ARTIFICIAL INTELLIGENCE : 203

Generalization as Search

Tom M. Mitchell

Computer Science Department. Rutgers University.
New Brunswick, NJ 08903, U.S.A.

Recommended by Nils Nilsson

ABSTRACT

The problem of concept leaming. or forming a general description of a class of objects given a set of
examples and non-examples. is viewed here as a search problem. Existing programs that generalize
from examples are characterized in terms of the classes of search strategies that they employ. Several
classes of search strategies are then analyzed and compared in terms of their relative capabilities and
computational complexities.

1. Introduction

‘Learning’ is a broad term covering a wide range of processes. We learn
(memorize) multiplication tables. learn (discover how) to walk, learn (build up
an understanding of, then an ability to synthesize) languages. Many subtasks
and capabilities are involved in these various kinds of learning.

One capability central to many kinds of learning is the ability to generalize:
to take into account a large number of specific observations. then to extract
and retain the important common features that characterize classes of these
observations. This generalization problem has received considerable attention
for two decades in the fields of Artificial Intelligence, Psychology. and Pattern
Recognition (e.g. [2—4. 6-10, 14, 15, 19-21]). The results so far have been tan-
talizing: partially successful generalization programs have been written for
problems ranging from learning fragments of spoken English to learning rules
of chemical spectroscopy. But comparing alternative strategies and developing
general understanding of techniques has been difficult because of differences in
data representations. terminology. and problem characteristics.

The purpose of this paper is to compare various approaches to generalization
in terms of a single framework. Toward this end. generalization is cast as a
search problem. and alternative methods for generalization are characterized in
terms of the search strategies that they employ. This characterization uncovers
similarities among approaches and leads to a comparison of relative capabilities

Artificial Intelligence 18 (1982) 203-226
0004-3702/82/0000-0000/802.75 T 1982 North-Holland



204 TM. MITCHELL

and computational complexities of alternative approaches. The characterization
allows a precise comparison of systems that utilize different representations for
learned generalizations.

2. The Problem

The class of generalization problems considered here can be described as
follows: A program accepts input observations (instances) represented in some
language. which we shall call the instance language. Learned generalizations
correspond to sets of these instances and are formulated by the program as
statements in a second language. which we shall call the generalization lan-
guage. In order to associate instances with generalizations, the program must
possess a matching predicate that tests whether a given instance and general-
ization match (i.e.. whether the given instance is contained in the instance set
corresponding to the given generalization).

Given the instance language, generalization language and matching predi-
cate, the generalization problem is to infer the identity of some unknown
‘target’ generalization by observing a sample set of its training instances. Each
training instance is an instance from the given language, along with its
classification as either an instance of the target generalization (positive in-
stance) or not an instance of the target generalization (negative instance). This
generalization problem can be summarized as follows.

Generalization problem :

Given: (1) A language in which to describe instances.
(2) A language in which to describe generalizations.
(3) A matching predicate that matches generalizations to in-
stances.
(4) A set of positive and negative training instances of a target
generalization to be learned.
Determine: Generalizations within the provided language that are con-
sistent with the presented training instances (i.e.. plausible
descriptions of the target generalization).

Here, a generalization is considered to be consistent with a set of training
instances if and only if it matches every positive instance and no negative
instance in the set. With this strict definition of consistency we assume (1) that
the training instances contain no errors and (2) that it is possible to formulate a
correct description of the target generalization within the given generalization
language. Although several of the systems discussed in this paper have attemp-
ted to deal with learning from inconsistent training data, an analysis of
performance in such cases is beyond the scope of this paper.

Throughout this paper we shall refer to a simple example of the above class
of generalization problems, in order to illustrate several approaches to learn-



GENERALIZATION AS SEARCH 205

ing. In this problem. the instances are unordered pairs of simple objects
characterized by three properties. Each object is described by its shape (eg.,
square. circle. triangle). its color (e.g., red, orange. yellow), and its size (e.g.,
large. small). The instance language will describe each instance as an unordered
pair of feature vectors, each of which specifies the size. color. and shape of an
object. For example, Instance, below describes an instance in this language.

Instance,: {(Large Red Square) (Small Yellow Circle)} .

Generalizations of these instances will be represented in a similar fashion,
except that we may indicate that the color, size, or shape of an object is
unimportant by replacing the value of that feature by a question mark. Thus,
the following generalization represents the set of all instances containing one
small circle and one large object.

Generalization,: {(Small ? Circle) (Large ? M}

We define the matching predicate for this instance language and generaliza-
tion language so that a generalization matches an instance provided the
features specified in the generalization have counterparts in the features
specified in the instance. Thus, Generalization, matches Instance; (note the
instances and generalizations are wunordered pairs). More precisely, in this
example problem we will say that a generalization. g, matches an instance, i, if
and only if there is a mapping from the pair of feature vectors of g onto the
pair of feature vectors of i, such that the restrictions on feature values given in
g are consistent with the feature values of i. Here a feature restriction in g is
consistent with a feature value in i if either (a) the feature restriction in g is
identical to the feature value in i, or (b) the feature restriction in g is a question
mark.

3. Generalization as Search

The above generalization problem is essentially a search problem. The
generalization language corresponds to an hypothesis space (search space) of
possible solutions. and the learning task is to examine this hypothesis space,
subject to constraints imposed by the training instances, to determine plausible
generalizations. This characterization of generalization as search is used below
to describe generalization methods, independent of the particular generaliza-
tion and instance languages used. This characterization leads to a useful
classification and comparison of various systems.

3.1. The partial ordering

A key characteristic of the above generalization problem is that there is
an important structure inherent to the generalization language for
every such problem. This structure, which has been described previously for



206 T.M. MITCHELL

individual generalization languages [S.8, 11. 15. 18] is based on the relation
'more-specific-than’, defined as follows.

