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1 Recap

• Last class

– Randomized Communication Complexity

– Distributional CC : Dµ
δ (f) is the best communication complexity of a deterministic pro-

tocol Π such that Prµ[Π(x, y) 6= f(x, y)] ≤ δ.
– Lemma: Rpubδ (f) = maxµD

µ
δ (f) – can be used to lower bound R(f) by choosing an

adverse distribution µ.

• Today

– Lower bounds on Distributional CC

– Discrepancy

– Indexing problem via Information Theory

2 Discrepancy technique

We would like to develop a method to lower bound Dµ
δ , which in turn will lower bound R(f).

Every deterministic protocol induces a partition of X × Y into rectangles; previously, for zero-
error protocols, these rectangles had to be monochromatic, but now we allow some to not be
monochromatic.

The discrepancy technique aims to show that, for a specific function f , every large rectangle has
nearly equal numbers of 0s and 1s. This forces an accurate protocol to use only small rectangles
and hence require many rectangles.

Definition 1 (Discrepancy). Let f : X × Y → {0, 1}, R = S × T : S ⊆ X,T ⊆ Y , and µ be a
distribution on X × Y .

Denote

Discµ(R, f) =

∣∣∣∣ Pr
(x,y)∼µ

[f(x, y) = 0 ∧ (x, y) ∈ R]− Pr
µ

[f(x, y) = 1 ∧ (x, y) ∈ R]

∣∣∣∣
=

∣∣∣∣∣∣
∑

(x,y)∈R

(−1)f(x,y)µ(x, y)

∣∣∣∣∣∣
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and
Discµ(f) = max

R∈X×Y
Discµ(R, f)

(Note: If R is monochromatic, Discµ(R, f) = µ(R).)

Note that large discrepancy (monochromatic and large rectangle) is good for a protocol. The

following is a generalization of the deterministic bound D(f) ≥ log2

(
1

maxRmonochr µ(R)

)
:

Proposition 2 (Discrepancy lower bound). Dµ
1
2
−γ(f) ≥ log2

(
2γ

Discµ(f)

)
Proof. Let Π be a protocol using c bits of communication with error probability at most 1

2 − γ.
Since it is deterministic, the matrix is split into at most 2c rectangles.

By the maximum error allowed from this protocol, we have

Pr
(x,y)∼µ

[Π(x, y) = f(x, y)]− Pr
(x,y)∼µ

[Π(x, y) 6= f(x, y)] ≥ 2γ

We can bound the LHS by breaking it into rectangles according to the protocol and noting that Π
is constant on each rectangle:

Pr
µ

[Π(x, y) = f(x, y)]− Pr
µ

[Π(x, y) 6= f(x, y)] =
∑

R`∈protocol
Pr
µ

[Π(x, y) = f(x, y) ∧ (x, y) ∈ R`]

− Pr
µ

[Π(x, y) 6= f(x, y) ∧ (x, y) ∈ R`]

≤
∑
R`

∣∣∣∣Pr
µ

[f(x, y) = 0 ∧ (x, y) ∈ R`]− [f(x, y) = 1 ∧ (x, y) ∈ R`]
∣∣∣∣

=
∑
R`

Discµ(R`, f)

≤ 2cDiscµ(f)

This implies 2cDiscµ(f) ≥ 2γ =⇒ c ≥ log2

(
2γ

Discµ(f)

)
, as desired.

2.1 Dot product function

We will now apply this technique to bound the randomized CC of the dot product function, defined
as

IP (x, y) = x · y =
∑

xiyi (mod 2)

In the deterministic case, we showed in a previous lecture that n+ 1 is the best we could do.

Theorem 3. R 1
3
(IP ) ≥ Ω(n) = n

2 −O(1)
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It suffices to show that Dµ
1
3

(IP ) ≥ n
2 −O(1) for some distribution µ. This has two parts: we need to

come up with a clever µ, and then need to bound it. Since dot product is pretty evenly distributed
for random inputs, we take µ to be uniform.

Goal: Prove Discuniform(IP ) ≤ 1
2n/2

(Note that this implies the claimed bound by the above
Proposition).

