
15-859: Information Theory and Applications in TCS CMU: Spring 2013

Lecture 22: Optimal Set Disjointness lower bound and applications
April 16, 2013

Lecturer: Mahdi Cheraghchi Scribe: Albert Gu

1 Recap

• Last class

– R(DISJ) = Ω(
√
n), where DISJ(x, y) = ∧iNAND(xi, yi). Achieved this bound by using prod-

uct distribution.

– Hellinger Distance: ∆2
Hel(p, q) = 1−

∑
x

√
p(x)q(x).

– ∆2
Hel(p, q) ≤ ∆TV (p, q) ≤

√
2∆Hel(p, q)

• Today

– R(DISJ) = Ω(n)

2 Ω(n) DISJ bound

The high level idea is to find a distribution on the inputs, which gives a distribution on the transcript, and
finding a way to get individual NANDs from the transcript.

2.1 Input distribution

The strings (x1, y1) . . . (xn, yn) will be independent across the n coordinates, but each (xi, yi) are correlated.

Let σ ∈ {A,B}n.
(xi, yi) is sampled independently from ηA if σ1 = A and from ηB if σi = B, where:

ηA(1, 0) = ηA(0, 0) = 1/2, ηA(x, 1) = 0

ηB(0, 1) = ηB(0, 0) = 1/2, ηB(1, x) = 0

(In a sense, σi defines “who is active” for the ith bit.)

2.2 Bounding protocol information

Now suppose a protocol Π communicates with less than δn bits for some constant δ and errs with probability
at most 1/2− ε. We can bound I(X,Y ; Π) ≤ H(Π) ≤ δn, where we also use Π to refer to the transcript of

this protocol. Also, I(X,Y ; Π) ≥
n∑
1

I(Xk, Yk; Π). Putting these together gives

Ekuniform [I(Xk, Yk; Π)] ≤ δ

1

So far nothing we have done depends on σ. Since the above is true for fixed σ, it is true for distributional
σ. Thus we have

=⇒ Eσunif.EkI(Xk, Yk; Π) ≤ δ
=⇒ EkEσI(Xk, Yk; Π) ≤ δ

Thus there is a fixed k such that EσI(Xk, Yk; Π) ≤ δ. We can decompose σ into coordinates; define σ−k :=
(σ1, . . . , σk−1, σk+1, . . . , σn). Continuing,

=⇒ Eσ−k
Eσk

I(Xk, Yk; Π) ≤ δ
=⇒ fixed σ−k such that Eσk

I(Xk, Yk; Π) ≤ δ
=⇒ I(Xk, Yk; Π |σk = A) + I(Xk, Yk; Π |σk = B) ≤ 2δ

Intuitively, the protocol does not carry much information about xk, yk, which will give a contradiction if we
try to compute NAND as the protocol should.

2.3 Computing NAND(x,y)

Alice and Bob receive 1 bit x, y ∈ {0, 1} and want to compute NAND(x, y) using Π. Set Xk = x, Yk = y,
sample X−k, Y−k randomly from σ−k, ηA, ηB .

Run Π on (X,Y) and note that DISJ(X,Y) = NAND(x, y). By definition of protocol Π, Alice and Bob
compute NAND(x, y) with error at most 1/2− ε. Call this whole NAND protocol π.

By what we showed before,

I ((Xk, Yk);π(Xk, Yk) | (Xk, Yk) ∼ ηA) + I ((Xk, Yk);π(Xk, Yk) | (Xk, Yk) ∼ ηB) ≤ 2δ

=⇒ I(Z;π(Z, 0)) + I(Z;π(0, Z)) ≤ 2δ

where Z is uniform at random in {0, 1}.

Recall from Problem Set 1, Problem 6 that

I(Z, π(Z, 0)) ≥ 1

2

[
∆2
TV (π(Z, 0), π(0, 0)) + ∆2

TV (π(Z, 0), π(1, 0)
]

where ∆TV (p, q) = 1
2

∑
x

|p(x)− q(x)| = max
S⊆supp(p)

|p(S)− q(S)|. Coming this with Cauchy-Schwartz and the

Triangle Inequality gives

I(Z;π(Z, 0)) + I(Z;π(0, Z)) ≥ 1

2

[
∆2
TV (π(Z, 0), π(0, 0)) + ∆2

TV (π(Z, 0), π(1, 0))

+∆2
TV (π(0, Z), π(0, 0)) + ∆2

TV (π(0, Z), π(0, 1))
]

≥ 1

8
(∆TV (π(Z, 0), π(0, 0)) + ∆TV (π(Z, 0), π(1, 0))

+∆TV (π(0, Z), π(0, 0)) + ∆TV (π(0, Z), π(0, 1)))

≥ 1

8
[∆TV (π(0, 0), π(1, 0) + ∆TV (π(0, 0), π(0, 1))]

2

≥ 1

8
∆2
TV (π(1, 0), π(0, 1))

Actually, we could have worked directly with the Hellinger distance using:

Exercise: I(Z, f(Z)) ≥ ∆2
Hel(f(0), f(1)) where f is any randomized function.

2

This exercise gives the bound

2δ ≥ I(Z, π(Z, 0)) + I(Z, π(0, Z))

≥ 1

2
∆2
Hel(π(1, 0), π(0, 1))

=
1

2
∆2
Hel(π(0, 0), π(1, 1))

=
1

4
∆2
TV (π(0, 0), π(1, 1))

where the last equality is the lemma we showed last class. Now this is interesting because NAND is different
on (0, 0) and (1, 1). In particular,

∆TV (π(0, 0), π(1, 1)) ≥ |Pr(π(0, 0) = 0)− Pr(π(1, 1) = 0)| ≥ 2ε

Putting the last few inequalities together gives 2δ ≥ ε2 =⇒ δ ≥ ε2

2 . This implies R1/2−ε(DISJ) ≥ ε2

2 n,
completing the proof.

In fact, it was recently showed that R1/2−ε(DISJ) = Ω(εn) (Braverman, Moitra ’12)

3 Application: Moments in the streaming model

Setting : We have a sequence a1, a2, . . . , am. ai ∈ [n] arrives as a stream. For all i, fi := |{j ∈ [m], aj = i}|
(frequency).

Goal : Compute maxi fi. Not very hard (might want to compute other moments but turns out ∞ moment
is hardest).

Challenge: Use as little memory as possible. Obviously we can do it in linear memory, can we do better?

Theorem 1. Any streaming algorithm needs Ω(n) memory.

Proof. We will reduce from DISJ. Given (x, y) to DISJ and streaming algorithm A, we can construct a
protocol for computing DISJ:

Alice maps x to the stream ax = {i |xi = 1}. She runs A on ax, and sends the state of A to Bob. Bob
continues the execution of A with sequence by = {i | yi = 1}. Then the output maxi fi is 1 if DISJ(x, y) = 1,
and 2 if DISJ(x, y) = 2.

The communication cost of this protocol is the memory footprint of A, which must be Ω(n) by the bound
on DISJ. Note that this shows A can’t even estimate the answer probabilistically.

4 Information Cost

Def: ICext(Π, µ) = I(X,Y)∼µ(X,Y ; Π), referring to the information cost for an external observer.

We can also define a similar idea about what Alice and Bob learn about each other’s input from Π:

Def: IC(Π, µ) = I(Π;Y |X) + I(Π;X|Y), where (X,Y) ∼ µ.

3