More-specific-than relation
Given two generalizations, G, and G-. G, is more-specific-than G- if and only if
{ieET|M(G\.iC{i € I|M(G., i)}. where I is the set of all instances des-
cribable in the instance language. and M is the matching predicate.

In other words, G, is more-specific-than G: if and only if G, matches a
proper subset of the instances that G, matches. This relation partially orders
the hypothesis space through which the learning program must search. Notice
the above definition of this relation is extensional—based upon the instance sets
that the generalizations represent. In order for the more-specific-than relation
to be practically computable by a computer program. it must be possibie to
determine whether G, is more-specific-than G, by examining the descriptions
of G, and G,, without computing the (possibly infinite) sets of instances that
they match. This requirement places restrictions upon the nature of general-
ization languages for which some of the methods below are suited.

A portion of the partially ordered generalization language for the example
problem is shown in Fig. 1. Here G, is more-specific-than G,: the constraints in
G, are logically implied by those in Gy, and therefore any instance which
matches G, must also match G.,. In contrast, G, and G, are not comparable
generalizations according to the more-specific-than relation: although the sets
of instances characterized by G; and G, intersect, neither set contains the
other.

The more-specific-than relation defined above imposes a partial ordering
over the generalizations in the hypothesis space. This partial ordering is
important because it provides a powerful basis for organizing the search through
the hypothesis space. Note that the definition of this relation (and the cor-
responding partial ordering) is dependent only on the defined instance lan-
guage. generalization language, and matching predicate. It is independent of
the particular generalization to be learned and the particular training instances
presented.

Gy

| .

| specific
G3

Go

G:: {(large Red Circle) (Large ? ?)}
Ga: {(? ? Circle) (Large ? 7)}
Ga: {(? ? Circle) (Large Blue ?)}

FiG. 1. Portion of a partially ordered generalization language.



GENERALIZATION AS SEARCH 207

4. Three Data-Driven Generalization Strategies

If generalization is viewed as a search problem. then generalization methods
can be characterized in terms of the search strategies that they employ. Many
generalization programs employ search strategies that are data-driven, in the
sense that they consider discrepancies between the current hypothesis and
available data in order to determine appropriate revisions to the current
hypothesis. Although no two of these programs employ exactly the same strategy,
it is informative to group them into classes whose members employ similar
strategies and therefore possess similar performance characteristics. The
aim of this section is not to compare alternative generalization learning pro-
grams. but rather alternative classes of data-driven strategies that existing
programs implement in various ways, for various generalization languages. We
consider three such classes of search strategies here. A prototypical program is
described for each class. and the characteristics of the prototype examined. The
capabilities and efficiency of the classes are then compared in terms of these
prototypes.

One data-driven strategy for generalizing from examples is depth-first search
through the hypothesis space. Programs that can be characterized in this way
include [21] and the RuLEMOD portion of the Meta-DENDRAL program as
described in [4]. In this strategy a single generalization is chosen as the current
best hypothesis for describing the identity of the target generalization. This current
hypothesis is then tested against each newly presented training instance, and is
altered as needed so that the resulting generalization is consistent with each new
instance. Each such alteration yields a new current hypothesis, and corresponds to
one step in a data-driven. depth-first search through the hypothesis space.

A prototypical depth-first search strategy can be described as shown in Fig.
2,

Fig. 3 illustrates the depth-first search strategy in the context of the example
problem described earlier. This figure shows the effect of two positive training
instances. Here the first positive training instance leads to initializing the
current best hypothesis to CBH,, which matches no instances other than the
first positive instance. When the second positive instance is observed, CBH,
must be revised so that it will match the new positive instance. Notice that
there are many plausible revisions to CBH, in addition to CBH.. shown in the
figure. Systems such as [4] and [21] use domain-specific heuristics to determine
which of the possible revisions to select when many are plausible.

Fig. 4 illustrates the effect of a third training instance which conflicts with
CBH.. In this case. although CBH, could be specialized to exclude the new
negative instance. no such revision is consistent with the observed positive
instances. Therefore, the system must backtrack to an earlier version of the
CBH. reconsidering its previous revisions to determine a revision that will be
consistent with the new negative instance as well as the observed positive



208 TM. MITCHELL

Initialize the current best hypothesis, CBH, to some generalization that is consistent with the
first observed positive training instance.

for each subsequent instance, i

begin
if i is a negative instance, and / matches CBH

then begin
-Consider ways of making CBH more specific so that / no longer matches it.
-Test these possible revisions to find those that match all earlier positive in-
stances.
-Choose one acceptable revision as the new CBH.
end

else if / is a positive instance, and / does not match CBH,
then begin

-Consider ways of making CBH more general so that i matches it.
-Test these possible revisions to find those that do not match any earlier negative
instance.
-Choose one accepiabie revision as the new CBH.
end
it none of the considered revisions to CBH result in a generalization consistent with
previous instances as well as /,
then Backtrack to an earlier version of CBH, and try a different branch in the search, and
reprocess instances that have been processed since that point,
end

FIG. 2. Depth-first search strategy.

Search:
CBH,: {(Large Red Triangle)
(Small Blue Circle)}

CBH,: {(Large ? ?)

(Small ? ?7)}
Training instances:
Instance Classification
(1) {(Large Red Triangle) +
(Small Blue Circle)}
(2) {(Large Blue Circle) *

(Small Red Triangle)}

FIG. 3. Depth-first search example.



