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1 Polar codes: recap of last lecture

For a linear code, the codewords are related to the messages by a linear transformation (modulo
2). Since the codewords are longer than the messages, the matrix that represents the linear trans-
formation will be rectangular. However, it will simplify the analysis to pad the input message with
some extra bits which are constant (“frozen”) in order to make the matrix square. It doesn’t matter
if those bits get corrupted since they are not part of the message and we already know what their
value was supposed to be anyway.

U0

U1

...

UN−1

Message

N = 2n

An
invertible
N ×N

X0

...

XN−1

Codeword

W
(BECα)

Y0 =

{
X0 with prob 1− α
“?” with prob α

...

YN−1

Channel
output

The encoding operation is XN−1
0 = AnU

N−1
0 . As described last lecture, the matrix An is defined

recursively and ends up being in a tensor product form An = G⊗n2 ·Bn where Bn denotes bit reversal.
The idea behind the polar code is that when decoding a corrupted message Y N−1

0 , the vast
majority of the uncertainty ends up being in the subset of UN−10 that were frozen. Specifically,
consider the entropy chain rule:

N−1∑
i=0

H(Ui|U i−10 , Y N−1
0 ) =

N−1∑
i=0

H(Xi|Yi)︸ ︷︷ ︸
=α

= Nα. (1)

We want a fraction α of the terms on the left hand side to be nearly 1 and the rest nearly 0. The
former will be nearly uncertain and we take these to be the frozen bits, the latter will be nearly
certain and we feed the message into these. The goal of this lecture is to prove that the entropy
accumulates into an α fraction of the Ui. This is called polarization.
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2 Proof of polarization

First, give a name to the terms on the left hand side of (1) by defining a function αn : {0, 1, . . . , 2n−
1} → [0, 1] by

αn(i) = H(Ui|U i−10 , Y N−1
0 ). (2)

This is the probability that Ui is not known given U i−10 and Y N−1
0 . Last lecture it was shown that

αn(·) evolves according to the recurrence

αn(i) =

{
2αn−1(b i2c)− αn−1(b

i
2c)

2 if i even

αn−1(b i2c)
2 if i odd

(3)

It is helpful to visualize this recurrence as a tree:

α

2α− α2

α2

2(2α− α2)− (2α− α2)2

(2α− α2)2

2α2 − α4

α4

. . .

. . .

. . .

α0(·) α1(·) α2(·)

Think of αn as a random variable on {0, 1}n or {0, 1, . . . , 2n−1} induced by the uniform distribu-
tion on {0, 1}n. Specifically, with i(b) representing the integer having b as the binary representation,
define the random variable

Zn(b) = αn(i(b)) ∈ [0, 1] (4)

with the uniform distribution on {0, 1}n. Then E(Zn) is the average value of the nodes on level n
of the tree. We want to show that as n grows Zn approaches a Bernoulli distribution, so that the
values of the leafs are all close to either zero or one. Suppose we know Zn. Then the value of Zn+1

is

Zn+1 =

{
2Zn − Z2

n with probability 1/2

Z2
n with probability 1/2

(5)

Therefore E[Zn+1|Zn] = 1
2E[2Zn − Z2

n] + 1
2E[Z2

n] = Zn and so E[Zn] = E[Z0] = α. This sequence
Z0, Z1, . . . is a martingale.

Definition 1 (Martingale). A sequence of random values Z0, Z1, . . . such that ∀n

(i) E{|Zn|} <∞

(ii) E{Zn+1|Z0, . . . , Zn} = Zn

is a martingale.
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Since our random values {Zn} are bounded in [0, 1], they converge to a fixed point by virtue of
the so-called “martingale convergence theorem”. We have ∀ε > 0,

lim
n→∞

Pr
ω

(|Zn+1(ω)− Zn(ω)| > ε) = 0, (6)

where ω is the tree path. Therefore E{|Zn+1(ω)−Zn(ω)|} n→∞−−−−→ 0. But this can be expanded out
to

E{|Zn+1(ω)− Zn(ω)|} =
1

2
E[2Zn − Z2

n − Zn] +
1

2
E[Zn − Z2

n] (7)

= E[Zn − Z2
n] (8)

= E[Zn(1− Zn)]
n→∞−−−−→ 0. (9)

So most of the time Zn(1 − Zn) ≈ 0. This only happens if Zn is close to 0 or 1 with high
probability, limn→∞[Zn ∈ (ε, 1 − ε)] = 0. Since E[Zn] = E[Z0] = α, we have Pr(Zn ≈ 0) = 1 − α
and Pr(Zn ≈ 1) = α, or more precisely ∀ε > 0

lim
n→∞

Pr(Zn < ε) = 1− α (10)

lim
n→∞

Pr(Zn > 1− ε) = α. (11)

Quantitatively, one can prove

lim
n→∞

Pr
(
Zn < 2−N

0.49
)

= 1− α (12)

where 0.49 is just some number less than a half (since the random variable gets squared about n/2
times).

Corollary 1. For all large enough n, there exists a subset Fn ⊆ {0, 1, . . . , 2n − 1} (the “bad bits”)
with |Fn| ≤ (α+ o(1))N such that αn(i) < 2−N

0.49
for all i 6∈ Fn.

