ersonal software assistants that
help users with tasks like finding
information, scheduling calen-
dars, or managing work flow will
require significant customization
to each individual user. For exam-
ple, an assistant that helps sched-
ule a user’s calendar will have to
know that user’s scheduling pref-
erences. This article explores
the potential ot machine-learning
methods to automatically create
and maintain such customized
knowledge for personal software
assistants, We describe the design
of one particular learning assis-
tant: a calendar manager, called
CAP (Calendar APprentice), that
learns its users’ scheduling prefer-
ences from experience. Results are
summarized from approximately
five user-years of experience,
during which CAP has learned
an evolving set of several thousand
rules that characterize scheduling
preferences for each of its users.
Based on this experience, we sug-
gest that machine-learning meth-
ods may play an important role in
future personal software assistants.

With the spread of networked per-
sonal computers, personal software
assistants have rapidly appeared for a
variety of tasks such as work manage-
ment, information and mail organiza-
tion, and calendar scheduling [2, 4,
10, 12, 18, 20, 21]. One can easily
imagine future knowledge-based as-
sistants that operate across networks
as a kind of software secretary, pro-
viding services for work and home,
such as paying bills, making travel
arrangements, submitting purchase
orders, and locating information in
electronic libraries. In most such ap-
plications, user acceptance will de-
pend on customizing the personal
assistant to the particular habits and
interests of the user. Just as with
human secretaries, success will de-
pend as much on knowledge about
the particular user’s habits and goals

Experience with o Lecrming
Personal Assistant

as on the specific set of operations the
agent can perform. For example, an
agent that sorts incoming mail will
succeed or fail based on whether it
correctly medels the user’s criteria
for, say, the “Urgent” mail category.

How can we build software assis-
tants that can be casily customized to
individual users? Many programs
provide simple parameters that allow
users to customize behavior explicitly.
For example, text editors allow users
w set default type fonts and direc-
tories, while email-sorting programs
allow users to declare keywords that
indicate which messages should be
sorted to which categories. These
approaches are limited, however. As
we scale up to more sophisticated as-
sistants, the ability of most users to
program their preferences explicitly
will decrease. Customizing an email
sorter to accommodate one’s per-
sonal notion of an “Urgent’ message,
tor example, requires a detailed artic-
ulation of a fairly subtle concept. Fur-
thermore, even if users are willing
and able to put in the effort to inicially
customize their assistants, they may
be unwilling to continually update
this knowledge. A message about a
particular business contract might be
quite urgent before an approaching
contract deadline, but not necessarily
urgent after this deadline.

The thesis of our research is that
software assistants can automatrically
customize to individual users, by
learning through experience. We are
currently exploring this thesis by de-
veloping learning software assistants
for calendar management, electronic
newsgroup filtering, and email nego-
tiation. In each of these applications,
our approach can be summarized as
follows:

® Provide a convenient interface that
allows the user to perform the task
(e.g., an editing and email interface
to an online calendar).

® As the system is used, treat cach
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Decision Tree for Meeting Location

decision tree organizes the problem of classifying an object, or
Afnstance, into a series of questions about the object. For exam-

ple, the decision tree shown here classifies calendar meetings
according to meeting Location. An Instance is classified by starting at
the root node of the decision tree and following branches, based on the
results of individual tests, until a leaf is reached, at which point the in-
stance is assigned to the class with which the leaf is labeled.

ID3 is an algorithm for learning decision trees from examples. The original
algorithm is due to Quinlan 1151, though many variants have since been
developed. Given a set of training examples, ID3 produces a decision tree
by growing it top-down, at each point greedily picking the test attribute
that best classifies the training examples. This algorithm can be summa-
rized as follows:

Grow-tree(training-sample)
If Terminate-condition(training-sample)
Return an appropriately labeled leaf node
Else
Let F = Choose-best-feature(training-sample)
Let N be a decision node testing F
For each value V of F in training-sample
Let subsample = all instances I, such that F(I) = V
Attach a branch of N to Grow-tree(subsample)
Return N

One often adequate termination condition (the first conditional block) is to
stop when all instances in a subsample have the same class.

