We show the relationship between entropy, joint entropy, conditional entropy, and mutual informa-
tion for two random variables X and Y in Figure 5.1.

We can also define a conditional version of mutual information.
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Figure 5.1: Relationship between entropy, joint entropy, conditional entropy, and mutual information
for two random variables.

Definition 5.5 (Conditional mutual information) The conditional mutual information between X
and Y given Z is

I(X,Y ;Z) = H(X|Z)−H(X|Y,Z)

= H(Y |Z)−H(Y |X,Z).

Exercise 5.6 Prove the chain rule for mutual information:

I(X1, X2, . . . , Xn;Y ) =
n∑

i=1

I(Xi;Y |X1, X2, . . . , Xi−1).

Note that the order of the Xi’s does not matter.

Exercise 5.7 Is it always true that I(X;Y |Z) ≤ I(X;Y )? Give a proof or a counterexample.
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