GENERALIZATION AS SEARCH 209

Search:
{(Large Red Triangle)
(Small Blue Circle)}

CBHs: {(? Red Triangle) CBH;: {(Large ? ?)
(? Blue Circle)} (Small ? ?7)}

Training Instances:

Instance Classification

(3) {(Large Blue Triangle) -
(Small Blue Triangle)}

FiG. 4. Depth-first search example continued.

instances. This backtracking step is shown schematically in Fig. 4, and results in
this case in the new current hypothesis CBH;.
There are two awkward characteristics of this depth-first search strategy:

(1) Cost of maintaining consistency with past instances
It is costly to test each alteration to the current hypothesis for consistency with
past training instances. Some systems (e.g.. [21]) sacrifice assured consistency
with past instances by not reexamining them when the current hypothesis is
altered. Others (e.g.. [4]) test past instances, and therefore require progres-
sively longer computations for each successive training instance.

(2) Need to backtrack
Once the program has determined a set of acceptable alterations to the current
generalization, it must choose one of these as the new current hypothesis. In
the event that subsequent instances reveal an incorrect choice has been made,
the program must backtrack to reconsider previously processed training in-
stances and generalizations.

4.2. Specific-to-general breadth-first search

In contrast to depth-first search programs, programs which employ a breadth-
first strategy maintain a set of several alternative hypotheses. Systems which fall
into this class include those reported in [6, 15, 18]. Each of the programs takes
advantage of the general-to-specific partial ordering to efficiently organize the
breadth-first search. Starting with the most specific generalizations, the search



210 T.M. MITCHELL

is organized to follow the branches of the partial ordering so that progressively
more general generalizations are considered each time the current set must be
modified. The set of alternative plausible hypotheses computed by this specific-
to-general breadth-first search is the set (which we shall call S) of maximally
specific generalizations consistent with the observed training instances; that is

S={s|s is a generalization that is consistent with the observed
instances, and there is no generalization which is both more
specific than s and consistent with the observed instances}.

A prototypical specific-to-general breadth-first search is described in Fig. 5.

Notice that this algorithm involves comparing generalizations in order to
determine whether one is more general than another. The generalization
language must allow making this test efficiently; that is, the test should be made
by examining the descriptions of the two generalizations directly, without
having to consider explicitly the sets of instances that they represent. This
requirement represents a restriction on the kind of generalization languages for
which this approach is practical.

Fig. 6 illustrates this search strategy. using the same two positive instances
considered in Fig. 3. The set S, is determined in response to the first positive
instance. It contains the most specific generalization consistent with the obser-
ved instance. S, is then revised in response to the second positive instance as
shown in Fig. 6. Here. the generalization in S, is generalized along each branch
of the partial ordering, to the extent needed to match the new positive
instance. The resulting set, S., is the set of maximally specific describable
generalizations consistent with the two observed positive instances.

Fig. 7 illustrates the effect of a subsequent negative training instance. In this
case, one of the members of S, was found to match the negative instance, and
was therefore removed from the revised set of current hypotheses, S;. Notice that

Initialize the set of current hypotheses, S, to the set of maximally specific generalizations
that are consistent with the first observed positive training instance.

for each subsequent instance, i
begin
if / is a negative instance,
then Retain in S only those generalizations which do not match /.
else it i is a positive instance,
then begin
-Generalize members of S that do not match i along each branch of the partial
ordering but only to the extent required to allow them to match /.
-Remove from S any element that either (1) is more general than some other
element in S or (2) matches a previously observed negative instance.
end
end

FI1G. 5. Breadth-first search strategy.



GENERALIZATION AS SEARCH 211

Search:
S [ {(Large Red Triangle)]
(Small Blue Circle)}

~
Sa: [{(‘? Red Triangle) {(Large ? ?) ]
(? Blue Circle)} i (Small ? ?7)}

Training instances:

Instance Classification

(1) {(Large Red Triangle) +
(Small Blue Circle)}

(2) {(Large Blue Circle) +
(Small Red Triangle)}

F1G. 6. Specific-to-general breadth-first search example.

there is no possibility of finding an acceptable specialization of the offending
generalization, since by definition, no more specific generalization is consistent
with the observed positive instances. At the same time. no further generaliza-
tion is acceptable since this will also match the new negative instance.

In general, positive training instances force the set § to contain progressively
more general generalizations. Each revision to (further generalization of) a
member of § corresponds to searching deeper into the partial ordering along
one branch of the breadth-first search. Negative instances eliminate general-

Ss: [ {(? Red Triangle) {(Large ? ?) ]
(? Blue Circle)} i (Small ? ?)}

S [{(? Red Triangle)]
(? Blue Circle)}

Training instances:

Instance Classification

(3) {(Large Blue Triangle) -
(Small Blue Triangle)}

FiG. 7. Breadth-first search example continued.



212 T.M. MITCHELL

izations from S, and thereby prune branches of the search which have become
overly general. This search proceeds monotonically from specific to general
generalizations.

One advantage of this strategy over depth-first search stems from the fact
that the set S represents a threshold in the hypothesis space. Generalizations
more specific than this threshold are not consistent with all the observed
positive instances, whereas those more general than this threshold are. Thus.
when a generalization in S must be revised, it can only be made more general,
and this revision therefore need not be tested for consistency with past positive
instances. Revisions must still, however, be tested against previous negative
instances to assure that the revised generalization is not overly general.

4.3. Version Space strategy

The version space strategy for examining the hypothesis space involves
representing and revising the set of all hypotheses that are describable within
the given generalization language and that are consistent with the observed
training instances. This set of generalizations is referred to as the version space
of the target generalization with respect to the given generalization language
and observed training instances, The term version space is used to refer to this
set because it contains all plausible versions of the emerging concept.