As it grows the tree top-down, ID3 repeatedly chooses a feature for the
next test node in the tree. It chooses a feature for testing (the second
block) which most reduces ambiguity—increases purity—in the training
sample. ID3 estimates purity by measuring the entropy of a sample. In the
two-class case, given a training sample T with n instances, ¢, of which be-
long to Class 1 and ¢, of which belong to class 2, the entropy

E(T) = -(C./N)0g,(C,/N) — (Co/NNOg,(C,/N)

approaches 0 the more instances beiong to one class and reaches its maxi-
mum value at 1 when the instances are evenly split between the two
classes. The entropy of a sample, which can be computed for an arbitrary
number of classes, is the inverse of its purity.

A feature test on a training sample partitions it intc a number of sets. In
considering a feature test, the entropy of each set of the partition is mea-
sured, and all such measures are summed, weighted by the fraction of the
original instances going to each set. The difference between the entropy of
the original sample and this sum, a nonnegative number, is often called the
information gain. |D3 chooses the feature test which yields the greatest in-
formation gain.

Student Programmer  Faculty

W5309

Yes No Ccs EE
™~ yd ™~
DiningHall w5309 W5309 H301

Decision tree for meeting location
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user interaction as a training example
of this user’s habits (e.g., each meet-
ing scheduled by the user reflects
preference for the duration, time,
location, etc. of this type of meeting).
e Learn general regularities from
this training data, and use this
learned knowledge to increase the
services offered by the software assis-
tant (e.g., provide interactive advice
to the user as they schedule future
meetings, or offer to negotiate spe-
cific meetings on behall of the user).

We refer to this kind of interactive
learning assistant as a Learning Ap-
prentice [11], that is, an interactive as-
sistant  that acquires knowledge
through routine use by observing
users’ actions. Negroponte [13] and
Kay [8] were among the first to recog-
nize the potential value of personal
learning assistants, An early example
of a learning apprentice is the LEAP
system [11], which dealt with the
domain of VLSI digital logic design.
Earlier descriptions of the calendar
apprentice described here can be
found in [4] and [7] and a related ef-
fort to develop a learning calendar
assistant is described in [10]. A learn-
ing apprentice designed to make
browsing more efticient through on-
line information sources such as li-
brary catalogs is under development
by Holte and Drummond [6].
Nakauchi and Anzai have developed
a prototype system that learns to help
users fill out purchase orders by
learning preferences such as which
vendor to use for which parts [12].

Semiautomated methods for user
customization are also being studied.
For example, Bocionek and Sassin
propose a dialogue-based learning
method [2] to allow users to train in-
terface agents by demonstration.
Kodratoff and Teucci investigate an
iterative approach toward learning
apprentices in their work on the DIS-
CIPLE System [9]. DISCIPLE has
been used for applications ranging
from designing manufacturing tech-
nologies to aiding the manager of a
computer center. Sheth and Maes
have explored the use of simulated
evolution to evolve agents for per-
sonal information filtering [21].
Exemplar-based learning for appren-
tice systems has been studied by



Bareiss et al. [1] in the Protos system
which they apply to the domain of
clinical audiology. And a number of
researchers explore the use of ma-
chine learning for information re-
trieval [19], filtering [5], and catalog-
ing [20].

In this article we present a case
study of a learning apprentice for cal-
endar management called CAP. CAP
provides an editing and email inter-
face to an on-line calendar. It learns
users’ scheduling preferences
through routine use, enabling it to
give customized scheduling advice to
each user. Several copies of CAP have

user-years of experience from a
handful of users. We describe CAP, its
learning methods, and experimental
results from the fielded system. Fi-
nally, we describe lessons learned
from this case study regarding the
potential of machine-learning meth-
ods for customizing software assis-
tants in other task domains.

The Calendar Apprentice

CAP is a learning apprentice to assist
the user in managing a meeting cal-
endar. It provides interactive access
to an on-line calendar and to email.
Users can edit the calendar by add-

annotating meetings, and they can
mark various calendar events as ei-
ther tentative or confirmed. Other
user commands instruct CAP to send
email meeting invitations (e.g., for
meetings marked tentative) or meet-
ing reminders (e.g., for confirmed

