15-859: Information Theory and Applications in TCS

CMU: Spring 2013

Lecture 7: Channel Coding Theorem

February 5, 2013

Lecturer: Mahdi Cheraghchi

Scribe: Yongjune Kim

1 Recap

• Source coding via asymptotic equipartition property (AEP)

• Jointly typicality of (X^n, Y^n) : The set $A_{\epsilon}^{(n)}$ of jointly typical sequences $\{(x^n, y^n)\}$

$$\begin{split} A_{\epsilon}^{(n)} &= \left\{ (x^n, y^n) \in \mathcal{X}^n \times \mathcal{Y}^n : \right. \\ &\left. \left| -\frac{1}{n} \log p(x^n) - H(X) \right| < \epsilon, \\ &\left. \left| -\frac{1}{n} \log p(y^n) - H(Y) \right| < \epsilon, \right. \\ &\left. \left| -\frac{1}{n} \log p(x^n, y^n) - H(X, Y) \right| < \epsilon \right\} \end{split}$$

• Joint AEP

1.
$$\Pr\left((X^n, Y^n) \in A_{\epsilon}^{(n)}\right) \to 1 \text{ as } n \to \infty.$$

$$2. \left| A_{\epsilon}^{(n)} \right| \le 2^{n(H(X,Y)+\epsilon)}.$$

3. If
$$(\widetilde{X}^n, \widetilde{Y}^n) \sim p(x^n) p(y^n)$$
, then

$$\Pr\left(\left(\widetilde{X}^n, \widetilde{Y}^n\right) \in A_{\epsilon}^{(n)}\right) \le 2^{-n(I(X;Y)-3\epsilon)}.$$

• Channel capacity: $C \triangleq \max_{p(x)} I(X;Y)$

• Channel capacity of symmetric channel: $C = \log |\mathcal{Y}| - H$ (row of transition matrix)

2 Channel Coding Theorem

• The most fundamental theorem in information theory

• Arguably, the first application of the probabilistic method in math

Definition 1 An (M, n) code for the channel $(\mathcal{X}, p(y \mid x), \mathcal{Y})$ consists of the following:

- 1. Message W which is drawn from an index set $\{1, 2, ..., M\}$ (uniformly at random).
- 2. Encoder $X^n: \{1, \ldots, M\} \to \mathcal{X}^n$. supp (X^n) is a *codebook*. Each possible output is a *codeword*.
- 3. Decoder: deterministic function

$$g: \mathcal{Y}^n \to \{1, \dots, M\}.$$

Definition 2 (Rate) The rate R of an (M, n) code is

$$R = \frac{\log M}{n}$$
 (bits per channel use).

Definition 3 (Error probability) Fix $i \in \{1, ..., M\}$,

$$\lambda_i = \Pr\left(g(Y^n) \neq i \mid W = i\right),$$

$$P_e^{(n)} = \frac{1}{M} \sum_{i=1}^{M} \lambda_i = \Pr\left(W \neq g(Y^n)\right)$$

where $\Pr(W=i) = \frac{1}{M}$.

Definition 4 (Achievable rate) R is achievable if there exists a sequence of codes at rate $\geq R$ such that $P_e^{(n)} \to 0$ as $n \to \infty$.

Definition 5 $R^* \triangleq \sup \{R \mid R \text{ is achievable}\}.$

Theorem 6 (Channel coding theorem)

$$R^* = C$$

which means that $C = \max_{p(x)} I(X;Y)$ is equal to the supremum of all achievable rates. All rates below capacity C are achievable. Conversely, any sequence of $(2^{nR}, n)$ codes with $P_e^{(n)} \to 0$ must have $R \leq C$.

3 Achievablility Proof

We prove that rates R < C are achievable. If we fix some R < C and p(x), then there exist a code at rate $\geq R$ and its $P_e^{(n)}$ is arbitrarily small.