This strategy begins by representing the set of all generalizations consistent
with the first positive training instance, then eliminates from consideration any
generalization found inconsistent with subsequent instances. Programs that
implement this strategy for various generalization languages are described in
[10-12].

The version space approach is feasible because the general-to-specific order-
ing of generalizations allows a compact representation for version spaces. In
particular, a version space can be represented' by two sets of generalizations:
the set S as defined above, and the dual set G, where

G = {g | g is consistent with the observed instances, and there is no
generalization which is both more general than g, and con-
sistent with the instance}.

Together. the sets S and G precisely delimit the version space.” It is thus
possible to determine whether a given generalization is contained in the version
space delimited by sets S and G:

A generalization, x. is contained in the version space represented by §

"The version space is ‘represented’ in the sense that it is possible to generate and recognize any
generalization in the version space by examining its representation.

* The version space relative to any given set of training instances forms a convex set with respect to
the partial ordering of the search space. For a formal description and analysis of this approach, see [ru).



GENERALIZATION AS SEARCH 213

and G if and only if
(1) x is more specific than or €qual to some member of G. and
(2) x is more general than or €qual to some member of §.

The set S is computed in a manner similar to that described for the
specific-to-general breadth-first search strategy described above. The set G can
be computed by conducting a second, complementary, breadth-first search
from general to specific generalizations. The version space strategy can thus be
viewed as an extension of the above breadth-first search strategy into a
bi-directional search, and can be described as shown in Fig. 8.

Fig. 9 shows the effect of the same tWO positive instances shown in the
previous examples. The situation is very similar to that for the breadth-first

unaltered by these instances.

Fig. 10 illustrates the effect of a negative training instance on the version
space. Here the set S, is revised as in the breadth-first search. The set G, is also
revised since the negative instance reveals that the current member of G, is
overly general. The generalization in G, is therefore specialized along all
possible branches of the partial ordering that lead toward some member of S,

for each subsequent instance, i

begin
it i is a negative instance,
then begin

—Retain in S only those generalizations which do not match i.

—Make generalizations in G that match / more specific, only to the extent required so
that they no longer match i, and only in such ways that each remains more general
than some generalization in S,

—Remove from G any element that is more specific than some other element in G.

end

eise if j is g positive instance,
then begin

—Retain in G only those generalizations that match ;.

—Generalize members of § that do not match i, only to the extent required to allow
them to match /, and only in such ways that each remains more specific that some
generalization in G.

—Remove from S any element that is more general than some other element in S

end

end

FIG. 8 Version space strategy.



214 TM MITCHELL

Search:

S {{(Large Red Tnangle}
(Small Blue Circle)}

S, [ {(? Red Tnangle) {(Large 7 ?)
(? Blue Circle)} . (Small ? 7}}]

G\. Gy [{(?29)
(7?22}

Training instances:

Instance Classification

(1) {(Large Red Triangle) -
(Smaii Biue Circie)}

(2) {(Large Blue Circle) +
(Small Red Triangle)}

FIG. Y. Version space example.

Search:

S.: {{{? Red Triangle) {(Large ? 7) ]
(? Blue Circie)} , (Small ? ?)}

S, [{(? Red Triangle,\]
(? Blue Circle)}

Gs. [{(? Red ?) {(? ? Circle)
(72?27} i {2727

P

i 8

Training instances:

Instance Classification

(3) {(Large Blue Triangle) B
(Small Blue Triangle)}

FIG. 10. Version space example (continued).



t
s

GENERALIZATION AS SEARCH

Along each such branch, it is specialized only the extent required so that the
generalization no longer matches the new negative instance.

The revised S and G sets illustrated in Fig. 10 represent the version space of
all generalizations in the provided language which are consistent with the three
observed training instances. The version space at this point contains the
members of S; and G,. as well as all generalizations that lie between these two
sets in the partially ordered hypothesis space. Subsequent positive training
instances may force S to become more general, while subsequent negative
training instances may force G to become more specific. Given enough
additional training instances, S and G may eventually converge to sets con-
taining the same description. At this point the system will have converged to
the only consistent generalization within the given generalization language.

As with specific-to-general breadth first search, the version space approach
is practical only for problems in which the ‘more-specific-than’ relation can be
computed by direct examination of described generalizations. There is also a
minor theoretical restriction on the form of the generalization language: in
order for the sets S and G to correctly delimit any version space that can arise,
every chain in the partially ordered generalization language must have a most
specific and most general member.

The advantage of the version space strategy lies in the fact that the set G
summarizes the information implicit in the negative instances that bounds the
acceptable level of generality of hypotheses, while the set § summarizes the
information from the positive instances that limits the acceptable level of
specialization of hypothesis. Therefore, testing whether a given generalization
is consistent with all the observed instances is logically equivalent to testing
whether it lies between the sets S and G in the partial ordering of generaliza-
tions.

The version space method is assured to find all generalizations (within the
given generalization language) that are consistent with the observed training
instances, independent of the order of presentation of training instances. The
sets S and G represent the version space in an efficient manner, summarizing
the information from the observed training instances so that no training
instances need be stored for later reconsideration.

4.4. Capabilities

In comparing alternative strategies for generalization, the important issues
concern relative capabilities rather than efficiency. The major differences in
capabilities among the above three data-driven strategies derive from the
number of plausible generalizations carried along at each step, and from the
use of the partial ordering in guiding the search. We consider two desirable
capabilities for a generalization program:

(1) The ability to detect the point at which the target generalization is



216 T.M. MITCHELL

completely determined by the training instances, and, when necessary. 10 use
incompletely determined generalizations in a reasonable manner.

(2) The ability to direct the presentation of training instances to obtain
informative instances.