3 Obtaining the code

u

Message

An x

Codeword

Freeze ui, i ∈ Fn to 0. This gives a code of rate 1− α− o(1). Formally, this is a linear code

cn = {Anu | u ∈ {0, 1}N , ui = 0 ∀i ∈ Fn}. (13)

The decoding procedure (for BECα) is as follows. For i = {0, 1, . . . , 2n − 1},
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(i) If i ∈ Fn then ui = 0.

(ii) If i 6∈ Fn then recover ui from ui−10 , yN−10 if possible. If not possible, then FAIL. This is done
using maximum likelihood decoding.

Claim: The probability that this algorithm fails to decode a random1 input message u under
BECα noise is (using the union bound)

Pr[FAIL] ≤
∑
i 6∈Fn

H(ui|ui−10 , yN−10 ) (14)

≤
∑
i 6∈Fn

αn(i) (15)

≤ N · 2−N0.49 n→∞−−−−→ 0. (16)

Efficiency: For BECα one can compute Fn efficiently (poly(N)) by computing the tree of values
αn(i). Once Fn is known, recovery is efficient. Step (ii) can be implemented recursively mirroring
the analysis that we have done.

4 General channels

For general channels, the recursive setup remains the same, and An is the same, but Fn will depend
on the channel. Consider recovery of u2i = vi ⊕ wi and u2i+1 = wi from vi−10 , wi−10 , yN−10 . Define

β := H(U2i|V i−1
0 ,W i−1

0︸ ︷︷ ︸
U2i−1
0

, Y N−1
0 ) (17)

γ := H(U2i+1|V i−1
0 ,W i−1

0 , Y N−1
0 ). (18)

We know β is small because of Fano’s inequality, so we can estimate each bit from the previous

ones. The random variables Vi|V i−1
0 , Y

N/2−1
0 and Wi|V i−1

0 , Y N−1
N/2 are i.i.d. and have entropies β

and γ. By conservation of entropy, β+ γ = 2α since u2i = vi⊕wi and u2i+1 = wi. It can be shown
that one of β, γ is greater than α and the other less, so there is polarization.

Lemma 1 (proof omitted). Let (B1, D1) and (B2, D2) be i.i.d. pairs of discrete random variables,
B1, B2 ∈ {0, 1}. If H(Bi|Di) ∈ (δ, 1−δ) for δ > 0 then H(B1+B2|D1, D2)−H(B1, D1) ≥ γ(δ) > 0.

By this lemma, β > α and γ < α.
In order to get quantitative bounds that imply high probability decoding, we compute not

H(Ui| . . . ) but so called “Bhattacharya parameters” of the channel,

Z(W ) =
∑
y∈Y

√
p(y|0)p(y|1) (19)

= 〈v0, v1〉 , (20)

where v0 =
(√

p(y|0)
)
y

and v1 =
(√

p(y|1)
)
y
. For the BECα channel we have Z(BECα) = α so

analysis was just tracking the perceived erasure probabilities of all the intermediate bits during the
decoding process.

1Since the code is linear, random ⇐⇒ fixed.

4



5 Some comments

We conclude the discussion of polar codes with some comments:

• The technique actually gives an alternate proof of Shannon’s noisy coding theorem, for the
case of binary input symmetric output memoryless channels. As polar codes are linear, they
can only achieve capacity of channels for which the uniform input distribution X achieves
maxX I(X;Y ).

• The method generalizes to prime alphabets without changing the code construction. For
non-prime alphabets a different polarizing map has been constructed.

• Taking Y to be empty in our analysis gives us a source code for compressing N i.i.d copies
of the random variable X:

XN1
0 → UN−10 = MnX

N−1
0 .

For all but a vanishing fraction of indices i, we will have H(Ui|U i−10 ) ≈ 0 or H(Ui|U i−10 ) ≈ 1.
As the sum of these entries equals NH(X), the number of bits for which H(Ui|U i−10 ) ≈ 0 is
about (1 −H(X))N , and we just need to store the remaining ≈ H(X)N bits of UN−10 and
we can recover the rest, and therefore also XN−1

0 .

• For the construction of the channel code (or the source code as in the previous item), we need
to know which indices have conditional entropy close to 0 and which ones have conditional
entropy close to 1. Taking the above source code setting, it might seem that the entropies
H(Ui|U i−10 ) for an initial segment of i’s will be ≈ 1, and as we condition more and more, the
later H(Ui|U i−10 ) will be ≈ 0.

Unfortunately there seems to be no simple characterization of which entropies polarize to 0
and which polarize to 1. However, there is an algorithmic way to estimate these quantities (or
to be accurate, their proxies, the associated Bhattacharyya parameters) which can be used
to compute the generator matrix of the code (or the compression matrix for source coding).

• Soon after their discovery, polar codes have been applied to many other classic information
theory problems such as Slepian-Wolf, Wyner-Ziv, Gelfand-Pinsker, etc.

• A well written reference on polar codes is the survey “Polarization and polar codes” by Eren
Sasoglu which has been published as Volume 8, No. 4 in the series Foundations and Trends
in Communications and Information Theory.
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