Figure 1. The CAP user Interface.
The user is adding a meeting
while displaying a particular
week of the calendar. At the bot-
tom of the screen CAP prompts
the user for the meeting dura-
tion, offering advice (60 minutes)
based on its learned scheduling
preferences. In this case, the

accumulated  approximately five ing, deleting, moving, copying, and user overrides the advice.
08/25/1992 Immigration Course Aug 25 — Sept 11
08/26/1992 IC talk is 11:15-12:15
Monday Tuesday Wednesday Thursday Friday
TIME 8-24 8-25 8-26 827 8-28
8:00
8:30
9:00
9:30
10:00
10:30
11:00 Immigration-
Weh5409
11:30 SP: mitchell
. Bocionek
12:00 Weh5309
12:30
1:00
1:30 Zabowski
Weh5309 Harris
2:00 Reddy Simmon Weh5309
. Weh5327 Immigration-
230t | Weh5409
3:00 Edrc-Faculty SP: unknown Ault Masuoka
' Edre-Conf-Rm [— Weh5309 Weh5309
3:30
4:00 v Away ! !
\
4:30 \4
5:00 v
5:30
6:00
TIME | s25 ] 82 [ 82 | 82 | |
Duration: C-A[60] 30
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meetings) to the attendees of the
specified meeting. User commands
are also available for tagging days
with text notes, tor altering the calen-
dar screen display, and tor printing
the calendar in various formats.
What kinds ol assistance might
such a system provide to its user?
Consider the analogy to a human sec-
retary who might assist someone in
managing a calendar. A human secre-
tary, when first beginning to work
with a particular person/user, might
carry out similar detailed instructions
to add or alter individual meetings,
or to send email reminders. Over
time, however, the work burden will
shift as the human secretary learns
enough about the user’s scheduling
preferences to take over routine as-
pects of the task. For example, the
secretary will learn when, where, and
for how long the user typically meets,
depending on the type ol meeting,
the attendees, and so forth. The sec-

retary will learn which meetings may
be moved or cancelled in order to
make room for higher-priority meet-
ings. This acquired knowledge will
alter the interaction between the sec-
retary and user, so the user can give
briefer instructions such as “please
set up a meeting with Joe for next
week,” trusting that the secretary has
the appropriate knowledge to fill in
the detailed location, time, and dura-
tion of the meeting.
this acquired knowledge of user
scheduling preferences will allow the
secretary to negotiate with others to

Furthermore,

arrange meetings on the user's be-
half, effectively offloading work from
the user.

Our goal for CAP is 1o have it ex-
hibit a similar learning behavior,
where each copy of the system should
learn the scheduling preferences of
its user, and evolve gradually from a
passive editing interface to a knowl-
edge-based assistant capable of inter-

Table 1. Typical training example of a calendar meeting. The top set
of features corresponds to attributes of the meeting entered by the
user (or accepted, in response to the agent's advice). The middle set
includes automatically collected attributes characterizing the
current state of the computational environment. The bottom set
includes additional features inferred by the system, from
background knowledge about people and about the semantics of the

basic calendar attributes.

request-5-27-1992-48:
attendees: thrun
event-type: meeting
date: (29 5 1992)
time: 1430
duration: 30
location: weh5309
confirmed?: yes

displayed-week: (25 5 1992)
action-time: 2915977709
action-date: (27 5 1992)

previous-prompt: confirmed=yes
position-attendees: project-scientist

next-attendees-meeting: none
lunchtime?: no
number-of-attendees: 1
cmu-attendees?: yes
attendees-in-toms-group?: yes
known-attendees?: yes
day-in-week: friday
end-time: 1500
busyness-of-attendees: 2
single-attendee?: yes

previous-request: request-5-27-1992-13

previous-attendees-meeting: request-5-20-1992-1
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acting more ntelligently with the
user and offloading the work of meet-
ing negotiation from the user. To
date, our focus has been on develop-
ing the learning methods and on
using learned knowledge to provide
interactive advice as the user adds
new meetings to the calendar. Cur-
rently, CAP learns rules that enable it
to suggest the meeting duration, loca-
tion, time, and date. More recently
we have begun developing a system
to make use of this learned knowl-
edge 10 negotiate meetings semi-
autonomously via email on behalf of
the user.

Figure 1 depicts the interface to
CAP seen by the user.' In this figure,
the user is viewing a particular week
of the calender and is in the process
of adding a new meeting. In general,
when the user adds a new meeting,
CAP prompts in sequence for the
meeting type, attendees, date, dura-
tion, time, location, and for whether
the meeting is tentative or confirmed.
At the bottom of the screen in the fig-
ure, CAP is prompting the user for
the duration of the meeting and of-
fering the suggestion that this meet-
ing be allocated 60 minutes. This sug-
gestion is derived from a previously
learned rule that matches the known
features of this new meeting (i.e.,
those features for which the user has
already been prompted, plus any fea-
tures inferred from these). The user
may accept this advice or override it
by entering the desired value. In this
figure, the user is overriding the ad-
vice and instructing the system to al-
locate 30 minutes for this meeting.

