15-859: Information Theory and Applications in TCS

Lecture 20: Lower Bounds for Inner Product & Indexing
April 9, 2013

CMU: Spring 2013

Lecturer: Venkatesan Guruswami Scribe: Albert Gu

1 Recap

• Last class

- Randomized Communication Complexity
- Distributional CC: $D_{\delta}^{\mu}(f)$ is the best communication complexity of a deterministic protocol Π such that $\Pr_{\mu}[\Pi(x,y) \neq f(x,y)] \leq \delta$.
- Lemma: $R_{\delta}^{pub}(f) = \max_{\mu} D_{\delta}^{\mu}(f)$ can be used to lower bound R(f) by choosing an adverse distribution μ .

• Today

- Lower bounds on Distributional CC
- Discrepancy
- Indexing problem via Information Theory

2 Discrepancy technique

We would like to develop a method to lower bound D^{μ}_{δ} , which in turn will lower bound R(f). Every deterministic protocol induces a partition of $X \times Y$ into rectangles; previously, for zero-error protocols, these rectangles had to be monochromatic, but now we allow some to not be monochromatic.

The discrepancy technique aims to show that, for a specific function f, every large rectangle has nearly equal numbers of 0s and 1s. This forces an accurate protocol to use only small rectangles and hence require many rectangles.

Definition 1 (Discrepancy). Let $f: X \times Y \to \{0,1\}$, $R = S \times T: S \subseteq X, T \subseteq Y$, and μ be a distribution on $X \times Y$.

Denote

$$Disc_{\mu}(R, f) = \left| \Pr_{(x,y) \sim \mu} \left[f(x,y) = 0 \land (x,y) \in R \right] - \Pr_{\mu} \left[f(x,y) = 1 \land (x,y) \in R \right] \right|$$
$$= \left| \sum_{(x,y) \in R} (-1)^{f(x,y)} \mu(x,y) \right|$$

and

$$Disc_{\mu}(f) = \max_{R \in X \times Y} Disc_{\mu}(R, f)$$

(Note: If R is monochromatic, $Disc_{\mu}(R, f) = \mu(R)$.)

Note that large discrepancy (monochromatic and large rectangle) is good for a protocol. The following is a generalization of the deterministic bound $D(f) \ge \log_2\left(\frac{1}{\max_{Rmonochr}\mu(R)}\right)$:

Proposition 2 (Discrepancy lower bound).
$$D^{\mu}_{\frac{1}{2}-\gamma}(f) \ge \log_2\left(\frac{2\gamma}{Disc_{\mu}(f)}\right)$$

Proof. Let Π be a protocol using c bits of communication with error probability at most $\frac{1}{2} - \gamma$. Since it is deterministic, the matrix is split into at most 2^c rectangles.

By the maximum error allowed from this protocol, we have

$$\Pr_{(x,y) \sim \mu} \left[\Pi(x,y) = f(x,y) \right] - \Pr_{(x,y) \sim \mu} \left[\Pi(x,y) \neq f(x,y) \right] \ge 2\gamma$$

We can bound the LHS by breaking it into rectangles according to the protocol and noting that Π is constant on each rectangle:

$$\begin{split} \Pr_{\mu}\left[\Pi(x,y) = f(x,y)\right] - \Pr_{\mu}\left[\Pi(x,y) \neq f(x,y)\right] &= \sum_{R_{\ell} \in protocol} \Pr_{\mu}\left[\Pi(x,y) = f(x,y) \land (x,y) \in R_{\ell}\right] \\ &- \Pr_{\mu}\left[\Pi(x,y) \neq f(x,y) \land (x,y) \in R_{\ell}\right] \\ &\leq \sum_{R_{\ell}} \left|\Pr_{\mu}\left[f(x,y) = 0 \land (x,y) \in R_{\ell}\right] - \left[f(x,y) = 1 \land (x,y) \in R_{\ell}\right]\right| \\ &= \sum_{R_{\ell}} Disc_{\mu}(R_{\ell}, f) \\ &\leq 2^{c} Disc_{\mu}(f) \end{split}$$

This implies $2^c Disc_{\mu}(f) \geq 2\gamma \implies c \geq \log_2\left(\frac{2\gamma}{Disc_{\mu}(f)}\right)$, as desired.

2.1 Dot product function

We will now apply this technique to bound the randomized CC of the dot product function, defined as

$$IP(x,y) = x \cdot y = \sum x_i y_i \pmod{2}$$

In the deterministic case, we showed in a previous lecture that n+1 is the best we could do.

Theorem 3.
$$R_{\frac{1}{3}}(IP) \ge \Omega(n) = \frac{n}{2} - O(1)$$

It suffices to show that $D_{\frac{1}{3}}^{\mu}(IP) \geq \frac{n}{2} - O(1)$ for some distribution μ . This has two parts: we need to come up with a clever μ , and then need to bound it. Since dot product is pretty evenly distributed for random inputs, we take μ to be uniform.

Goal: Prove $Disc_{uniform}(IP) \leq \frac{1}{2^{n/2}}$ (Note that this implies the claimed bound by the above Proposition).

Proof. Let $R = S \times T$ be any rectangle. Then

$$Disc_{\mu}(R, IP) = \left| \sum_{x \in S, y \in T} (-1)^{x \cdot y} \frac{1}{2^{2n}} \right|$$

Let $\mathbf{H_n} \in \{1, -1\}^{2^n \times 2^n}$ be the matrix indexed by X and Y where the (x, y)th entry is $(-1)^{x \cdot y}$. First we show the following fact.

