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1. (a) Vol(S) = (1/2)d/4Vol(K).

(b) Let Vd−1 denote the volume of the unit ball under `4 norm in (d − 1) dimension. We
first upper bound the volume outside the slab by

2

∫ 1

c/d1/4
(1− x4)(d−1)/4Vd−1dx

≤2

∫ +∞

c/d1/4
(1− x4)(d−1)/4Vd−1dx

≤2Vd−1

∫ +∞

c/d1/4
exp(−x4(d− 1)/4)dx
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∫ +∞

c/d1/4

x3

(c/d1/4)3
exp(−x4(d− 1)/4)dx

=2Vd−1 ·
d3/4

c3
· 1
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·
(
− exp(−x4(d− 1)/4)

) ∣∣+∞
c/d1/4

≤ 3Vd−1
c3(d− 1)1/4

exp(−c4/4). (for large d’s)

Now we lower bound the volume of K.

Vol(K) =2

∫ 1

0
(1− x4)(d−1)/4Vd−1dx

≥2Vd−1

∫ 1/(d−1)1/4

0
(1− x4)(d−1)/4dx

≥ 2Vd−1
(d− 1)1/4

(
1− 1
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dx

≥ 2Vd−1
(d− 1)1/4

(1− 1
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· d− 14) (for large d’s)

≥ Vd−1
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.

Therefore, the fraction of volume of K outside the slab |x1| ≤ c/d1/4 is at most

3Vd−1

c3(d−1)1/4 exp(−c4/4)

Vd−1

(d−1)1/4
=

3

c3
exp(−c4/4).

2. (a) E[xi] = 0, therefore E[x] = 0.

(b) By symmetry we have

E[x2i ] =
1

d
E

[
d∑
i=1

x2i

]
= 1/d.

Therefore
Var[xi] = E[x2i ]−E[xi]

2 = 1/d.



(c)

Var[uTx] =E
[
(uTx)2

]
−E

[
uTx

]2
=E

[
(uTx)2

]
(since E[xi] = 0 for all i)

=
∑
i,j

E [uiujxixj ]

=
1

d

∑
i

u2i (since E[xixj ] = 0 when i 6= j and E[x2i ] = 1/d)

=
1

d
.

The standard deviation of uTx is
√
Var[uTx] = 1/

√
d.

(d) The ratio between the volume of intersection and the volume of each unit ball equals 2
times the fraction of the hemisphere above the plane x1 = a/2 (of a unit ball centered
at origin), which, by Lemma 1.2 in the book, is at most

2 · 2√
d− 1 · a/2

exp

(
−(a/2)2(d− 1)

2

)
=

8

a
√
d− 1

exp

(
−a

2(d− 1)

8

)
.

(e) For a = c/
√
d− 1 (think of c � 1 and note that we assume that the radius r = 1), the

fraction of the intersection is at most 8
c exp

(
− c2

8

)
, which is exponentially small in c.

3. (a) E[〈u, r〉] =
∑

iE[uiri] = 0.

(b) By rotational symmetry, we can assume w.l.o.g. that u = (1, 0, 0, · · · , 0). Therefore

E[|〈u, r〉|] = E[|r1|] =
√

2/π.

(c)

E[〈u, r〉 · 〈v, r〉]

=E

(∑
i

uiri

)∑
j

vjrj


=
∑
i,j

uivj E[rirj ]

=
∑
i

uivi (since E[rirj ] = 0 for i 6= j and E[r2i ] = 1)

=〈u,v〉.

(d) By rotational symmetry, we can assume w.l.o.g. that the vectors u,v have non-zero en-
tries only at their first 2 coordinates, i.e. u = (u1, u2, 0, 0, · · · , 0) and v = (v1, v2, 0, 0, · · · , 0).
Note that 〈u, r〉 = u1r1+u2r2 and 〈v, r〉 = v1r1+v2r2 only involve the first two gaussian
coordinates r1, r2 – the whole problem is reduce to the 2-dimensional problem.

In the 2-dimensional problem, the event sign(〈u, r〉) 6= sign(〈v, r〉) is equivalent to the
event that u and v are on different sides of the line going through the origin, and with
r as its norm vector. Since r is uniformly random in its direction, we know that

Pr[sign(〈u, r〉) 6= sign(〈v, r〉)] =
arccos〈u,v〉

π
.



Therefore,

Pr[sign(〈u, r〉) = sign(〈v, r〉)] = 1− arccos〈u,v〉
π

.

4. Since k < d, we know that A has a non-trivial null space. Then there are two vectors x 6= y
such that Ax = Ay. Now we have ‖x−y‖ 6= 0 and ‖Ax−Ay‖ = 0, which implies unbounded
distortion.

5. (a) The total volume of the ε-neighborhoods of the points in COVER should be at least
1(= 1d). Therefore,

|COVER| ≥ 1

volume of a d-dimensional ball with radius ε
≥ (d/2)!

(πε2)d/2
.