Whenever the user accepts or
overrides CAP’s advice, a rtraining
example is captured that is used for
subsequent learning. The meeting
described in Figure 1, for instance,
provides a training example of the
general concept, “meetings for which
duration is 30 minutes.” A represen-
tative training example meeting ac-
quired by CAP from such an interac-
tion is shown in Table 1. Notice that
the training example includes attri-
butes beyond those provided by the

"This interface is built on Gnu-Emacs and com-
municates with an underlying Lisp process
which provides CAP's learning and inference
capabilities,
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user (e.g., date, ume); it also includes
atributes ol the current calendar
(e.g.. which week s displayed to the
user), as well as attributes inferred
from background knowledge about
the domain (e.g.. the position of the
attendees, the previous meeting in-
volving the same attendees).

From this kind of training data
CAP learns rules that suggest the du-
location, dav-of-week, and
time of meetings. A sample of these
learned rules is shown in Table 2. For

ranon,

cach rule, statistics are maintained
that summarize its performance both
on the training data that gave rise to
the rule, and on subsequent exam-
ples. Rules of each type (e.g.,
that predict duration) are kept on a
list sorted by their past performance,

those

with advice generated by the topmost

rule on the list that matches the new

meeting.

CAP provides advice to the user
regarding meeting duration and lo-
cation based directly on these rules.
CAP’s advice regarding meeting date
(e.g.. March 4) is inferred from rules
that suggest day-of-week® (e.g.,
I'hursday). For example, il today 1s
date D, and the rules predict that the
meeting should be on a Wednesday,
then the date suggested by CAP is ei-
ther the first Wednesday following D,
or the Wednesday in the week cur-
rently displayed by the user, which-
ever is later. CAP’s advice regarding
the time of a meeting is taken directly
from its rules, unless the suggested
time slot is already booked. In this
case, CAP recommends the closest al-
ternative ume for which a calendar
opening of the desired duration is
available.

In addition to its learned rules
about user scheduling preferences
CAP also acquires factual knowledge
about individual attendees of meet-
ings. In particular, for each novel at-
tendee that appears on the calendar
it acquires that attendee’s institution,
position, department, email address,
and supervisor. At present, this infor-
mation 1s requested from the user
when the attendee is first encoun-

‘Day-of-week is predicted rather than date be-
cause rules that predict a partcular date such as
March-4-1994 are 100 specific 10 be of lasung
value.

Table 2. Typical learned rules. Each evening CAP typically learns 5 to
20 new rules for each meeting feature. Rules are prioritized in the
system based on their performance over the training data and during
subsequent use. For example, the first rule was correct in 6 of the 11
training examples from which it was formed, and in 51 of 86
subsequently encountered examples to which it applies.

If Position-of-attendees is Grad-Student, and
Single-attendee? is Yes, and
Sponsor-of-atendees is Mitchell;

Then Duration is 60.

[Tramming: 6/11 Test: 51/86]

If Group-name is EDRC-Directors;
Then Duration is 90.

[Training: 6/6 Test: 31/38]

It Position-of-attendees is Faculty, and
Department-of-attendees is SCS, and
Number-ol-auendees is 2:

Then Location is Weh5220.

[ Training: 2/3 Test: 13/16]

It Position-of-attendees is Grad-student;
Then Location is Weh5309,
[Training: 21/21 Test: 56/59]

1f Seminar-type is THEO;
Then Day-of-week is Monday.
[Training: 6/6 Test: 8/8]

If Deparument-of-attendees is EDRC, and
Day-of-week is Friday;

Then Time 1s 8:30.

[Training: 5/5 Test: 18/19]

If Course-Name is 16-741;
Then Time is 9:30.
[Training: 35/35 Test: 59/60]

Table 3. Learning procedure in CAP. Each night CAP runs this
procedure to learn new rules and merge these with its current rule
sets.

1. Update the performance statistics for each current rule, to include
performance on all new training example meetings.
2. Window-Examples < the most recent 180 training example meetings.
3. Training-Examples « 120 examples selected at random from Window-
Examples
. Test-Examples «+ Window-Examples— Training-Examples.
. For each feature f in {Duration, Location, Day-of-Week, Time}
® Learn a decision tree to predict values of feature f, using the 1D3 algorithm
(see inset) applied to Training-Examples
e Convert each path of the learned decision tree into a rule
¢ Remove any rule preconditions that do not result in decreased rule
performance over either the Training-Examples or Test-Examples.
e For each new rule, record the number of positive and negative examples it
matches from Window-Examples
¢ Sort each new rule into the previous rules for feature f, based on their
accuracy as measured in the previous step.