Proof. Let R = S × T be any rectangle. Then

Discµ(R, IP ) =

∣∣∣∣∣∣
∑

x∈S,y∈T
(−1)x·y

1

22n

∣∣∣∣∣∣
Let Hn ∈ {1,−1}2n×2n be the matrix indexed by X and Y where the (x, y)th entry is (−1)x·y.
First we show the following fact.

Exercise: Hn is an orthogonal matrix (Ht
nHn = 2nI).

Now we can bound Discµ(R, IP ):

Discµ(R, IP ) =
1

22n
1S

tHn1T

=
1

22n
(1S

t) · (Hn1T)

≤ 1

22n
‖1S‖‖Hn1T‖

=
1

22n

√
|S|
√

(Hn1T) · (Hn1T)

=
1

22n

√
|S|
√

1t
THt

nHn1T

=
1

22n

√
|S|
√

2n|T |

≤ 1

22n

√
2n
√

2n2n

=
1

2n/2

(Note: It is possible to improve the bound for R(IP ) to n− O(1), which appears on Problem Set
4)

In summary, we have shown that R(EQ) = θ(log n) and R(IP ) = θ(n). In upcoming lectures, we
will tackle R(DISJ), which is in some sense the poster child of this whole field.
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3 Indexing Problem

Alice and Bob are again communicating, but the setup is slightly asymmetrical this time. As before,
Alice has a string x ∈ {0, 1}n, but now Bob has an index i ∈ {1, 2, · · · , n}, and the goal is for Bob
to learn xi. There is a trivial dlog ne protocol by just sending the index.

Now, suppose we only allow Alice to send a single message so that Bob can figure out xi. Can we
do better than the trivial n bit solution?

3.1 Deterministic

Suppose Alice and Bob use a deterministic protocol and Alice sends less than n bits. Then there
exists a 6= b such that Alice sends the same message for a, b and Bob cannot distinguish if Alice
sent A or B. Let j be such that aj 6= bj , then the protocol is wrong on either (a, j) or (b, j).

3.2 Randomized

The above proof does not give us enough for a randomized lower bound: we need Bob to be wrong
on a lot of inputs. However, it turns out that even a randomized protocol requires Ω(n) bits to be
sent, which can be shown in several ways.

Exercise: Come up with a µ on {0, 1}n × {1, · · · , n} such that Dµ
1/3(Index) ≥ Ω(n).

Hint: If a and b in the deterministic proof differ in only 1 bit, Bob has low chance of error. We
would like them to differ in more. Try finding a distribution on X supported on a code of distance
n/3, and also supported on 2Ω(n) elements.

In contrast to the coding theory proof hinted at above, we will present an information theoretical
proof of this fact.

Proof. We will bound the distributional complexity. We take the distribution X = X1X2 · · ·Xn

uniform on {0, 1}n and i uniform on {1, · · · , n}. Let Π be a deterministic protocol with error at
most 1

3 . Alice will send M = M(x), also a random variable. We can bound

CC(Π) ≥ log(supp(M)) ≥ H(M) = I(M ;X) = I(X1X2 · · ·Xn;M) ≥
∑
I(Xi;M)

The goal is now to show that M has a lot of information, since Bob can tell a lot about X from
M . We would like to show that each I(Xi;M) is about a constant, which makes sense since Bob
can figure out any bit with high probability.

Continuing the chain of inequalities,

CC(Π) =
∑
I(Xi;M) =

∑
H(Xi)−H(Xi|M) = n−

∑
H(Xi|M)
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For notation, let Pm,ie be the probability of error given that Alice sent m and Bob has i. By the
error guarantee of the protocol, we have

Em,i[P ie ] ≤
1

3

By Fano’s Inequality, h(Pm,ie ) ≥ H(Xi|M = m). Therefore

Em,i[h(P ie)] = Ei[Em[h(Pm,ie )]]

≥ Ei[Em[H(Xi|M = m)]]

≥ Ei[H(Xi|M)]

=

∑
iH(Xi|M)

n

Finally, by the concavity of h, this gives∑
i

H(Xi|M) ≤ E[h(Pm,ie )]n ≤ h
(
E[Pm,ie ]

)
n ≤ h

(
1

3

)
n

Wrapping it all up, we have

CC(Π) ≥ n−
∑
i

H(Xi|M) ≥ n− h
(

1

3

)
n ≥ Ω(n) .

5


