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1. (a) Vol(S) = (1/2)%*Vol(K).
(b) Let V;_1 denote the volume of the unit ball under ¢4 norm in (d — 1) dimension. We
first upper bound the volume outside the slab by
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Now we lower bound the volume of K.
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Therefore, the fraction of volume of K outside the slab |z1| < ¢/d"/* is at most
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2. (a) Elz;] =0, therefore E[z] = 0.
(b) By symmetry we have
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Therefore
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The standard deviation of u”x is \/Var[uTx] = 1//d.

(d) The ratio between the volume of intersection and the volume of each unit ball equals 2
times the fraction of the hemisphere above the plane x; = a/2 (of a unit ball centered
at origin), which, by Lemma 1.2 in the book, is at most

(e) For a = ¢/+v/d—1 (think of ¢ > 1 and note that we assume that the radius r = 1), the
8

C

fraction of the intersection is at most  exp (—%), which is exponentially small in c.

(a) E[(u,r)] =3 Eluir] = 0.
(b) By rotational symmetry, we can assume w.l.o.g. that w = (1,0,0,---,0). Therefore

E[/(u, )] = Ellr[] = /2/m.
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(d) By rotational symmetry, we can assume w.l.0.g. that the vectors u, v have non-zero en-
tries only at their first 2 coordinates, i.e. u = (uy,u2,0,0,---,0) and v = (v1,v2,0,0,---,0).
Note that (u,r) = uir; +ugre and (v, r) = v1r; +vere only involve the first two gaussian
coordinates r1,ro — the whole problem is reduce to the 2-dimensional problem.

In the 2-dimensional problem, the event sign((u,r)) # sign({(v,r)) is equivalent to the
event that uw and v are on different sides of the line going through the origin, and with
T as its norm vector. Since 7 is uniformly random in its direction, we know that
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Therefore,
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4. Since k < d, we know that A has a non-trivial null space. Then there are two vectors « # y
such that Az = Ay. Now we have | —y|| # 0 and ||Ax — Ay|| = 0, which implies unbounded
distortion.

5. (a)

(b)

The total volume of the e-neighborhoods of the points in COVER should be at least
1(= 1%). Therefore,
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Consider adding all points whose coordinates are multiples of €/ Vd, i.e. let
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One can verify that COVER is a valid (d, €)-covering set, and
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Fix © # y. Let X; be the indicator variable for the event C(z); = C(y);. We see
that {X;} is a set of mutually independent variables, E[X;] = 1/2 and X; € [0,1]. By
Hoeffding’s inequality, we have

2
Prlavg(X;) — 1/2] < exp <—2 <§> n> = exp(—3.2m) < 27°™,

By a union bound, we have
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Since there are |V| vectors, the optimal solution must reside in a |V|-dimensional space.

Let k = le%glog(l/e), and let {z}},cv be the optimal solution (in a |V|-dimensional
space) of value ©. Now we project {z} },cv to a random k-dimensional subspace, denote
the projection vectors by {Z,}ucv. Finally, let z, = Z,/||Zy]| for all u € V.
It is easy to see that {x,}ucv is a set of unit vectors. Now we are going to show that
the value of (1) obtained by these vectors is at least © — e. We are going to prove the
following claim.
Claim 1
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Once we have Claim 1, we finish the proof as follows. For all u,v € V', we have
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Finally, by linearity of expectation,
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Now we are going to prove Claim 1.

Proof of Claim 1. For notational convenience, let !, = %;ﬁu for all w € V. By the
Random Projection Theorem and our choice of k£ (and assuming e < 0.9), each of the
following 3 events happen with probability at most €/24.

o [[lZ,0% = 1 > 15
o (17,17 = 1] > 5.

o [lZ, — Z1 — 2% — 231 > 165 - [l

u ‘T:HQ
By a union bound, with probability at least 1 —¢/8, none of the 3 events above happens.
In this case, we are going to show that we have |||z — z}||? — [lzw — z0[]?] < §. By

triangle inequality,
s = @yl = Nzw = zol®] < Ml — a2 = 17, = Z17) + 12, — TP = llzw — 20]?].

For the first term, we upper bound it by 155 - ||z — 23 < 155 - 4 = =-

For the second term, we use
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Similarly, we can show that ||(Z], — z,)|| < 155 In all, we upper bound |||Z, — Z,|* —
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Therefore, we have
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