(SN

such databases available in our envi-
ronment. As can be seen in Table 2,

tered. Alternatively, this information
could be obtained automatically from

on-line databases containing person-
nel information. Currently, we are
extending the system 1o make use of
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these attributes of attendees are used
in the preconditions of the learned
rules.
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Figure 2. Accuracy over time for
the day-of-week, duration, time,
and location prediction tasks.
The graphs on the left are for

User A, and those on the right for
User B. Solid lines indicate the
accuracy of advice generated by
CAP's learned rules. Dotted lines
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indicate the accuracy obtained
by suggesting the default value
for this feature.




Learning Method

Each night, CAP automatically runs a
learning process to refine the set of
rules it will use to provide advice on
the following day. This process ap-
plies a learning procedure similar to
ID3 [14, 15] to learn a decision tree
from the most recent training data
(see “Decision Tree for Meeting Lo-
cation). Each path through the deci-
sion tree is converted into a rule. In
order to improve generality, rule
preconditions are pruned when this
improves rule performance. This
learning procedure uses training ex-
amples such as the one shown in
Table 1, to acquire rules such as those
shown in Table 2. Each evening CAP
learns approximately 40 to 50 rules
for each of duration, location, time,
and day-of-week, of which 5 to 20
may be novel (i.e., different from pre-
viously learned rules). These learned
rules are merged into the previous
lists of rules, removing duplicates and
sorting based on their measured ac-
curacy. CAP’s learning process is
summarized in Table 3.

A number of design choices arise in
defining the learning procedure for
software assistants such as CAP. The
first design choice is “Which learning
method should be used?” We initially
considered two inductive learning
methods: decision tree induction [15]
and artificial neural network (ANN)
backpropagation [16]. While we
found experimentally that these two
learning methods produced compa-
rable accuracy when trained on the
same set of data [4], we came to pre-
fer decision trees for two reasons.
First, decision tree learning produces
collections of rules that are intelligible
to humans (see Table 2), whereas
learned weights in ANN’s are difficult
to interpret. Human readability will
be important in systems where hu-
mans may wish to inspect, edit, or
approve learned knowledge. Second,
the rules output from decision tree
induction provide a piecewise repre-
sentation of learned information, in
contrast to the monolithic representa-
tion used in ANN'’s. This enables the

system to monitor performance of

individual rules over time so that out-
dated rules can be rejected while
other highly useful rules are retained.

A second design choice is “How
large a window of training examples
should the learner utilize?” A large
window of training data is desirable
in order to assure that any regulari-
ties found by the learning procedure
will be statistically significant. Too
large a window of training data will
include very old data, however, that
may not be representative of current
scheduling regularities. For example,
in our university environment the
onset of summer break often leads to
major shifts in the scheduling prefer-
ences of users. We have found empir-
ically that a window of 180 examples
works well for our current learning
method and users. For faculty users
this corresponds to roughly two cal-
endar months, which is less than the
length of a semester. Given the
changing environment in which CAP
must learn, methods that could learn
reliably from shorter windows of data
would be very useful.

A third design choice is “Which
vocabulary of meeting attributes
should be considered by the
learner?” Hundreds of attributes, or
features, are potentially available to
CAP to describe each training exam-
ple meeting. For example, available
attributes  include “the previous
meeting with these same attendees”
and “the department of the attendees
of the meeting before the previous
meeting with these same attendees.”
One would like the learner to con-
sider all these attributes in its search
for general rules. However, as one
increases the number of attributes

one must also increase the number of

training examples in order to main-
tain a fixed level of learning perfor-
mance (more data is required to se-

lect reliably among the larger set of

candidate hypotheses). We have de-
veloped a method called Greedy At-
tribute Selection [3] that selects auto-
matically which attributes to use for
future learning by determining
which attributes would have led to
the most successful learning in the
past. This technique can be used to
customize dynamically the learning
procedure to each user and each type
of learned rule.