4.4.1. Using incompletely learned generalizations

One important capability for learning programs is the ability to detect when the
observed training data are sufficient to precisely determine the target general-
ization. That is, to detect the point at which only a single generalization from
the provided language remains consistent with the observed data. Of course the
generalization is ‘learned’ at this point only under the assumption that the
generalization language contains a correct description of the generalization, and
that the training instances are correct. The capability to detect this condition is
important if the learned information is to be later applied to classify unknown
instances. Equally important is the capability to make use of incompletely learned
generalizations when only limited training data are available.

The version space strategy provides an easy method for detecting the point
at which a generalization is completely determined by a set of training
instances, with respect to the given generalization ianguage. This condition is
satisfied if and only if the computed sets § and G are equal and contain only
one generalization. In contrast, it is difficult to recognize this condition when
maintaining only a single current hypothesis, as with the depth-first search
strategy, or when maintaining only the set S, as with the breadth-first search
strategy. ; .

Because availability of training instances is limited in many domains, and
because for some generalization languages no finite set of training instances is
sufficient to determine a unique generalization?, it is crucial to be able to apply
incompletely learned generalizations in a reasonable way. For example, sup-
pose that the training instances shown in the previous figures are the only
training instances available for that problem. Consider the task of using what
has been learned thus far in order to classify the three new instances shown in
Fig. 11 as positive or negative.

The sets S and G that represent the version space provide a handle on the
problem of representing and using incompletely learned generalizations. Even
though the exact identity of the target generalization is not fully determined by
the three training instances in the preceding example, it is assumed that the
correct description of the target generalization lies somewhere within the
version space delimited by S; and G; of Fig. 10. Therefore, if a new instance
matches every generalization in the version space (equivalently, if it matches
every element in the set S), then it can be classified as a positive instance with

3 Finite sets of training instances from an infinite instance language are not in general sufficient to
determine a unique generalization.



GENERALIZATION AS SEARCH 217

Instance,: {(Small Red Triangle) (Large Blue Circle)}
Instance;: {(Large Blue Triangle) (Small Blue Square)}
Instances: {(Small Red Circle) (Small Blue Circle)}

F1G. 11. Instances with unknown classification.

the same certainty as if a unique generalization had been determined by the
training instances. This is the case for Instance, in Fig. 11.

Similarly, if the instance matches no generalization in the version space (i.e.,
it matches no element of the set G), then it is certain that the instance does not
match any description of the target generalization that would be determined by
examining additional instances. This is the case for Instance, in Fig. 11. Thus,
for such instances it is possible to obtain classifications that are just as
unambiguous as if the learned generalization had been completely determined
by the training instances.

In contrast, instances that match some but not all generalizations in the
version space cannot be unambiguously classified until further training in-
stances are available. This is the case for Instance; in Fig. 11. Of course, by
considering outside knowledge or by examining the proportion of generaliza-
tions in the version space which match the instance, one might still estimate the
classification of such instances.

When an instance is unambiguously classified by the version space, then
regardless of which member of the version space is the correct description of
the target generalization, the classification of the given instance will be the
same. All the observed training instances will therefore receive an unambiguous
classification by the associated version space. Surprisingly, even instances which
have not been observed during training may receive an unambigrous
classification, as does Instance, in Fig. 11. If the instance has not been observed
as a training instance by the learning system, then how can the system produce
an unambiguous classification of this instance? Are such unambiguous
classifications reliable?

It can be proven that any such unambiguous classification is a correct
classification, provided that (1) the observed training instances were correct,
and (2) the generalization language allows describing the target generalization.
Notice that the generalization language used in our example is biased, in the
sense that it does not allow describing every possible set of instances. This
biased generalization language, together with the observed data leads to an
unambiguous classification of Instance,. Provided that this biased generaliza-
tion language allows describing the correct generalization, the unambiguous
classification of Instance, is the correct classification. This example provides an
interesting insight into the significance of initial biases for allowing inductive
leaps during generalization. [13] contains a discussion of the importance of
and sources of biases for learning and generalization.



218 T M. MITCHELL

Because the specific-to-general breadth-first strategy computes the set S, this
strategy allows unambiguously classifying the same positive instances as the
version space strategy. Since it does not compute the set G, however, it cannot
distinguish between instances which the version space strategy would classify as
negative instances, and those which cannot be unambiguously classified. The
breadth-first strategy would therefore be able to classify Instance, from Fig. 11
as a positive instance. but would not allow a reliable classification of either
Instance, or Instances.

4.4.2. Selecting new training instances

A further capability afforded by computing the sets S and G is the selection of
informative new training instances. Consider the following problem: after
processing some sequence of training instances, a program is provided a set of
further instances, without their classifications as positive or negative instances,
and is allowed to request the correct classification of any one of them.

The instance whose classification should be requested in this case (the
instance which will provide on the average the most useful information) is the
instance which comes closest to matching one half of the generalizations in the
version space. Regardless of its classification, finding out its classification will
allow rejecting one half of the currently plausible generalizations. Thus, by
testing each instance to determine what proportion of the generalizations in the
version space it matches. the most informative training instance can be
selected.

If instead of selecting from a list of possible instances, the program is able to
itself generate at each step an instance that matches half the generalizations in
the current version space, then the program can itself generate an optimal*
sequence of training instances for learning the target generalization.

As a simple illustration of using the represented version space to direct the
presentation of training instances, suppose that after being shown the three
training instances in the example problem above, the learning program is
allowed to request the classification of any one of the instances shown in Fig.
11. In this case. Instance, is an instance whose classification would be useful to
know—it is an instance that matches some, but not all the members of the
current version space. On the other hand, since the classifications of Instance,
and Instance. are already determined by the version space, no new information
would be obtained by requesting their classification. Thus, the instances whose
classification would be informative are precisely those that cannot be reliably
classified by the current version space.