Exercise: $\mathbf{H_n}$ is an orthogonal matrix $(\mathbf{H_n^t H_n} = 2^n \mathbf{I})$.

Now we can bound $Disc_{\mu}(R, IP)$:

$$Disc_{\mu}(R, IP) = \frac{1}{2^{2n}} \mathbf{1_{S}}^{t} \mathbf{H_{n}} \mathbf{1_{T}}$$

$$= \frac{1}{2^{2n}} (\mathbf{1_{S}}^{t}) \cdot (\mathbf{H_{n}} \mathbf{1_{T}})$$

$$\leq \frac{1}{2^{2n}} ||\mathbf{1_{S}}|| ||\mathbf{H_{n}} \mathbf{1_{T}}||$$

$$= \frac{1}{2^{2n}} \sqrt{|S|} \sqrt{(\mathbf{H_{n}} \mathbf{1_{T}}) \cdot (\mathbf{H_{n}} \mathbf{1_{T}})}$$

$$= \frac{1}{2^{2n}} \sqrt{|S|} \sqrt{\mathbf{1_{T}^{t}} \mathbf{H_{n}^{t}} \mathbf{H_{n}} \mathbf{1_{T}}}$$

$$= \frac{1}{2^{2n}} \sqrt{|S|} \sqrt{2^{n} |T|}$$

$$\leq \frac{1}{2^{2n}} \sqrt{2^{n}} \sqrt{2^{n} 2^{n}}$$

$$= \frac{1}{2^{n/2}}$$

(Note: It is possible to improve the bound for R(IP) to n - O(1), which appears on Problem Set 4)

In summary, we have shown that $R(EQ) = \theta(\log n)$ and $R(IP) = \theta(n)$. In upcoming lectures, we will tackle R(DISJ), which is in some sense the poster child of this whole field.

3 Indexing Problem

Alice and Bob are again communicating, but the setup is slightly asymmetrical this time. As before, Alice has a string $x \in \{0,1\}^n$, but now Bob has an index $i \in \{1,2,\dots,n\}$, and the goal is for Bob to learn x_i . There is a trivial $\lceil \log n \rceil$ protocol by just sending the index.

Now, suppose we only allow Alice to send a single message so that Bob can figure out x_i . Can we do better than the trivial n bit solution?

3.1 Deterministic

Suppose Alice and Bob use a deterministic protocol and Alice sends less than n bits. Then there exists $a \neq b$ such that Alice sends the same message for a, b and Bob cannot distinguish if Alice sent A or B. Let j be such that $a_j \neq b_j$, then the protocol is wrong on either (a, j) or (b, j).

3.2 Randomized

The above proof does not give us enough for a randomized lower bound: we need Bob to be wrong on a lot of inputs. However, it turns out that even a randomized protocol requires $\Omega(n)$ bits to be sent, which can be shown in several ways.

Exercise: Come up with a μ on $\{0,1\}^n \times \{1,\cdots,n\}$ such that $D_{1/3}^{\mu}(Index) \geq \Omega(n)$. Hint: If a and b in the deterministic proof differ in only 1 bit, Bob has low chance of error. We would like them to differ in more. Try finding a distribution on X supported on a code of distance n/3, and also supported on $2^{\Omega(n)}$ elements.

In contrast to the coding theory proof hinted at above, we will present an information theoretical proof of this fact.

Proof. We will bound the distributional complexity. We take the distribution $X = X_1 X_2 \cdots X_n$ uniform on $\{0,1\}^n$ and i uniform on $\{1,\cdots,n\}$. Let Π be a deterministic protocol with error at most $\frac{1}{3}$. Alice will send M = M(x), also a random variable. We can bound

$$CC(\Pi) \ge \log(\operatorname{supp}(M)) \ge H(M) = I(M; X) = I(X_1 X_2 \cdots X_n; M) \ge \sum \mathcal{I}(X_i; M)$$

The goal is now to show that M has a lot of information, since Bob can tell a lot about X from M. We would like to show that each $\mathcal{I}(X_i; M)$ is about a constant, which makes sense since Bob can figure out any bit with high probability.

Continuing the chain of inequalities,

$$CC(\Pi) = \sum \mathcal{I}(X_i; M) = \sum H(X_i) - H(X_i|M) = n - \sum H(X_i|M)$$

For notation, let $P_e^{m,i}$ be the probability of error given that Alice sent m and Bob has i. By the error guarantee of the protocol, we have

$$\mathbb{E}_{m,i}[P_e^i] \le \frac{1}{3}$$

By Fano's Inequality, $h(P_e^{m,i}) \ge H(X_i|M=m)$. Therefore

$$\mathbb{E}_{m,i}[h(P_e^i)] = \mathbb{E}_i[\mathbb{E}_m[h(P_e^{m,i})]]$$

$$\geq \mathbb{E}_i[\mathbb{E}_m[H(X_i|M=m)]]$$

$$\geq \mathbb{E}_i[H(X_i|M)]$$

$$= \frac{\sum_i H(X_i|M)}{n}$$

Finally, by the concavity of h, this gives

$$\sum_{i} H(X_{i}|M) \leq \mathbb{E}[h(P_{e}^{m,i})]n \leq h\left(\mathbb{E}[P_{e}^{m,i}]\right)n \leq h\left(\frac{1}{3}\right)n$$

Wrapping it all up, we have

$$CC(\Pi) \ge n - \sum_{i} H(X_i|M) \ge n - h\left(\frac{1}{3}\right) n \ge \Omega(n)$$
.