Yet another design choice in defin-
ing the learning procedure is “How

should new learned rules be inte-
grated with existing rules?” Given
that nightly learning uses only a fixed
window of recent data, and given that
some previously learned rules char-
acterize useful regularities that might
not be apparent in regent data, one
would like to combine new learned
rules with previously learned rules
that have been found to be successful
in practice. CAP accomplishes this by
maintaining statistics on the number
of correct and incorrect predictions
of each rule over the training data
and during subsequent use. Rules are
sorted based on these performance
statistics. The net effect is that old
rules that have been found empiri-
cally to be of use rise to the top of the
list, along with new rules that per-
form well on the training data. Old
rules that are found ineffective in
practice drop down the list quickly. A
separate list is maintained for each
type of rule (e.g., for rules predicting
meeting time).

Experimental Results

CAP has been used to varying de-
grees by half a dozen users. Two of
these users, university faculty mem-
bers who have fairly busy calendars,
have used CAP as their sole calendar
record for over 16 months. The ex-
perimental results presented here
are taken from the data collected by
CAP while in routine use by these two
subjects.

How well do CAP’s learned rules
perform in practice? One way to an-
swer this question is to plot the per-
centage of CAP’s advice that coincides
exactly with choices made by the user
over the period of time the system has
been in use. This data is plotted in
Figure 2, which shows the accuracy of
advice for meeting day-of-week, du-
ration, time, and location, for both
user A and user B.® In these plots, the
solid line indicates the accuracy of
advice based on CAP’s learned rules.
‘_Igl_e_a_]nmg procedure rt‘p(;ri;crl?hm'e is some-
what improved over the procedure in use while
the training data was originally collected. Thus,
the user did not necessarily see the same advice
that our subsequent learning experiments
would produce. Because the user decisions
might have diftered had they seen this advice, it

1s possible that the results of this experiment are
overly pessimistic.
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Figure 3. Trade-off of coverage
for accuracy in learned rules. Pre-
diction accuracy is plotted for
different subsets of CAP’'s rules.
Learned rules from Sept 30, 1991
are first sorted by their perfor-
mance over the training data,
then used to predict the 60 sub-
sequent meetings. The 1" inthe
curve indicates the accuracy and
coverage of the top-ranked rule
taken alone. The '3 indicates
the accuracy and coverage of the
top-3 ranked rules, and so on.
This curve illustrates the poten-
tial for the learner to increase
accuracy by limiting coverage.

For comparison, the dotted line indi-
cates the accuracy of advice based on
a dynamically computed default
value: the most common value of the
feature over the most recent 180 ex-
amples. The accuracy plotted for a
particular date is the measured accu-
racy of advice for the 60 meetings fol-
lowing that date. User A's graphs
cover the period March, 1992,
through December, 1993, whereas
user B's November, 1992,
through November, 1993.

What conclusions should be drawn

cover

from the results of Figure 2? One
conclusion is that it is indeed possible
3 rules that
characterize scheduling preferences
to some significant degree. The accu-
racy of learned advice varies signifi-

for the system to learn

cantly from feature to feature, and
user to user—f{rom an average accu-
racy of 69% for duration, User B, toa
low of 31% for ume, User B. Note
that for an uncrowded calendar, it is
particularly difficult for the agent to
predict the user’s choice of meeting
time, may be many
equally acceptable times, from which
the user might choose arbitrarily.
The average
rules across all
users is 47%, compared with an aver-
age of 24% for advice based on de-
fault values. In these graphs, advice is
considered accurate only if it is iden-
tical to the user's input.

Notice that the accuracy of CAP’s

since there

accuracy of learned

features and both

advice varies over time, reflecting the
dynamic nature of the domain and
the need for updating user-specific
scheduling preferences. For both fac-
ulty users, the periods of poorest per-
formance correlate strongly with the
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semester boundaries in the academic
year (i.e., January, June, September).
For example, notice the drop in per-
formance for both users during Au-
gusl—Scplcmb(‘r. as the new semester
begins and old scheduling priorities
are replaced by new ones. CAP’s per-

formance typically recovers following
these dips, as it learns new rules re-
flecting the user’s new scheduling
regularities.

