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1 Recap
Last lecture we covered the following:

e Showed R(IP) = ©(n) using the Discrepancy Method

e Indexing Problem: showed Alice must sent > Q(n) bits using Information Theory

2 Set Disjointness lower bound via product distribution

Today we lower bound R(DISJ), where

DISJ(z,y) = /\ NAND(z;, y;).
i=1

2.1 Preliminary Observations

Our goal is choose p such that D’f /100(DIS‘]) is large. Notice that if, for example, p is uniform,

then the probability that DISJ(z,y)) = 1is (3/4)", and so Alice and Bob can correctly guess “not
disjoint” with high probability.

Thus, p should be “balanced” in the sense that

w(DISTI~H(0)), u(DISI (1)) = Q(1).

Remark 1 Consider p with x1,...,Zn,Y1,...,Yp ~ i.i.d. Bernoulli(1/\/n). This u is “balanced”,
since

lim P(DISJ(z,y) =1) = lim (1 — P(x; Ay;))" = lim (1 - i)n =1/e.
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Proposition 2 (Babai, Frankl, Simon, 1986) Consider p with x1,...,Zn,y1,...,Yp ~ i.i.d. Bernoulli(1//n).

Then, D’f/loo(DISJ) = Q(y/n) (in fact, D’f/loo(DISJ) = 0(v/n)).

Corollary 3 R(DISJ) > Q(y/n).



2.2 Proof of Proposition 2

Suppose Il is a deterministic protocol such that

P (DISJ(x,y) = llp(z,y)) > 0.99.
(@y)~p

Let the random variable II denote the transcript (log of bits sent) of Iy on (x,y) ~ . We know

CC(Ily) > log, | supp(IT)|
> H(II(X,Y)) =1(X,Y; 1II)
:I(xla'-wxnvyl?"'?yn;H)

n
> I(wi,ys; 1)
=1

Definition 4
a b= H conditioned on z; = a,y; = b.

In Problem 6 of Problem Set 1, we showed

I(z, ;5 11) > E A%, (T, )],
(ir3:3 1) <a,b>~(Ber(1/ﬁ>>2[ rv (Lo 1)

where

Arv(A,B) 2 %Z\P(A:E) ~P(B=10)|.
l

Thus, noting ﬁ (1 — ﬁ) > ﬁ’

I(xi,yz-;mz\}ﬁ(l f)[ Afy (I o, IT) + AZy (1T 1, IT)]
1

M o, TT) + Ay (I 4, 11)]°
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where the last inequality is by the Triangle Inequality, since A7y is a metric. Thus, we’ve shown
so far that

CC(Ho) IZE[I(:’U’L’:I/Z?H)]

E [Afy (T 0, 1To,1)]

v
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[ATV (1m0, 115,1)]°
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Now, it suffices to show that
E [Agy (T o, b.)]" > e).

We break the proof of this into two lemmas:



Lemma 5 Since IIy computes DISJ with high accuracy,

E [Ary (T, T )] = Q(1).

%

Lemma 6 If Apy (H%},O’Hi,l) > Q(1), then Apy (H%),lv Hil,o) > Q(1).

Proof: (of Lemma 5) Since P (DISJ(X,Y) =1|X;, =Y; =0) > 1/4,
P (Ip(IMy0) = 1) > 1/5,

where TIo(ITf) ) is the output of Iy given the transcript IIf . Since X; =Y; =1 = DISJ(X,Y) =0,
P (ITo(IT{ ;) = 1) < 1/6.

Thus, ' '
Ary (Il o, 7 1) > 1/5-1/6 = 1/30.

Hence, Ilj is, on average, a good distinguisher of Hfm and Hil. [ |



Proof: (of Lemma 6) We make use of the Hellinger distance:

Definition 7 The Hellinger distance between two random variables A and B is

Apa = 1= \VP(A=0PB=0=1-Z(4,B),
0

where Z(A, B) denotes the Bhattacharya coefficient.

Exercise Use Cauchy-Schwarz to show
Alzrlel<A7 B) < ATV(Av B) < \/iAHel(Aa B)
By this Exercise, it suffices to show that
Afrer (TG 0,07 ) Ao (T 0,05 i 1)

and hence it suffices to show, for each 1,
Fix 7 and recall the following Rectangle Property:

o Inputs X' := (X1,...,Xi 1, Xir1, Xp), Y L i= (Y1,...,Yi1,Yi11,Y,) leading to a transcript
T form a rectangle Ry = S, x T. Since X LY,

PIL,=7)=P(X'€S,AY ' €T)=P (X '€S,)P (Y 'e€T;) = Au(r)By(7).
Importantly, P (H;b = 7') factors into non-negative functions Ag, A1, Bg, B1. Thus,
P (Il =7) P (I ; = 7) = Ao(7) Bo(7) A1 (7) Ba(7)
= Ao(7) Br(7) A1(7) Bo(7)
=P ( 0.1 7') P ( Z10 7') .

Remark 8 Babai, Frankl, and Simon (1986) also showed that, for any p which can be factored as
a product distribution (meaning p(x,y) = pa(z) - pp(y)),

D*(DISJ) = O(y/nlogn).

Thus, getting a substantially better lower bound requires adding correlation between X and Y .

3 Next Time

Next time, we will show R(DISJ) = Q(n).

e This result was first shown by Kalyanasundaram and Schnitger (1987).
e Razborov (1990) “simplified” the proof.

e We'll see an Information Theory based proof by Bar-Yossef, Jayram, Kumar, Sivakumar
(2004).