*This strategy determines the identity of the target generalization in the shortest possible
number of training instances, assuming no prior knowledge of the identity of the rarget generaliza-
tion. Choosing instances under this handicap is a much different problem than the problem faced
by a teacher who knows the generalization. and must choose good instances. Results from
information theory involving optimal binary codes apply here.



GENERALIZATION AS SEARCH 219

The breadth-first strategy also provides some information for selecting new
training instances. The strategy of selecting instances which match half the
generalizations in the computed set S is reasonable, although less complete
than the strategy which takes into account the entire version space.

4.5. Complexity and efficiency

The overall space and time efficiency of each approach is determined by a
number of factors. including the order of presentation of training instances. the
chosen generalization language and the branching of the associated partial
ordering, the cost of matching generalizations to training instances. and the
amount of space needed to store generalizations and observed instances.

A complete analysis is beyond the scope of this paper, but it is possible to
characterize the time and space complexity as a function of the number of
training instances, under reasonable assumptions. In particular, we assume that
positive and negative instances are distributed uniformly throughout the
sequence of training instances.

Under this assumption, bounds on the time and space complexity of the
prototype data-driven strategies described earlier are summarized in Table 1.
Here p indicates the number of positive training instances, n indicates the
number of negative training instances, s indicates the largest size obtained by the
set S, and g represents the largest size obtained by the set G. The time
complexity bounds indicate bounds on the number of comparisons between
generalizations and instances. and comparisons between generalizations. Notice
that for some generalization and instance languages, each such comparison may
itself be an NP problem. For example, some structural description languages
(e.g.. that used in Meta-DENDRAL) involve testing subgraph isomorphism (an
NP-complete problem) as part of this comparison.

The complexity of the depth-first strategy stems from the need to reexamine
past instances after each revision to the current generalization. Note from the
earlier description of this strategy that each time a positive instance forces a
change to the current hypothesis, all past negative instances must be examined.
Thus, time requirements are O(n) for each such positive instance, or O(pn) in
total. Revising the current hypothesis in response to negative instances yields a

TaBLE |. Bounds on processing time and maximum storage costs

Strategy © Processing Storage
time space
Depth-first search Olpn) O(p +n)

Specific-to-general

Breadth-first search O(spn + 5°p) O(s + n)

Version space strategy Ofsg(p+n)+ 53p +g°n) O(s + g)




220 T.M. MITCHELL

similar result. Because all instances must be stored for later reexamination, the
space requirements are linear with the number of observed instances, O(p + n).

For the prototype specific-to-general breadth-first strategy. only negative
instances need be stored for later examination, so that space requirements are
O(s + n). In the time complexity, the term O(spn) arises because each time that
a positive instance alters the set S, each altered hypothesis must be compared
against all past negative instances. The term O(s?p) arises because each revised
element of S must be tested to determine whether it is more general than
another element of S.

Since the version space strategy computes both S and G, no training
instances need be saved, and space complexity is O(s + g). Notice that for this
strategy, processing time grows linearly with the number of training instances
(p + n), whereas for the other two strategies time grows as the product pn.
However, in this case processing time grows as the square of both S and G.

In interpreting the above results it is important to know how the sizes of the
sets S and G vary over the training sequence. For the generalization languages
for which the version space strategy has been implemented, these sets have
been observed to first grow in size, then level off, and finally decrease in size as
the version space converges toward the correct description of the target
generalization. Under such conditions, the dominant term in determining time
complexity is the first term in each of the expressions in Table 1. The exact
sizes of the sets S and G depend, of course, upon the nature of the generaliza-
tion language.

A further consideration in determining overall efficiency which has not been
considered here is the effect of ordering and selection of training instances. Short,
informative training sequences certainly lower demand for computer resources, as
well as demands on the supplier of these instances. By investing some time in
ordering or selecting training instances, it is possible that a program might lower
its total resource requirements. A related issue is the (not well understood)
possibility of controlling the sizes of the sets S and G by prudent ordering and
selection of training instances.

5. Other Generalization Strategies

The generalization strategies surveyed in the previous section are data-driven in
the sense that revisions to current hypotheses are made in response to—and
directed by—observed discrepancies with the data. This section notes two other
classes of generalization strategies that have been used successfully in various
domains.

5.1. Generate-and-test strategies

Data-driven search involves considering discrepancies between the current
hypotheses and available data, in order to determine appropriate revisions to



GENERALIZATION AS SEARCH 221

Generalization strategies

Data-dr'iVen\ Generate-and-test

Depth Breadth Version General Specific

first first space to to
search search strategy specific general
THOTH LEX, VS RULEGEN CONFUCIUS
[Winston] [Vere] [Mitchell) [Buchanan] [Cohen]
RULEMOD SPROUTER INDUCE 1.2
[Buchanan] [Hayes-Roth] [Michalski]

FiG. 12. Some classes of search strategies for generalization.

the current hypotheses. An alternative class of search strategies, which we shall
call generate-and-test strategies, generates new hypotheses according to a
predetermined procedure that is independent of the input data.’ Each newly
generated hypothesis is then tested against the entire set of available training
data, and identified as either an acceptable generalization, a node to be
expanded further by the generator, or a node to be pruned from the search.

Generate-and-test strategies typically consider all available training instances
at each step of the search to test newly generated hypotheses. Because they
judge the generated hypotheses by their performance over many instances,
rather than making decisions based upon individual training instances, they can
accommodate quite severe errors in the training data. On the other hand,
generate-and-test strategies are not well suited to incremental processing of
training data—should unexpected data become available, the generate-and-test
search may have to be completely reexecuted. Furthermore. since the genera-
tion of hypotheses is not influenced by the data, the search can be quite
branchy and expensive.