While it is clear that CAP learns
something of use, it is disappointing
that the accuracy of CAP’s advice is
not higher. While this level of accu-
racy is acceptable for providing inter-
active advice which the user can over-
ride while adding new meetings, our
eventual goal is to have such assis-
tants offload work from the user by
autonomously performing portions
of the user’s workload. What can be
done to increase the accuracy of
CAP’s knowledge to a level at which it
might be entrusted to schedule meet-
ings automatically? While we believe
the learning method might be im-
proved in various ways, we expect a
more promising approach is to have
the agent focus only on meetings for
which it is confident in its predictions.
We have found that there are certain
meetings that can be predicted fairly
accurately (e.g., meetings between
our faculty subjects and their student
advisees), whereas other meetings are
not at all predictable from past expe-
(e.g., off-campus
trips). If CAP could successfully learn

rience one-time
to discriminate those meetings it can
confidently handle from those it can-
not, then it might become a useful
autonomous scheduler of rouiine
meetings, and simply forward diffi-
cult cases to its user, just as a human
secretary tends to operate autono-
mously in many cases and interacts
with the user in other problematic
cases.

Can CAP successfully distinguish
cases in which it should trust its
learned rules from those in which it
should not? Figure 3 provides evi-
dence that it can, by relying on ob-
served past performance to attach
confidences to individual rules. In
this experiment, rules learned for lo-
cation for subject A on the evening of
Sept 30, 1992, sorted

have been



Figure 4. Average accuracy vs.
coverage. This figure shows the
accuracy vs. coverage trade-off
for the eight prediction tasks
(two users, four rule types) of
Figure 2, Whereas Figure 3
showed this trade-off for one
day, this figure shows the aver-
age accuracy of this trade-off
over several years of use. For
most of the users and prediction
tasks, accuracy increases
smoothly as coverage is reduced.

based on their accuracy over the
training data. The “17 in the figure
shows the accuracy ol the top-ranked
rule in this sorted list, applicd to the
60 subsequent meetings following
training. Notice this single rule covers
33% of these subscquent meetings,
with an accuracy ol 93%. We use the
term coverage 1o indicate the propor-
ton of meetings for which a predic-
ton can be made. The “37 n the fig-
ure shows the coverage and accuracy
of CAP if it uses the three highest-
ranked rules, and Omitted
numbers (e.g., 2) indicate that rhe
corresponding  rule set pertormed
the sume as the next shorter set (e.g.,
1). As the size of the rule set 1s in-
creased to include all 52 learned
rules. the coverage grows from 33%
to nearly 100%, while the average ac-
curacy of advice drops from 95% to
6G7%. Notice that the accuracies plot-
ted in the Figure 2 correspond to the
rightmost point in Figure 3. As this

S0 OI6.

tigure illustrates, CAP can increase
the average accuracy of its predic-
tions by offering advice only when its

top-ranked rules apply, at the cost of

reduced coverage.

How would CAP"s performance
from Figure 2 change if it offered
advice only when the marching rule
had a past accuracy of au least NGz
Figure 4 shows the average accuracy
of advice for the same eight plots, as
N is varied from 0% to 95%. The
rightmost points in cach plot indicate
the accuracy and coverage of all rules,
averaged over the same time period
as in Figure 2. Points further to the
left indicate the increasing accuracy
and decreasing coverage of CAP's
advice, as the threshold N is increased
from 0% o 953%. For example, for
User A, the average accuracy of ad-

User A: Location

User B: Location
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vice improves from 52% 1o 79%, while
rule coverage drops from an average
ol 99% to 32%.

Conclusion and Prospects

CAP provides a case study for explor-
ing the thesis that machine learning
techniques can lead to self-customiz-
ing softwarc assistants. The primary
lessons ol this case study include:

e [t is [casible to learn user-specilic

meeting  preferences  automatically
from passive observation to an accu-
racy that significantly surpasses sim-
pler approaches such as computing
defaule values.

e [carned rules in CAP are typically
understandable to users, allowing for
the possibility of users evaluating,
augmenting, or editing them.

¢ While rules learned by CAP are
useful for providing interactive ad-
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vice to be approved or overriden by
the user, they are not sutficiently ac-
curate to SUpport autonomous nego-
tiation of all meetings by the agent on
the user’s behalf.

® One method for improving the ac-
curacy of CAP’s advice is to allow it to
volunteer advice only when the appli-
cable rules have been relatively accu-
rate in the past. This suggests a more
likely role for a software agent than
the complete automation of user
workload: an agent might select and

autonomously handle the subset of

situations for which it has high confi-
dence, referring difficult, nonroutine
cases to the user. We expect this kind
of shared responsibility will be a more
useful model for practical software
assistants.