We create a random codebook and show it performs well. The random codebook $\mathcal C$ is given by

$$C = \begin{bmatrix} x_1(1) & x_2(1) & \cdots & x_n(1) \\ \vdots & \vdots & \ddots & \vdots \\ x_1(M) & x_2(M) & \cdots & x_n(M) \end{bmatrix}$$

where $M = 2^{nR}$ and we assume that M is an integer.

We will consider the following.

- Each entry in \mathcal{C} is generated i.i.d. according to p(x). Thus, the probability that we generate a particular codebook \mathcal{C} is $\Pr(\mathcal{C}) = \prod_{w=1}^{2^{nR}} \prod_{i=1}^{n} p(x_i(w))$.
- Sender and receiver use this code (i.e., the codebook \mathcal{C} is revealed to both sender and receiver).
- Suppose a uniform random variable $W \in \{1, ..., M\}$ is sent.
- Receiver uses jointly typical decoding. Given Y^n , the decoder finds X^n in the codebook such that (X^n, Y^n) is jointly typical. If X^n is unique, decode to W corresponding to X^n . Else, declare an error (output can be a dummy value such as $\mathbf{0}$).

Let \mathcal{E} be the error event.

$$\Pr(\mathcal{E}) = \sum_{\mathcal{C}} \Pr(\mathcal{C}) P_e^{(n)}(\mathcal{C})$$

$$= \sum_{\mathcal{C}} \Pr(\mathcal{C}) \frac{1}{2^{nR}} \sum_{w=1}^{2^{nR}} \lambda_w(\mathcal{C})$$

$$= \frac{1}{2^{nR}} \sum_{w=1}^{2^{nR}} \sum_{\mathcal{C}} \Pr(\mathcal{C}) \lambda_w(\mathcal{C}).$$

Define the event E_i that the *i*-th codeword is jointly typical with Y^n . Suppose that W is fixed to W = 1. Then,

$$\Pr(\mathcal{E} \mid W = 1) \le \Pr(E_1^c \mid W = 1) + \sum_{i=2}^{2^{nR}} \Pr(E_i \mid W = 1)$$

by the union bound. E_1^c means that the transmitted codeword $X^n(1)$ and the received sequence Y^n are not jointly typical.

Take n large enough so that $\Pr(E_1 \mid W = 1) \geq 1 - \epsilon$ by joint AEP. Hence,

$$\Pr(E_1^c \mid W = 1) \le \epsilon.$$

Since by the code generation process, $X^n(1)$ and $X^n(i)$ for $i \neq 1$ are independent, so are Y^n and $X^n(i)$. By joint AEP,

$$\Pr(E_i \mid W = 1) \le 2^{-n(I(X;Y) - 3\epsilon)}.$$

Consequently,

$$\Pr(\mathcal{E} \mid W = 1) \le \epsilon + \sum_{i=2}^{2^{nR}} 2^{-n(I(X;Y) - 3\epsilon)}$$
$$\le \epsilon + 2^{3n\epsilon} 2^{-n(I(X;Y) - R)}$$
$$\le 2\epsilon$$

if $R < I(X;Y) - 3\epsilon$ and n is large enough.

• This is true for all fixings of W. Hence, $\Pr(\mathcal{E}) < 2\epsilon$.

- Choose $p(x) = p^*(x)$ that maximizes I(X;Y). Then the condition R < I(X;Y) can be replaced by the achievability condition R < C.
- Fix the code. It can be found by an exhaustive search.
- Get worst case. By Markov's bound, $\Pr(\lambda_w \geq 4\epsilon) \leq \frac{P_e^{(n)}}{4\epsilon} = \frac{1}{2}$. Thus, at least half the indices i and their associated codewords $X^n(i)$ must have conditional probability of error λ_i less than 4ϵ . Hence the best half of the codewords have a maximal probability of error less than 4ϵ . Throwing away the worst half of the codewords (i.e., bad codewords) has changed the rate from R to $R' = R \frac{1}{n}$. If n is large enough, $R' \simeq R$.