An interesting combination of generate-and-test and data-driven search
procedures is found in the Meta-pDENDRAL program [4]. One portion of the
program, called rRULEGEN [4], conducts a coarse generate-and-test search to
form approximate rules of mass spectroscopy based upon highly unreliable
training instances. These approximate rules are then used as starting points for
a data-driven strategy (either rRULEMOD [4] or vs [11]) which conducts a more

$This distinction between generate-and-test and data-driven methods is similar to the distinction
in [17] between “the rule induction version of the generate and test method” and the “rule
induction version of the heunstic search method™.



222 T.M. MITCHELL

detailed search to refine each rule. using both the original training data and
additional available data. Thus, the advantages of generate-and-test search for
dealing with inconsistent data are blended with the advantages of data-driven
search for a more focused search based on incremental use of the data.

Some generate-and-test strategies for generalization follow the partial order-
ing of the hypothesis space to control hypothesis generation. [1] describes and
compares two such generalization strategies—one that searches from general to
specific hypotheses. and one that searches from specific to general. Fig. 12
shows the relationship among the search strategies employed by several exis-
ting generalization programs.

5.2. Statistical pattern recognition

The field of statistical pattern recognition deals with one important subclass of
generalization problems. I[n this subclass, the instances are represented by
points in n-space, and the generalizations are represented by decision surfaces
in n-space (e.g.. hyperplanes. polynomials of specified degree). The matching
predicate corresponds to determining whether a given point (instance) lies on
one side or another of a given decision surface (generalization). The field of
Statistical Pattern Recognition has developed very good generalization
methods for particular classes of decision surfaces. Many of these methods are
relatively insensitive to errors in the data and some have well understood
statistical convergence properties, under certain assumptions about the prob-
ability distribution of input instances.

In contrast to work in Statistical Pattern Recognition, work on the general-
ization problem within Artificial Intelligence has focused on problems involving
a different class of instance and generalization languages. These languages are
incompatible with numerically oriented representations that describe objects as
feature vectors in n-space. For example, Winston's program [21] for learning
descriptions of simple block structures such as arches and towers, represents
instance block structures in terms of their component blocks and relationships
among these. In this domain the natural representation for instances is a
generalized graph rather than a feature vector. Even the simple generalization
problem used as an example in this paper cannot be mapped directly into
points and decision surfaces in n-space. Many of the methods of Statistical
Pattern Recognition are specialized to numerical feature vector represen-
tations. and therefore cannot be applied to these other representations. As a
result, methods such as those described in this paper have been developed to
handle these new representations.

6. Further Issues

This section notes several issues suggested by the preceding discussion. which
relate to significant open problems in machine learning.



GENERALIZATION AS SEARCH 223

6.1. The generalization language

In order to compare approaches that employ different generalization languages
we have described strategies and stated results in terms independent of the
generalization language used. The choice of a generalization language does,
however. have a major influence on the capabilities and efficiency of the
learning system.

In choosing a generalization language. the designer fixes the domain of
generalizations which the program may describe. and therefore learn. Most
current systems employ generalization languages that are biased in the sense
that they are capable of representing only some of the possible sets of
describable instances. With the choice of a generalization language the system
designer builds in his biases concerning useful and irrelevant generalizations in
the domain. This bias constitutes both a strength and a weakness for the
system: If the bias is inappropriate, it can prevent the system from ever
inferring correct generalizations: if the bias is appropriate, it can provide the
basis for important inductive leaps beyond information directly available from
the training instances. The effect of a biased generalization language on
classifying unobserved instances was illustrated in the earlier section on utiliz-
ing partially learned generalizations. [13] provides a general discussion of the
importance of bias in learning.

The choice of ‘good’ generalization languages and the impact of this choice
on the selection of a good learning strategy is poorly understood at present.
Methods by which a program could automatically detect and repair deficiencies
in its generalization language would represent a significant advance in this field.

In addition to influencing system capabilities. the choice of generalization
language also has a strong influence on the resource requirements of the
system. For example, the complexity of the matching predicate for generaliza-
tions represented by graphs can be exponential. while the complexity for
generalizations represented by feature vectors is linear. Secondly, a language
for which the general-to-specific ordering is shallow and branchy will typically
yield larger sets S and G than a language in which the ordering is narrow but
deep. In particular, the introduction of disjunction into the generalization
language greatly increases the branching in the partial ordering. thereby
aggravating the combinatorial explosion faced by the learning program.

6.2. Using expectations and prior knowledge

In this discussion we defined ‘acceptable’ generalizations primarily in terms of
consistency with the training data. Generalizations may also be judged in terms
of consistency with prior knowledge or expectations. As noted above. one
method of imposing such expectation-based. or model-based constraints on a
learning system is to build them into the generalization language. A second
method is to build them into the generator of hypotheses, as is done in some



224 TM. MITCHELL

generate-and-test searches. In most existing programs the blending of expec-
tations together with constraints imposed by the training data is either done in
an ad hoc manner or not done at all. In complex systems the constraints
imposed by prior knowledge may be critical to making appropriate inductive
leaps, and to controlling the combinatorics inherent in learning. Developing
general methods for combining prior knowledge effectively with training data
to constrain learning is a significant open problem.

6.3. Inconsistency

In order to simplify the analysis attempted above, it has been necessary to
consider only problems in which the generalization language contains some
generalization consistent with every training instance. This condition might not
be satisfied if either (1) the generalization language is insufficient to describe
the target generalization, or (2) the training instances contain errors. In
general. there will be no way for the program to determine which of these two
problems is the cause of the inconsistency. In such cases, the learning program
must be able to detect inconsistency, and recover from it in a reasonable way.