¢ One effective method for learning
within a changing environment is to
measure performance of individual
rules over time, and to continually
merge and sort new learned rules
with old, based on their empirically
determined accuracy. The modular-
ity of rules (compared to neural net-
works) is important for this process.

What other tasks might be suited to
the learning apprentice approach
taken by CAP? Several characteristics
of the calendar management task
appear important to the approach:
First, in order to collect initial train-
ing data the system must provide a
service that makes it attractive to new
users even before it has acquired any
knowledge about this user. In the
case of CAP, the system is sufficiently
useful as a standard, unintelligent
calendar editor. Many tasks that are
routinely performed on-line without
user customization satisfy this prop-
erty (e.g., form-filling tasks such as
entering purchase orders). Second,
perfect advice and complete coverage
by the assistant should not be a neces-
sity. Third, the time interval needed
to acquire sufficient data for reliable
learning (the learning time constant)
must be shorter than the time interval
over which learned regularities re-
main stable (the task time constant).

In the case of CAP, for our faculty
users, the learning time constant is a
month or two, and the task time con-
stant approximately four months

(one academic semester). Finally, the
attributes on which user decisions are
based must be sufficiently observable to
the system. In the calendar task, deci-
sions about meeting duration, loca-
tion, and so forth depend on attri-
butes such as the state of the calendar
and features of the meeting attendees
(both observable to the system). Un-
fortunately, they also depend on fea-
tures such as which meeting rooms
are available—features that are not
currently observable to CAP, and that
result in limits on its performance.
Two other tasks that we believe satisfy
the preceding properties, and that we
are currently pursuing, include a
newsgroup reader that learns which
types of articles its users find interest-
ing and an email-based assistant that
learns routine types of messages and
conditions under which the
sends them.

Our experiments suggest a num-
ber of topics for future research. As
noted earlier, one important goal is
to extend CAP to be able to autono-
mously negotiate via email to arrange
routine meetings while forwarding
nonroutine meeting requests to the
user. In addition to the obvious issue
of improving the accuracy of learned
knowledge, this also raises research
issues related to transfer of authority
between user and system. For exam-
ple, how can user supervision of the
agent be best organized to allow the
user to evaluate the agent’s evolving
decision-making strategy and to allow
a gradual transfer of authority and
release of supervisory control as both
the user and assistant gain confidence
in the assistant’s evolving capabilities?

A second research issue is reducing
the time constant of learning. One
approach might be to learn more ab-
stract, but more temporally stable
knowledge such as “Each seminar in
a seminar series is typically held in
the same location, and has the same
duration.” This type of learned
knowledge (called determination
knowledge [17]) would enable the
agent to infer the general rule for lo-
cation and duration for a new semi-

user

nar series, as soon as the first seminar
in the series was encountered. An-
other approach to reducing the
learning time constant might be
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called cooperative learning (e.g.,
learning rules by pooling training
data from multiple users). For exam-
ple, by combining training data from
multiple faculty users of CAP, one
might learn rules that are valid to that
class of users (e.g., IF the meeting is
the Admissions-Committee-Meeting,
THEN the Location is Room-A). By
pooling training data from N users,
the learning time constant for such
rules could be reduced by as much as
a factor of N.

Increasing the observability of the
world by interfacing to other on-line
information sources, including other
agents, is another useful research di-
rection. Allowing the agent access to
other users’ calendars, to room reser-
vation databases, or to pcrsonncl
databases would increase the number
of potentially relevant attributes that
could be considered by the agent in
its decision making. Of course, an
increase in the number of such attri-
butes will generally lengthen the time
constant of the learner, raising the
additional research issue of learning
efficiently from large sets of potenti-
ally relevant attributes.

CAP provides a demonstration that
machine learning methods can ac-
quire many of the calendar-schedul-
ing preferences of individual users,
and can also estimate the reliability of
various learned rules. While these
results are encouraging, we are jusl
beginning to collect sufficient data to
be able to understand the capabilities
and difficulties in developing self-
customizing systems. It remains to be
demonstrated that knowledge
learned by systems like CAP can be
used to significantly reduce their
users’ workload. Our research plan is
to extend CAP to negotiate selected
meetings on its users’ behalf, and to
explore additional tasks including
learning users’ news group reading
preferences, and learning strategies
for email-based work flow assistance.
Given the potential impact of a suc-
cess in this area, we anticipate a flurry
of experiments in machine learning
approaches to self-customized assis-
tants over the coming years.
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