
Exfxrience with a LearnCnq 
Personal Ass&tan* 

ersonal software assistants that 
help users with tasks like finding 
information, scheduling calen- 
dars, or managing work flow will 
require significant customization 
to each individual user. For exam- 
ple, an assistant that helps sched- 
ule a user’s calendar will have to 
know that user’s scheduling pref- 
erences. This article explores 
the potential of machine-leaning 
methods t” automatically create 
and maintain such customized 
knowledge for personal software 
assistants. We describe the design 
of one particular learning assis- 
tant: a calendar manager, called 
CAF’ (Calendar APprentice), that 
learns its users’ scheduling prefer- 
ences from experience. Results are 
summarized from approximately 

five user-years of experience, 
during which CAF’ has learned 
an evolving set of several thousand 
rules that characterize scheduling 
preferences for each of its users. 
Based on this experience, we sug- 
gest that machine-learning meth- 
ods may play an important role in 
future personal software assistants. 

With the spread of networked per- 

sonal computers, personal software 
assistants have rapidly appeared for a 
variety of tasks such as work manage- 
ment, information and mail organiza- 
tion, and calendar scheduling [Z, 4, 
IO, 12, IX, 20, 211. One can easily 
imagine future knowledge-based as- 

sistants that operate across networks 
as a kind of software secretary, pro- 
viding services for work and home, 
such as paying bills, making travel 
arrangements, submitting purchase 
orders, and locating information in 
electronic libraries. In most such ap- 
plications, user acceptance will dr- 
pend on customizing the personal 
assistant to the particular habits and 

interests of the user. Just as with 
human secretaries, success will de- 
pend as much on knowledge about 
the particular user’s habits and goals 

aa on the specific bet ot “per-arrona the 
agent can perform. For example, an 
agent that sorts incoming mail will 

succeed or fail based on whether ir 
correctly models the user’s criteria 
for, say, the “Urgent” mail category. 

How can we build software a& 
tams that can be easily customized t” 
individual users? Many programs 
provide simple parameters that allow 
users to customize behavior explicitly. 
For example, text editors allow users 
to set default type fonts and direc- 

tories, while email-sorting programa 
allow users to declare keywords that 
indicate which messages should be 
sorted to which categories. These 
approaches are limited, however. As 
we scale up t” more sophisticated as- 
sistants, the ability of most users t” 
program their preferences explicitly 
will decrease. Customizing an email 

sorter to accommodate one’s per- 
sonal notion ofan “Urgent” message, 
for example, requires a detailed artic- 
ulation of a fairly subtle concept. Fur- 
thermore, even if users are willing 
and able to put in the effort to initially 
customize their assistants, they may 
be unwilling to continually update 
this knowledge. A message about a 

particular business contract might be 
quite urgent before an approaching 
contract deadline, hut not necessarily 
urgent after this deadline. 

The thesis of our research is that 
software assistants can automatically 
customize to individual users, by 
learning through experience. We arc 
currently exploring this thesis by dr- 
w-loping learning software assistants 
for calendar management, electronic 

newsgroup filtering, and email nego- 
tiation. In each of these applicationa, 
our approach can be summarized as 
f”ll”ws: 

l Provide a convenient interface that 
allows the user to perform the task 
(e.g., an editing and email interface 
to an online calendar). 

l As the system is used, treat each 






