(b) Consider adding all points whose coordinates are multiples of ε/
√
d, i.e. let

COVER = {(i1ε/
√
d, i2ε/

√
d, · · · , idε/

√
d|i1, i2, · · · , id ∈ {0, 1, 2, · · · , b

√
d/εc}}.

One can verify that COVER is a valid (d, ε)-covering set, and

|COVER| =

(√
d

ε
+ 1

)d
≤
(

2d

ε2

)d/2
.

6. (a) Fix x 6= y. Let Xi be the indicator variable for the event C(x)i = C(y)i. We see
that {Xi} is a set of mutually independent variables, E[Xi] = 1/2 and Xi ∈ [0, 1]. By
Hoeffding’s inequality, we have

Pr[avg(Xi)− 1/2] ≤ exp

(
−2

(
2

5

)2

n

)
= exp(−3.2m) < 2−3m.

(b) By a union bound, we have

Pr[∀x 6= y, C(x) and C(y) differ on more than n/10 positions]

≥1−
∑
x 6=y

Pr[C(x) and C(y) differ on no more than n/10 positions]

≥1− 22m · 2−3m = 1− 2−m.

7. (a) Since there are |V | vectors, the optimal solution must reside in a |V |-dimensional space.

(b) Let k = 108

ε2
log(1/ε), and let {x∗u}u∈V be the optimal solution (in a |V |-dimensional

space) of value Θ. Now we project {x∗u}u∈V to a random k-dimensional subspace, denote
the projection vectors by {x̃u}u∈V . Finally, let xu = x̃u/‖x̃u‖ for all u ∈ V .

It is easy to see that {xu}u∈V is a set of unit vectors. Now we are going to show that
the value of (1) obtained by these vectors is at least Θ − ε. We are going to prove the
following claim.

Claim 1

∀u, v ∈ V,Pr
[
‖xu − xv‖2 < ‖x∗u − x∗v‖2 −

ε

2

]
<
ε

8
.



Once we have Claim 1, we finish the proof as follows. For all u, v ∈ V , we have

E
[
‖x∗u − x∗v‖2 − ‖xu − xv‖2

]
<
ε

2
+ Pr

[
‖xu − xv‖2 < ‖x∗u − x∗v‖2 −

ε

2

]
· ‖x∗u − x∗v‖2 <

ε

2
+
ε

8
· 4 = ε.

Finally, by linearity of expectation,

E

 1

|E|
∑

(u,v)∈E

‖xu − xv‖2
 ≥ 1

|E|
∑

(u,v)∈E

‖x∗u − x∗v‖2 − ε = Θ− ε.

Now we are going to prove Claim 1.
Proof of Claim 1. For notational convenience, let x̃′u = |V |

d x̃u for all u ∈ V . By the
Random Projection Theorem and our choice of k (and assuming ε ≤ 0.9), each of the
following 3 events happen with probability at most ε/24.

• |‖x̃′u‖2 − 1| > ε
100 .

• |‖x̃′v‖2 − 1| > ε
100 .

• |‖x̃′u − x̃′v‖2 − ‖x∗u − x∗v‖2| > ε
100 · ‖x

∗
u − x∗v‖2.

By a union bound, with probability at least 1− ε/8, none of the 3 events above happens.
In this case, we are going to show that we have |‖x∗u − x∗v‖2 − ‖xu − xv‖2| ≤ ε

2 . By
triangle inequality,

|‖x∗u − x∗v‖2 − ‖xu − xv‖2| ≤ |‖x∗u − x∗v‖2 − ‖x̃′u − x̃′v‖2|+ |‖x̃′u − x̃′v‖2 − ‖xu − xv‖2|.

For the first term, we upper bound it by ε
100 · ‖x

∗
u − x∗v‖2 ≤ ε

100 · 4 = ε
25 .

For the second term, we use

|‖x̃′u − x̃′v‖2 − ‖xu − xv‖2|
=|〈(x̃′u − x̃′v)− (xu − xv), (x̃′u − x̃′v) + (xu − xv)〉|
=|〈(x̃′u − xu)− (x̃′v − xv), (x̃′u − x̃′v) + (xu − xv)〉|
≤‖(x̃′u − xu)− (x̃′v − xv)‖‖(x̃′u − x̃′v) + (xu − xv)‖ (Cauchy-Schwartz)

≤4‖(x̃′u − xu)− (x̃′v − xv)‖
≤4
(
‖(x̃′u − xu)‖+ ‖(x̃′v − xv)‖

)
. (triangle inequality)

Since xu = x̃′u/‖x̃′u‖, we have

‖(x̃′u − xu)‖ = |‖x̃′u‖ − 1| = |‖x̃
′
u‖2 − 1|
‖x̃′u‖+ 1

≤ ε

100
.

Similarly, we can show that ‖(x̃′u − xu)‖ ≤ ε
100 . In all, we upper bound |‖x̃′u − x̃′v‖2 −

‖xu − xv‖2| by 2 · ε
100 = ε

50 .

Therefore, we have

|‖x∗u − x∗v‖2 − ‖xu − xv‖2| ≤
ε

25
+

ε

50
<
ε

2
.