Statistical methods typically deal with inconsistency better than the descrip-
tive methods considered here. As noted earlier, generate-and-test search
procedures appear better suited to deal with inconsistency since they base the
selection among alternative hypotheses on sets of training instances rather than
single instances. Some data-driven strategies have been extended to deal with
inconsistent data [5.11]. Inconsistency is unavoidable in many real-world
applications. Well-understood methods for learning in the presence of such
inconsistency are needed.

64 Partially learned generalizations

As a practical matter, it is essential to develop methods for representing and
reasoning about ‘partially’ learned generalizations. It is unlikely in realistic
applications that sufficient training data will be available to fully determine
every needed generalization. Therefore, the problem of representing and
utilizing incompletely learned generalizations is critical to using generalization
methods for practical applications. The techniques noted above for dealing
with this issue constitute an initial approach to the problem. Extending these
ideas to take advantage of prior knowledge of the domain, and to operate in
the presence of inconsistency are important open problems.

7. Summary

The problem of generalization may be viewed as a search problem involving a
large hypothesis space of possible generalizations. The process of generaliza-
tion can be viewed as examining this space under constraints imposed by the



GENERALIZATION AS SEARCH 225

training instances. as well as prior knowledge and expectations. In this light. it
is informative to characterize alternative approaches to generalization in terms
of the strategy that each employs in examining this hypothesis space.

A general-to-specific partial ordering gives structure to the hypothesis space
for generalization problems. Several data-directed generalization strategies
have been described and compared in terms of the way in which they organize
the search relative to this partial ordering. This examination leads to a
comparison of their relative capabilities and computational complexity, as well
as to a useful perspective on generalization and significant topics for future
work.

ACKNOWLEDGMENT

The ideas presented in this paper have evolved over discussion with many people. John S. Brown,
Bruce Buchanan, John Burge. Rick Hayes-Roth. and Nils Nilsson have provided especially useful
comments on various drafts of this paper. This work has been supported by NIH under grant
RR-643-09, and by NSF under grant MCS80-08889.

REFERENCES

1. Banerji, R.B. and Mitchell. T.M.. Description languages and learning algorithms: A paradigm

for comparison. Internat. J. Policy Analysis Informat. Systems 4 (1980) 197.

. Brown, J.S., Steps toward automatic theory formation. Proc. IJCAI 3 (1973) 20-23.

. Bruner, J.S., Goodnow, J.J. and Austin, G.A.. A Study of Thinking. (Wiley, New York, 1956).

. Buchanan, B.G. and Mitchell, T.M.. Model-directed learning of production rules, in: D.A.

Waterman and F. Hayes-Roth (Eds.). Pattern-Directed Inference Systems (Academic Press,

New York, 1978).

5. Hayes-Roth. F.. Schematic classification problems and their solution, Parttern Recognition 6
(1974) 105-113.

6. Hayes-Roth F., and Mostow, D., An automatically compliable recognition network for
structured patterns, LICAT 4 (1975) 356-362.

7. Hunt, E.B.. Arificial Intelligence (Academic Press. New York, 1975).

8. Michalski. R.S.. AQvAL/lI—Computer implementation of a variable valued logic system VLI
and examples of its application to pattern recognition. Proc. Ist Internat. Joint Conf. Pattern
Recognition. Washington, DC (1973) 3-17.

9. Minsky. M. and Papert, S., Perceptions (MIT Press, Cambridge. MA, 1969).

10. Mitchell. T.M.. Version spaces: A candidate elimination approach to rule learning, IJCAJ §
(1977) 305-310.

1. Mitchell, T M., Version spaces: An approach to concept learning, Ph.D. Thesis. Stanford
University, December 1978; also Stanford CS Rept. STAN-CS-78-711, HPP-79-2.

12. Mitchell. TM., Utgoff, P.E. and Banerji. R.B., Learning problem-solving heuristics by
experimentation, in: R. Michalski et al. (Eds.), Machine Leaming (Tioga Press. Palo Alto,
1982).

13. Mitchell, T.M. The need for biases in learning generalizations, Rutgers Computer Science
Tech. Rept. CBM-TR-117.

14, Nilsson, N.J., Learning Machines (McGraw-Hill. New York. 1965).

I5. Plotkin. G.D.. A note on inductive generalization, in: B. Meltzer and D. Michie (Eds.).
Machine Intelligence § (Edinburgh University Press, Edinburgh, 1970) 153-163.

16. Popplestone, R.J.. An experiment in automatic induction, in: B. Meltzer and D. Michie (Eds.),
Machine Intelligence 5 (Edinburgh University Press, 1970) 204-215,

Eo T )



226 T.M. MITCHELL

17. Simon H.A., and Lea. G., Problem solving and rule induction: a unified view. in: L.W. Gregg
(Ed.). Knowledge and Cognition (Erlbaum, Potomac. MD, 1974) 105-127.

18. Vere. S.A.. Induction of concepts in the predicate calculus. [JCAJ 4, Thilisi. USSR (1975)
281-287.

19. Vere, S.A., Inductive learning of relational productions. in: D.A. Waterman and F. Hayes-
Roth (Eds.), Pattern-Directed Inference Systems (Academic Press, New York, 1978).

20. Waterman, D.A.. Generalization learning techniques for automating the learning of heuristics,
Artificial Intelligence 1(1,2) (1970) 121-170.

21. Winston, P.H.. Learning structural descriptions from examples, in P.H. Winston (Ed.), The
Psychology of Computer Vision (McGraw-Hill, New York, 1975).

Received January 1980; revised version received June 1981



