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1 Intuitive justification for upper bound on channel capacity

universe X universe Y

size 2nH(X) size 2nH(Y )

Xn(1)

Xn(2)

size 2nH(Y |X) on average

want mostly disjoint

Suppose that we are sending codewords from a set Xn into a channel and we receive things
from Y n. The number of different codewords we have available at the input side of the channel is
approximately 2nH(x), the number of typical sequences. Similarly the number of possibilities at the
output is approximately 2nH(Y ). Each of the input codewords can go to several different outputs,
on average there are about 2nH(Y |X) possible outputs each input can be sent to by the channel. If
we hope for the images of each of the inputs to be mostly disjoint, then the number of inputs times
the size of their image under the channel must be less than the size of the channel output. This
gives

# codewords ≤ 2nH(Y )

2nH(Y |X)
= 2nI(X;Y ), (1)

therefore the capacity is no greater than I(X;Y ) (maximized over all input probability distributions
P (X)).

2 Achieveability

This is an intuitive explanation of why channel capacity of C = maxP (X) I(X;Y ) is achievable.

Make a matrix with a row for each typical input sequence Xn (there are 2nH(X) of these) and
a column for each typical output sequence Y n (there are 2nH(Y ) of these). Mark each cell that
corresponds to a jointly typical sequence (there are 2nH(X,Y ) of these).

Suppose we transmit Xn(1) and receive Y n. Then it is likely that (Xn(1), Y n) is jointly typical,
and so the receiver can determine X1(n) as long as there is no other possible input Xn(2) such

1



Xn

2nH(X) typ. seq.

Y n, 2nH(Y ) typ. seq.

2nH(X,Y ) jointly typ. seq.

that (Xn(2), Y n) is jointly typical. The density of the jointly typical sequences as depicted in the
matrix diagram is the number of jointly typical sequences divided by the size of the matrix,

2nH(X,Y )

2nH(X)2nH(Y )
= 2−nI(X;Y ). (2)

So if the number of possible input codewords is 2nR with R = I(X;Y )− ε then the probability of
error is

2nR2−nI(X;Y ) ≤ 2−εn → 0 as n→∞. (3)

3 Upper bound on rate

We will show that communication is only possible at rates that don’t exceed channel capacity.
First of all, it is interesting to note that plotting Pe against rate gives something resembling a step
function with Pe jumping rather abruptly from close to 0 (due to the achievability shown last time)
to close to 1 (due to what we will show now) as the rate goes above channel capacity.

Suppose a source W ∈ {1, . . . , 2Rn} is to be sent through a channel:

Source Encode Channel Decode Ŵ

W ∈ {1, . . . , 2Rn} Xn Y n

We will show that if Pe = Pr(Ŵ 6= W )→ 0 as n→∞ thenR ≤ I(X;Y ). As a warm-up exercise,
first consider the case Pe = 0. Take W to be uniform on {1, . . . , 2Rn}. Call the decoding operation
g. Since we have perfect decoding (i.e. Pe = 0), we get W = Ŵ = g(Y n) =⇒ H(W |Y n) = 0,
leading to

nR = H(W ) (4)

= H(W |Y n) + I(W ;Y n) (5)

= I(W ;Y n). (6)

Now apply the data processing inequality. Since we have the Markov chain W → Xn → Y n, we
get I(W ;Y n) ≤ I(Xn;Y n). It is tempting at this point to just say nR ≤ I(Xn;Y n) = nI(Xi;Yi)
and call it quits, however mutual information doesn’t work that way in general (in this case it does,
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but this requires proof!) What we have is

nR ≤ I(Xn;Y n) (7)

= H(Y n)−H(Y n|Xn) (8)

≤
n∑
i=1

H(Yi)−H(Y n|Xn) (9)

=
n∑
i=1

H(Yi)−
n∑
i=1

H(Yi|Y1, . . . , Yi−1, X
n). (chain rule) (10)

Since the channel is memoryless, Yi is independent of X1, . . . , Xi−1 and Y1, . . . , Yi−1 (i.e. Yi only
depends on Xi) so this reduces to

nR ≤
n∑
i=1

H(Yi)−
n∑
i=1

H(Yi|Y1, . . . , Yi−1, X
n) (11)

=
n∑
i=1

H(Yi)−
n∑
i=1

H(Yi|Xi) (12)

=
n∑
i=1

I(Xi;Yi) (13)

= nI(Xi;Yi) (14)

≤ nC. (15)

Therefore R ≤ C.
Now for the general case, with Pe 6= 0. What changes now is that we no longer have W = g(Y n)

and so H(W |Y n) 6= 0 (but Ŵ = g(Y n) still holds). Recycling the previous work from the warm-up
exercise gives nR ≤ H(W |Y n) + nC. Fano’s inequality applies here, giving

h(Pe) + Pe log(2nR − 1) ≥ H(W |Y n). (16)

This is a bit too complicated, so simplify it with the bounds h(Pe) ≤ 1 and log(2nR − 1) ≤ nR to
get

1 + nRPe ≥ H(W |Y n). (17)

Plugging this into nR ≤ nC +H(W |Y n) gives R ≤ C + 1/n+RPe. Then, as n→∞ and Pe → 0,
this becomes R ≤ C + o(1).

