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1. Write A in its SVD form A =
∑

i σiwiv
T
i where ui, vi are unit vectors and σ1 ≥ σ2 ≥ σ3 ≥ . . . .

Let Ak =
∑k

i=1 σiwiv
T
i .

(a) False. Take A to be the 5×5 identity matrix and let k = 2. The matrix B of rank at most
k that minimizes ‖A − B‖F is A2, i.e. two ones in the upper-left two diagonal entries
and zeroes in other entries. We have ‖A−A2‖F =

√
3 while ‖A‖F /

√
k =

√
5/2 <

√
3.

(b) True. Take B = Ak. We have ‖A − Ak‖2 = σ2
k+1. Since ‖A‖2F =

∑
i σ

2
i , we have

k · ‖A−Ak‖22 ≤ ‖A‖2F , i.e. ‖A−Ak‖2 ≤ ‖A‖F /
√
k.

(c) Let k = 1/ε2. And let ui = Akxi =
∑k

t=1 σtwtv
T
t xi. Note that computing ui uses

O(k(d+n)) = O((d+n)/ε2) time. Now we prove that ‖ui−Axi‖2 ≤ ε‖A‖F ‖xi‖2. This
is because

‖ui −Axi‖2 = ‖(Ak −A)xi‖2 ≤ ‖(Ak −A)‖2‖xi‖2 ≤ (‖A‖F /
√
k)‖xi‖2 = ε‖A‖F ‖xi‖2,

where the second inequality uses the result of part (b).

2. (a) n− 1.
(b) p(1− (1− p)2)n−2 = p(2p− p2)n−2 = pn−1(2− p)n−2.

3. E[|X|] = 2
∫∞
0

1√
2π
xe−x

2/2dx =
∫∞
0

√
2/πe−x

2/2d(x2/2) =
√

2/π.

4. We follow the proof of Theorem 6.10 in the book. We only need to choose suitable m such
that πS(2m) · 2−εm/2 ≤ δ. Here we use the bound (by Lemma 6.6 in the book) that

πS(2m) ≤
d∑
i=0

(
2m
i

)
≤ d
(

2m
d

)
≤ (2m)d

(d− 1)!
.

Therefore, by choosing m = 100
ε (log(1/δ) + d log(1/ε)), we only need to prove that (2m)d

(d−1)! ·
2−εm/2 ≤ δ. Using the bound (d− 1)! ≥ e((d− 1)/e)d−1, we have

(2m)d

(d− 1)!
· 2−εm/2

≤(2m)ded−2

(d− 1)d−1
· 2−εm/2

=2ded−2 · d
d(log(1/ε) + log(1/δ)/d)d

(d− 1)d−1
· δ50ε50d

≤2ded−1 · d(log(1/ε) + log(1/δ)/d)d · δ50ε50d

≤(log(1/ε) + log(1/δ)/d)d · δ50ε25d (for ε < 1/2)

≤(ε10 + ε25 log(1/δ)/d)d · δ50 (again, for ε < 1/2)

=(ε10 + ε25δ49/d log(1/δ)/d)d · δ
≤(ε10 + ε25)d · δ (note that δ49/d log(1/δ)/d < 1 for all 0 < δ < 1)
≤δ.



5. Output all the vertices of degree greater than n/2 + 2.5
√
n lnn. It is easy to see that this

algorithm runs in O(n2) times. Now we are going to show that it outputs the correct set S
with probability at least 1 − O(1/n2). By Chernoff bound and union bound, we know that
in a random G(n, 1/2) instance, with probability at least 1 − 1/n2, the degrees of all the
vertices belong to the interval (n/2− 2

√
n lnn, n/2 + 2

√
n lnn). Fix a set S of k = 10

√
n lnn

vertices, using Chernoff bound and union bound again, we know that with probability at least
1 − 1/n2, in the induced graph by S, all the vertices have degree no more than 5.5

√
n lnn.

Therefore, by a union bound, with probability at least 1− 2/n2, after putting in the missing
edges to make S a clique, the degrees of vertices in S are greater than n/2+2.5

√
n lnn, while

the degrees of other vertices are less than n/2+2
√
n lnn – in this case, the algorithm outputs

the correct set S.

6. (a) This is a special case of part (b) (when m = 0).

(b) Assign weights w1, w2, · · · , wn to the n websites and start with wi = 1 for all i. On each
day, if the total weight of the websites that say “up” is more than the total weight of
the ones that say “down”, predict “up”, and predict “down” otherwise. If the prediction
turns out to be wrong, reduce the weights of the websites that give the wrong prediction
to 1/2 times the original weights.
Now we are going to upper bound the total number of wrong predictions we make.
Consider the sum W =

∑n
i=1wi at each day. Since the best websites makes at most

m mistakes, its weight is at least (1/2)m. Therefore we have W ≥ (1/2)m. Each time
we make a wrong prediction, the weights of the websites making the mistake (which is
at least W/2 in total, by our strategy) are halved. Therefore when we make a wrong
prediction, the updated weight W ′ ≤ W · (3/4). Since W starts from n, after k wrong
predictions, we have W ≤ n · (3/4)k. In all, we have

n · (3/4)k ≥ (1/2)m,

which implies that k ≤ O(m+ log n).


