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1 Recap

e Last class

— Randomized Communication Complexity
— Distributional CC: D§(f) is the best communication complexity of a deterministic pro-
tocol II such that Pr,[II(z,y) # f(x,y)] < 4.

— Lemma: Rfsmb(f) = max, D{(f) — can be used to lower bound R(f) by choosing an
adverse distribution pu.

e Today

— Lower bounds on Distributional CC
— Discrepancy

— Indexing problem via Information Theory

2 Discrepancy technique

We would like to develop a method to lower bound D%, which in turn will lower bound R(f).
Every deterministic protocol induces a partition of X x Y into rectangles; previously, for zero-
error protocols, these rectangles had to be monochromatic, but now we allow some to not be
monochromatic.

The discrepancy technique aims to show that, for a specific function f, every large rectangle has
nearly equal numbers of Os and 1s. This forces an accurate protocol to use only small rectangles
and hence require many rectangles.

Definition 1 (Discrepancy). Let f : X xY — {0,1}, R=SxT:SC X, TCY, and p be a
distribution on X X Y.

Denote
Discy(R, f) = (IE)TNM [f(z,y) =0A(z,y) € R] — Pr [f(z,y) =1A(z,y) € R]
=1 3 ) ua,y)
(z,y)ER



and
Di f) = max Di R
’LSC“( ) ReXxY lSCH( ’ f)

(Note: If R is monochromatic, Disc,(R, f) = p(R).)

Note that large discrepancy (monochromatic and large rectangle) is good for a protocol. The

following is a generalization of the deterministic bound D(f) > log, (é)

mMaXRmonochr .L"(R)

Proposition 2 (Discrepancy lower bound). D‘f_ﬂ/(f) > log, (#Z(f))
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Proof. Let II be a protocol using ¢ bits of communication with error probability at most % — .
Since it is deterministic, the matrix is split into at most 2¢ rectangles.

By the maximum error allowed from this protocol, we have

(z,y)~p (z,y)~p

We can bound the LHS by breaking it into rectangles according to the protocol and noting that IT
is constant on each rectangle:

]‘::Lr [H(may) :f(a;,y)]—f;r[ﬂ(x,y) #f(xvy)] = Z PI‘[H(J?“?J) :f(xay)/\(xay) ERZ]

I
Ry€eprotocol

— Pr{ll(z,y) # f(z,y) A (z,y) € Re]
<2
Ry

= Z Discu(Ry, f)

R,
< 2°Disc,(f)

ar[f(m,y) =0A (z,y) € Re] — [f(z,y) = 1A (z,y) € Ry]

This implies 2°Disc,(f) > 2y = ¢ > log, <ﬁ1(f))’ as desired. O

2.1 Dot product function

We will now apply this technique to bound the randomized CC of the dot product function, defined
as

IP(z,y)=x-y=)Y iy (mod2)

In the deterministic case, we showed in a previous lecture that n 4 1 is the best we could do.

Theorem 3. R% (IP)>Q(n) =5 —0(1)



It suffices to show that D% (IP) > % —O(1) for some distribution p. This has two parts: we need to
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come up with a clever u, and then need to bound it. Since dot product is pretty evenly distributed
for random inputs, we take p to be uniform.

Goal: Prove Discypiform(IP) < 27}/2 (Note that this implies the claimed bound by the above
Proposition).

Proof. Let R =S5 x T be any rectangle. Then

. oy 1
Disc,(R,IP)=| > (-1) Yo
zeS,yeT

Let H, € {1,-1}2"*2" be the matrix indexed by X and Y where the (z,y)th entry is (—1)%Y.
First we show the following fact.

Exercise: Hy, is an orthogonal matrix (H{H,, = 2"T).
Now we can bound Disc, (R, 1P):

1
Disc,(R,IP) = QTnlstHan

= 55 (1s") - (Halx)

1
2o

= 5 VISV (i) - (Fal)

- 2%\/|S|\/1PFH;H,11T
1
= VBV

1
< 2Tn1 /on\/onon
1
on/2

[1s|[[Hnlx|
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(Note: It is possible to improve the bound for R(IP) to n — O(1), which appears on Problem Set
4)

In summary, we have shown that R(EQ) = #(logn) and R(IP) = §(n). In upcoming lectures, we
will tackle R(DISJ), which is in some sense the poster child of this whole field.



3 Indexing Problem

Alice and Bob are again communicating, but the setup is slightly asymmetrical this time. As before,
Alice has a string x € {0,1}", but now Bob has an index i € {1,2,--- ,n}, and the goal is for Bob
to learn x;. There is a trivial [logn| protocol by just sending the index.

Now, suppose we only allow Alice to send a single message so that Bob can figure out x;. Can we
do better than the trivial n bit solution?

3.1 Deterministic

Suppose Alice and Bob use a deterministic protocol and Alice sends less than n bits. Then there
exists a # b such that Alice sends the same message for a,b and Bob cannot distinguish if Alice
sent A or B. Let j be such that a; # b;, then the protocol is wrong on either (a,j) or (b, ).

3.2 Randomized

The above proof does not give us enough for a randomized lower bound: we need Bob to be wrong
on a lot of inputs. However, it turns out that even a randomized protocol requires 2(n) bits to be
sent, which can be shown in several ways.

Exercise: Come up with a g on {0,1}"™ x {1,---,n} such that D’f/?)(fndex) > Q(n).

Hint: If @ and b in the deterministic proof differ in only 1 bit, Bob has low chance of error. We
would like them to differ in more. Try finding a distribution on X supported on a code of distance
n/3, and also supported on 2% elements.

In contrast to the coding theory proof hinted at above, we will present an information theoretical
proof of this fact.

Proof. We will bound the distributional complexity. We take the distribution X = X1 X5--- X,
uniform on {0,1}" and ¢ uniform on {1,---,n}. Let II be a deterministic protocol with error at
most % Alice will send M = M(x), also a random variable. We can bound

CC(IT) > log(supp(M)) > H(M) = I(M; X) = I(X1Xa -+ Xp; M) > Y I(Xs; M)

The goal is now to show that M has a lot of information, since Bob can tell a lot about X from
M. We would like to show that each Z(X;; M) is about a constant, which makes sense since Bob
can figure out any bit with high probability.

Continuing the chain of inequalities,

CO() =Y T(X; M) = > H(X;) — H(X;|M) =n—>_ H(X;|M)



For notation, let P." " be the probability of error given that Alice sent m and Bob has i. By the
error guarantee of the protocol, we have

) €

By Fano’s Inequality, h(P,™") > H(X;|M = m). Therefore

Eoni[h(PL)] = Ei[Em[h(P)]]
> Ei[E [H (Xi| M = m)]]
> Ei[H(X;|M)]
_ i H(X|M)

Finally, by the concavity of h, this gives

S HGIM) < B n < b (EIP2) n < h (3 )

(2

Wrapping it all up, we have

CC(H)Zn—ZH(XAM)Zn—h(>n2(2(n). O