Comment: If R < C there exists a code with Pe ≤ 2−Θ(R,C)n for n → ∞ where Θ is some
constant depending on R and C.

Comment: If R > C then for all coding/decoding schemes, Pe → 1 as n→∞ (note: n→∞ is
essential since with n = 1 a coin toss gives Pe = 1/2).

4 Joint source coding (a.k.a. source-channel separation) theorem

Often we want to communicate a source that is not uniformly distributed. Consider a source V
and define H := H(V). We could first compress this source using a source code, and then encode
that with a channel encoding:
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Source Source Code Encode . . .
V W Xn

The source code is possible if R > H and transmission is possible if R < C, so this two stage
process is possible if C > H. However, is it possible to do better by combining the source coding
and channel encoding? In fact this would not help, and we will show that C > H is both necessary
and sufficient for communication (sufficient is clear because of the two-stage process, necessary is
what we will now show).

Theorem 1. If V1, . . . , Vn are i.i.d. samples from V then there exists a source-channel code with
Pe = Pr(V̂ n 6= V n)→ 0 if and only if C > H(V).

Proof. By the definition of mutual information, nH(V) = H(V n) = H(V n|V̂ n) + I(V n; V̂ n).1

Fano’s inequality bounds the first term,

H(V n|V̂ n) ≤ h(Pe) + Pe log(|V n| − 1) (18)

≤ 1 + Pen log(|V n|). (19)

The data processing inequality applies to the second term, I(V n; V̂ n), because of the Markov chain
V n → Xn → Y n → V̂ n, giving I(V n; V̂ n) ≤ I(Xn;Y n). Putting it all together,

nH(V) = H(V n|V̂ n) + I(V n; V̂ n) (20)

≤ [1 + Pen log(|V n|)] + I(Xn;Y n) (21)

≤ 1 + Pen log(|V n|) + nC. (22)

Taking the limit n→∞ and Pe → 0 then gives H(V) ≤ C.

1Cover+Thomas has nH(V) ≤ H(V n) rather than equality, but I don’t understand why.
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5 Linear codes

The code presented last class is slow, and it takes exponential space to even store the codebook.
Linear codes allow for efficient codebook storage and, in some cases, efficient decoding. We will
focus on two particular channels:

Binary symmetric channel (BSCp)
Capacity C = 1− h(p)

0

1

0

1

1− p

1− p

p
p

Binary erasure channel (BECα)
Capacity C = 1− α

0

1

0

1

?

1− α

1− α

α

α

We will encode {1, . . . , 2Rn} → Xn = {0, 1}n. For simplicity, assume that k = Rn is an
integer. This assumption doesn’t hurt in the n→∞ limit. With this, we can say we are encoding
{1, . . . , 2k} → Xn = {0, 1}n, in other words, from a k bit string to an n bit string. Think of these
bit strings as vectors. The encoding operation will be a linear transformation, x → Gx where G
is an n × k matrix. Arithmetic is done modulo 2 here, or in other words we are working in the
finite field F2. Such a code is called a linear code. Note that G can be stored efficiently. The claim
(which we do not prove here) is that for both BECα and BSCp the linear code obtained through
choosing a random G will achieve the channel capacity.

How to decode? One option is to use joint typicality. For BSCp, (a, b) is jointly typical
if ∆(a,b) ≈ pn where ∆ is the Hamming distance. So to decode y ∈ {0, 1}n, just search for
x ∈ {0, 1}k such that (p − ε) ≤ ∆(Gx, y) ≤ (p + ε). Actually, one need not be concerned with
picking out vectors that are too similar, so it works just as well to use ∆(Gx, y) ≤ (p + ε). But
finding such vectors directly is hard to do.

Another option is maximum likelihood decoding: find the x which minimizes ∆(Gx, y). This
is also hard to do (in general NP-hard). It always works, but is harder to deal with than joint
typicality.

For BECα there is an easy decoding strategy. This channel is nice enough to tell us where the
errors are (e.g. it sends 01001011 → 01?0??11). Just throw out the erased bits to get a reduced
vector yS , where S is the set of non-erased positions. Also filter the rows of G to get GS . The
remaining bits went through with no error, so we have yS = GSx exactly. If |S| is a bit larger than
k (i.e. GS has a bit more rows than columns) then GS is likely to be full rank and yS = GSx can
be solved for the unique solution of x using standard linear algebra techniques.
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