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1 Recap

Last lecture we covered the following:

• Showed R(IP ) = Θ(n) using the Discrepancy Method

• Indexing Problem: showed Alice must sent ≥ Ω(n) bits using Information Theory

2 Set Disjointness lower bound via product distribution

Today we lower bound R(DISJ), where

DISJ(x, y) =
n∧
i=1

NAND(xi, yi).

2.1 Preliminary Observations

Our goal is choose µ such that Dµ
1/100(DISJ) is large. Notice that if, for example, µ is uniform,

then the probability that DISJ(x, y)) = 1 is (3/4)n, and so Alice and Bob can correctly guess “not
disjoint” with high probability.

Thus, µ should be “balanced” in the sense that

µ(DISJ−1(0)), µ(DISJ−1(1)) = Ω(1).

Remark 1 Consider µ with x1, . . . , xn, y1, . . . , yn ∼ i.i.d. Bernoulli(1/
√
n). This µ is “balanced”,

since

lim
n→∞

P(DISJ(x, y) = 1) = lim
n→∞

(1− P(xi ∧ yi))n = lim
n→∞

(
1− 1

n

)n
= 1/e.

Proposition 2 (Babai, Frankl, Simon, 1986) Consider µ with x1, . . . , xn, y1, . . . , yn ∼ i.i.d. Bernoulli(1/
√
n).

Then, Dµ
1/100(DISJ) = Ω(

√
n) (in fact, Dµ

1/100(DISJ) = Θ(
√
n)).

Corollary 3 R(DISJ) ≥ Ω(
√
n).
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2.2 Proof of Proposition 2

Suppose Π0 is a deterministic protocol such that

P
(x,y)∼µ

(DISJ(x, y) = Π0(x, y)) ≥ 0.99.

Let the random variable Π denote the transcript (log of bits sent) of Π0 on (x, y) ∼ µ. We know

CC(Π0) ≥ log2
∣∣ supp(Π)

∣∣
≥ H(Π(X,Y )) = I(X,Y ; Π)

= I(x1, . . . , xn, y1, . . . , yn ; Π)

≥
n∑
i=1

I(xi, yi ; Π).

Definition 4
Πi
a,b
4
= Π conditioned on xi = a, yi = b.

In Problem 6 of Problem Set 1, we showed

I(xi, yi ; Π) ≥ E
(a,b)∼(Ber(1/

√
n))2

[
∆2
TV

(
Πi
a,b,Π

)]
,

where

∆TV (A,B)
4
=

1

2

∑
`

∣∣P(A = `)− P(B = `)
∣∣.

Thus, noting 1√
n

(
1− 1√

n

)
≥ 1

2
√
n

,

I(xi, yi ; Π) ≥ 1√
n

(
1− 1√

n

)[
∆2
TV

(
Πi

1,0,Π
)

+ ∆2
TV

(
Πi

0,1,Π
)]

≥ 1

4
√
n

[
∆TV

(
Πi

1,0,Π
)

+ ∆TV

(
Πi

0,1,Π
)]2

≥ 1

4
√
n

[
∆TV

(
Πi

1,0,Π
i
0,1

)]2
,

where the last inequality is by the Triangle Inequality, since ∆TV is a metric. Thus, we’ve shown
so far that

CC(Π0) ≥ nE
i

[I(xi, yi; Π)]

≥ n

4
√
n
E
i

[
∆2
TV

(
Πi

1,0,Π
i
0,1

)]
≥
√
n

4
E
i

[
∆TV

(
Πi

1,0,Π
i
0,1

)]2
.

Now, it suffices to show that

E
i

[
∆TV

(
Πi

1,0,Π
i
0,1

)]2 ≥ Ω(1).

We break the proof of this into two lemmas:
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Lemma 5 Since Π0 computes DISJ with high accuracy,

E
i

[
∆TV

(
Πi

0,0,Π
i
1,1

)]
= Ω(1).

Lemma 6 If ∆TV

(
Πi

0,0,Π
i
1,1

)
≥ Ω(1), then ∆TV

(
Πi

0,1,Π
i
1,0

)
≥ Ω(1).

Proof: (of Lemma 5) Since P (DISJ(X,Y ) = 1 |Xi = Yi = 0) ≥ 1/4,

P
(
Π0(Π

i
0,0) = 1

)
≥ 1/5,

where Π0(Π
i
0,0) is the output of Π0 given the transcript Πi

0,0. Since Xi = Yi = 1⇒ DISJ(X,Y ) = 0,

P
(
Π0(Π

i
1,1) = 1

)
≤ 1/6.

Thus,
∆TV (Πi

0,0,Π
i
1,1) ≥ 1/5− 1/6 = 1/30.

Hence, Π0 is, on average, a good distinguisher of Πi
0,0 and Πi

1,1.
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Proof: (of Lemma 6) We make use of the Hellinger distance:

Definition 7 The Hellinger distance between two random variables A and B is

∆Hel
4
=

√
1−

∑
`

√
P(A = `)P(B = `) =

√
1− Z(A,B),

where Z(A,B) denotes the Bhattacharya coefficient.

Exercise Use Cauchy-Schwarz to show

∆2
Hel(A,B) ≤ ∆TV (A,B) ≤

√
2∆Hel(A,B).

By this Exercise, it suffices to show that

∆2
Hel(Π

i
0,0,Π

i
1,1) = ∆2

Hel(Π
i
0,0,Π

i
1,1),

and hence it suffices to show, for each i,

P
(
Πi

0,0 = τ
)
P
(
Πi

1,1 = τ
)

= P
(
Πi

0,1 = τ
)
P
(
Πi

1,0 = τ
)
.

Fix i and recall the following Rectangle Property:

• Inputs X−i := (X1, . . . , Xi−1, Xi+1, Xn), Y −i := (Y1, . . . , Yi−1, Yi+1, Yn) leading to a transcript
τ form a rectangle Rτ = Sτ × Tτ . Since X ⊥ Y ,

P
(
Πi
a,b = τ

)
= P

(
X−i ∈ Sτ ∧ Y −i ∈ Tτ

)
= P

(
X−i ∈ Sτ

)
P
(
Y −i ∈ Tτ

)
= Aa(τ)Bb(τ).

Importantly, P
(

Πi
a,b = τ

)
factors into non-negative functions A0, A1, B0, B1. Thus,

P
(
Πi

0,0 = τ
)
P
(
Πi

1,1 = τ
)

= A0(τ)B0(τ)A1(τ)B1(τ)

= A0(τ)B1(τ)A1(τ)B0(τ)

= P
(
Πi

0,1 = τ
)
P
(
Πi

1,0 = τ
)
.

Remark 8 Babai, Frankl, and Simon (1986) also showed that, for any µ which can be factored as
a product distribution (meaning µ(x, y) = µA(x) · µB(y)),

Dµ(DISJ) = O(
√
n log n).

Thus, getting a substantially better lower bound requires adding correlation between X and Y .

3 Next Time

Next time, we will show R(DISJ) = Ω(n).

• This result was first shown by Kalyanasundaram and Schnitger (1987).

• Razborov (1990) “simplified” the proof.

• We’ll see an Information Theory based proof by Bar-Yossef, Jayram, Kumar, Sivakumar
(2004).
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